首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The physiology throughout centuries was considered as the basic fundamental science in medicine. Rapid development of molecular biology, genetics and of some other natural sciences in 2nd half XX demanded century not only the answer to a question on the sciences defining the base of development of medicine, but also key problems of its progress. The biomedicine is formed, its methods are discussed, is frequent in system of natural sciences, parities with physiology. The special attention is given unconditional necessity of finding-out of molecular mechanisms of functions, targets of action of physiologically active substances and obligatory correlation of data of modeling with the same processes in conditions in vivo in whole body. The role of various sciences in the decision of fundamental problems of medicine, a place and role of physiology in modern medicine is shown.  相似文献   

2.
土壤是农业生产的基础,是人类赖以生存的基石,也是人类食物与生态环境安全的保障。土壤学是解决人口-资源-环境-粮食矛盾的重要学科之一。广东土壤科学发展历史悠久,在食物安全、环境保护、减少贫困、退化土地恢复重建和生态系统稳定性维持等事关全省发展方面取得了许多重要的成绩,但目前我省面临着人均耕地面积少、后备土壤资源匮乏、土壤肥力下降、土壤环境日趋恶化以及水土流失依然严重等问题,因此我省土壤科学研究也将从生产农学和基础土壤发生学拓展到包括高效持续农业生产、土壤变化与全球气候变化相互关系、土壤可持续利用、数字化与信息化土壤、土壤污染监测及其修复等多功能的研究领域。  相似文献   

3.
An attempt has been made to examine the exponetial rate of increase of the great discoveries, the "milestones," in the rise of biology from the beginning of the seventeenth century, and particularly in the rise of genetics from the beginning of the twentieth century. The biological sciences in general, during the three centuries named, exhibit a doubling of the number of great discoveries in each fifty years. Genetics, in the twentieth century, has risen much faster. Its doubling time for the most significant discoveries has been about twenty-two and a half years. Either of these rates is of course far slower than the exponential rise in the total output of biological science, the number of scientists, or the cost of science, which have been generally reported to double about every ten years or less. It follows that, as time passes, and until these exponetial rates become considerably altered, a relationship of diminishing returns is quite evident. As time passes, even though the most significant discoveries continue to increase exponetially, it takes a greater total output, a greater number of (assisting?) scientists, and greater amounts of money to yield a set quantity of major new findings. The rapid rise of the life sciences cannot continue its present course into the twenty-first century without meeting ineluctable limits to expansion. It may be argued that as in other human spheres of activity, so too in natural science there are limits to growth which we are rapidly approaching. From the predictable asymptote only unpredictable breakthroughs might deliver us.  相似文献   

4.
什么是可持续性科学   总被引:5,自引:0,他引:5  
可持续发展是我们时代的主题,也是人类面临的最大挑战.自20世纪70年代,尤其是近20年来,可持续发展的概念日益频繁地出现在学术文章、政府文件以及公益宣传和商业广告之中.然而,为可持续发展提供理论基础和实践指导的科学——可持续性科学——是在21世纪初才开始形成的.该科学在短短的十几年中迅速开拓、不断发展,正在形成其科学概念框架和研究体系.中国是世界大国,是可持续性科学的哲学思想——“天人合一”——的故乡,有必要承担起时代之重任,在追求“中国梦”的同时促进全球可持续发展,并积极参与进而引领可持续性科学的研究和实践.为了帮助实现这一宏伟而远大目标,本文拟对可持续性科学的基本概念、研究论题和发展前景作一概述.可持续性科学是研究人与环境之间动态关系——特别是耦合系统的脆弱性、抗扰性、弹性和稳定性——的整合型科学.它穿越自然科学和人文与社会科学,以环境、经济和社会的相互关系为核心,将基础性研究和应用研究融为一体.可持续发展的核心内容往往因时、因地、 因人而异.因此,可持续性科学必须注重多尺度研究,同时应特别关注 50到100年的时间尺度和景观以及区域的空间尺度. 景观和区域不但是最可操作的空间尺度,同时也是上通全球、下达局地的枢纽尺度.可持续性科学需要聚焦于生态系统服务和人类福祉的相互关系,进而探讨生物多样性和生态系统过程,以及气候变化、土地利用变化和其他社会经济驱动过程对这一关系的影响.我们认为,景观和可持续性是可持续性科学的核心研究内容,也将是可持续性科学在以后几十年的研究热点.  相似文献   

5.
6.
Ecological engineering: A field whose time has come   总被引:3,自引:0,他引:3  
Ecological engineering is defined as “the design of sustainable ecosystems that integrate human society with its natural environment for the benefit of both.” It involves the restoration of ecosystems that have been substantially disturbed by human activities such as environmental pollution or land disturbance; and the development of new sustainable ecosystems that have both human and ecological value. While there was some early discussion of ecological engineering in the 1960s, its development was spawned later by several factors, including loss of confidence in the view that all pollution problems can be solved through technological means and the realization that with technological means, pollutants are just being moved from one form to another. Conventional approaches require massive amounts of resources to solve these problems, and that in turn perpetuates carbon and nitrogen cycle problems, for example. The development of ecological engineering was given strong impetus in the last decade with a textbook, the journal Ecological Engineering and two professional ecological engineering societies. Five principles about ecological engineering are: (1) It is based on the self-designing capacity of ecosystems; (2) It can be the acid test of ecological theories; (3) It relies on system approaches; (4) It conserves non-renewable energy sources; and (5) It supports biological conservation. Ecology as a science is not routinely integrated into engineering curricula, even in environmental engineering programs, while shortcoming, ecologists, environmental scientists, and managers miss important training in their profession—problem solving. These two problems could be solved in the integrated field of ecological engineering.  相似文献   

7.
Kim J 《History and philosophy of the life sciences》2005,27(3-4):325-38; discussion 339-44
There is the general philosophical question concerning the relationship between physics, which is often taken to be our fundamental and all-encompassing science, on one hand and the special sciences, such as biology and psychology, each of which deals with phenomena in some specially restricted domain, on the other. This paper deals with a narrower question: Are there laws in the special sciences, laws like those we find, or expect to find, in basic physics? Three arguments that are intended to show that there are no such laws are presented and examined. The paper ends with brief remarks concerning the implications of these arguments for explanation and causation in the special sciences.  相似文献   

8.
The search for a model of balanced science has not so far been based on a detailed analysis of the nature and effects of the science curriculum. The present paper attempts to begin to fill the gap, from the perspective of biology, using data from the Assessment of Perform-ance Unit (APU). It is shown that, in England, the uptake of the subject as an option outstrips that of the other sciences, with pupils quoting its intrinsic interest as their motivation. Biology serves to attract to science pupils of all abilities and girls in particular. The other sciences are not so successful in this sphere. However, performance data show that the study of biology is not as effective in enhancing science performance as are the physical sciences.  相似文献   

9.
Surrogates are used widely in ecology to detect or monitor changes in the environment that are too difficult or costly to assess directly. Yet most work on surrogates to date has been correlative, with little work on their predictive capacity or the circumstances under which they work. Our suggestion is to revisit and learn from research in the clinical medical sciences, including the causal statistical frameworks available to validate relationships between treatments, surrogate variables, and the outcome of interest. We adapt this medical thinking to ecology by providing a new framework that involves specification of the surrogate model, statistical validation, and subsequent evaluation in a range of spatial and temporal contexts. An inter‐disciplinary surrogate concept will allow for a more rigorous approach to validating and evaluating proxy variables, thus advancing the selection and application of surrogates in ecology. Synthesis We draw together ideas from the medical sciences to define an explicit surrogate concept that has not previously been used in ecology. We present a new framework for specifying surrogate models involving validation using a causal framework, and subsequent re‐evaluation in different spatial and temporal contexts – an approach closely aligned with that used by researchers in the clinical medical sciences. This rigorous method can advance the science underpinning the application of surrogates in ecology by shifting the focus away from correlative understanding to one that focuses instead on causation and prediction. An improved use of surrogates is imperative if we are to meet the challenge of properly measuring and understanding the multifarious and complex problems in contemporary ecology.  相似文献   

10.
We live in an increasingly data-driven world, where high-throughput sequencing and mass spectrometry platforms are transforming biology into an information science. This has shifted major challenges in biological research from data generation and processing to interpretation and knowledge translation. However, postsecondary training in bioinformatics, or more generally data science for life scientists, lags behind current demand. In particular, development of accessible, undergraduate data science curricula has the potential to improve research and learning outcomes as well as better prepare students in the life sciences to thrive in public and private sector careers. Here, we describe the Experiential Data science for Undergraduate Cross-Disciplinary Education (EDUCE) initiative, which aims to progressively build data science competency across several years of integrated practice. Through EDUCE, students complete data science modules integrated into required and elective courses augmented with coordinated cocurricular activities. The EDUCE initiative draws on a community of practice consisting of teaching assistants (TAs), postdocs, instructors, and research faculty from multiple disciplines to overcome several reported barriers to data science for life scientists, including instructor capacity, student prior knowledge, and relevance to discipline-specific problems. Preliminary survey results indicate that even a single module improves student self-reported interest and/or experience in bioinformatics and computer science. Thus, EDUCE provides a flexible and extensible active learning framework for integration of data science curriculum into undergraduate courses and programs across the life sciences.  相似文献   

11.
A fundamental issue in any branch of the natural sciences is validating the basic concepts for use in that branch. In psychiatry, this issue has not yet been resolved, and indeed, the proper nature of the problem has scarcely been recognised. As a result, psychiatry (or at least those parts of the discipline which aspire to scientific status) still cannot claim to be a part of scientific medicine, or to be incorporated within the common language of the natural sciences. While this creates difficulties within the discipline, and its standing in relation to other branches of medicine, it makes it an exciting place for “frontiersmen” (and women). This is one of the key growing points in the natural science tradition. In this essay, which moves from the early history of that tradition to today’s debates in scientific psychiatry, I give my views about how these fundamental issues can move towards resolution.  相似文献   

12.
Scientific research plays a fundamental role in the health and development of any society, since all technological advances depend ultimately on scientific discovery and the generation of wealth is intricately dependent on technological advance. Due to their importance, science and technology generally occupy important places in the hierarchical structure of developed societies, and they receive considerable public and private investment. Publicly funded science is almost entirely devoted to discovery, and it is administered and structured in a very similar way throughout the world. Particularly in the biological sciences, this structure, which is very much centered on the individual scientist and his own hypothesis-based investigations, may not be the best suited for either discovery in the context of complex biological systems, or for the efficient advancement of fundamental knowledge into practical utility. The adoption of other organizational paradigms, which permit a more coordinated and interactive research structure, may provide important opportunities to accelerate the scientific process and further enhance its relevance and contribution to society. The key alternative is a structure that incorporates larger organizational units to tackle larger and more complex problems. One example of such a unit is the research network. Brazil has utilized such networks to great effect in genome sequencing projects, demonstrating their relevance to the Brazilian research community and opening the possibility of their wider utility in the future.  相似文献   

13.
In the celebration of the Oswaldo Cruz Institute centenary, we wanted to stress our concern with the relationship between two of its missions: research and education. What are the educational bases required for science and technology activities on health sciences for the future years? How can scientists collaborate to promote the popularization of academic knowledge and to improve a basic education for citizenship in an ethic and humanistic view? In this article we pointed out to need of commitment, even in the biomedical post-graduation level, of a more integrated philosophy that would be centered on health education, assuming health as a dynamic biological and social equilibrium and emphasizing the need of scientific popularization of science in a cooperative construction way, instead of direct transfer of knowledge, preserving also macro views of health problems in the development of very specific studies. The contemporary explosion of knowledge, particularly biological knowledge, imposes a need of continuous education to face the growing illiteracy. In order to face this challenge, we think that the Oswaldo Cruz Institute honors his dialectic profile of tradition and transformation, always creating new perspectives to disseminate scientific culture in innovator forms.  相似文献   

14.
Students are most motivated and learn best when they are immersed in an environment that causes them to realize why they should learn. Perhaps nowhere is this truer than when teaching the biological sciences to engineers. Transitioning from a traditionally mathematics-based to a traditionally knowledge-based pedagogical style can challenge student learning and engagement. To address this, human pathologies were used as a problem-based context for teaching knowledge-based cell biological mechanisms. Lectures were divided into four modules. First, a disease was presented from clinical, economic, and etiological standpoints. Second, fundamental concepts of cell and molecular biology were taught that were directly relevant to that disease. Finally, we discussed the cellular and molecular basis of the disease based on these fundamental concepts, together with current clinical approaches to the disease. The basic science is thus presented within a "shrink wrap" of disease application. Evaluation of this contextual technique suggests that it is very useful in improving undergraduate student focus and motivation, and offers many advantages to the instructor as well.  相似文献   

15.
Know-how and know-why in biochemical engineering   总被引:3,自引:0,他引:3  
This contribution analyzes the position of biochemical engineering in general and bioprocess engineering particularly in the force fields between fundamental science and applications, and between academia and industry. By using culture technology as an example, it can be shown that bioprocess engineering has moved slowly but steadily from an empirical art concerned with mainly know-how to a science elucidating the know-why of culture behavior. Highly powerful monitoring tools enable biochemical engineers to understand and explain quantitatively the activity of cellular culture on a metabolic basis. Among these monitoring tools are not just semi-online analyses of culture broth by HPLC, GC and FIA, but, increasingly, also noninvasive methods such as midrange IR, Raman and capacitance spectroscopy, as well as online calorimetry. The detailed and quantitative insight into the metabolome and the fluxome that bioprocess engineers are establishing offers an unprecedented opportunity for building bridges between molecular biology and engineering biosciences. Thus, one of the major tasks of biochemical engineering sciences is not developing new know-how for industrial applications, but elucidating the know-why in biochemical engineering by conducting research on the underlying scientific fundamentals.  相似文献   

16.
The art and science of lake restoration   总被引:1,自引:0,他引:1  
Brian Moss 《Hydrobiologia》2007,581(1):15-24
Science and art encompass understanding, through human hand and mind; both are applied in the form of creation by human hand and mind. Like Janus, the Roman god of doorways and bridges, they are two faces of the same thing. Great art requires great understanding and great understanding is wasted unless it is applied to create meaningful art, whether this is in the form of written works or paintings. These principles apply not least to the restoration of lakes and whole landscapes from the human-induced damage that is the antithesis of significant art and fundamental science. Because they lie at the lowest points of hydrologic basins, lakes reflect the balance of human activities in their catchments. If these activities are carried out well, they contribute greatly to the landscape and to the welfare of the human population. If carried out badly in the sole interests of exploitation of resources, both human and otherwise, they may become problems reflected, for example, in eutrophication, algal blooms and fish kills. Lake restoration involves first an understanding in a reductionist (scientific) way of the processes that drive lake ecosystems, but then of the ultimate reasons that create these proximate problems. Ultimate reasons lie in a much wider sphere of human nature and the organisation of society. Lake restoration, in its most trivial form, may be simply a form of gardening to allay the symptoms of problems and create the illusion of a solution. Lake restoration in its most profound form involves an understanding of cultural significance and the workings of human societies and forms an epitome for the solution of much greater, global problems. Only in this form does it become truly creative. Approval must come from both of the faces of Janus.  相似文献   

17.
A common way to think about scientific practice involves classifying it as hypothesis- or data-driven. We argue that although such distinctions might illuminate scientific practice very generally, they are not sufficient to understand the day-to-day dynamics of scientific activity and the development of programmes of research. One aspect of everyday scientific practice that is beginning to gain more attention is integration. This paper outlines what is meant by this term and how it has been discussed from scientific and philosophical points of view. We focus on methodological, data and explanatory integration, and show how they are connected. Then, using some examples from molecular systems biology, we will show how integration works in a range of inquiries to generate surprising insights and even new fields of research. From these examples we try to gain a broader perspective on integration in relation to the contexts of inquiry in which it is implemented. In today's environment of data-intensive large-scale science, integration has become both a practical and normative requirement with corresponding implications for meta-methodological accounts of scientific practice. We conclude with a discussion of why an understanding of integration and its dynamics is useful for philosophy of science and scientific practice in general.  相似文献   

18.
P Hunter 《EMBO reports》2012,13(9):795-797
A shortage of skilled science labour in Europe could hold back research progress. The EU will increase science funding to address the problem, but real long-term measures need to start in schools, not universities.Scientists have always warned about the doom of research that could result from a shortage of students and skilled labour in the biomedical sciences. In the past, this apocalyptic vision of empty laboratories and unclaimed research grants has seemed improbable, but some national research councils and the European Union (EU) itself now seem to think that we may be on the brink of a genuine science labour crisis in Europe. This possibility, and its potential effects on economic growth, has proven sufficiently convincing for the European Commission (EC) to propose a 45% increase to its seven-year research and development budget of 45%—from €55 billion, provided under the Framework Programme (FP7), to €80 billion—for a new strategic programme for research and innovation called Horizon 2020 that will start in 2014.This bold proposal to drastically increase research funding, which comes at a time when many other budgets are being frozen or cut, was rigorously defended in May 2012 by the EU ministers responsible for science and innovation, against critics who argued that such a massive increase could not be justified given the deepening economic crisis across the EU. So far, the EU seems to be holding to the line that it has to invest more into research if Europe is to compete globally through technological innovation underpinned by scientific research.Europe is caught in a pincer movement between its principle competitors—the USA and Japan, which are both increasing their research budgets way ahead of inflation—and the emerging economies of China, India, Brazil and Russia, which are quickly closing from behind. The main argument for the Horizon 2020 funding boost came from a study commissioned by the EU [1], which led the EC to claim that Europe faces an “innovation emergency” because its businesses are falling behind US and Japanese rivals in terms of investment and new patents. As Martin Lange, Policy Officer for Marie Curie Actions—an EU fellowship programme for scientists—pointed out, “China, India and Brazil have started to rapidly catch up with the EU by improving their performance seven per cent, three per cent and one per cent faster than the EU year on year over the last five years.”According to Lange, Europe''s innovation gap equates to a shortage of around 1 million researchers across the EU, including a large number in chemistry and the life sciences. This raises fundamental issues of science recruitment and retention that a budget increase alone cannot address. The situation has also been confused by the economic crisis, which has led to the position where many graduates are unemployed, and yet there is still an acute shortage of specialist skills in areas vital to research.This is a particularly serious issue in the UK, where around 2,000 researcher jobs were lost following the closure of pharmaceutical company Pfizer''s R&D facility in Kent, announced in February 2011. “The travails of Pfizer have affected the UK recruitment market,” explained Charlie Ball, graduate labour market specialist at the UK''s Higher Education Careers Services Unit. The closure has contributed to high unemployment among graduates, particularly chemists, who tend to be employed in pharmaceutical research in the UK. “Even among people with chemistry doctorates, the unemployment rate is higher than the average,” he said.The issue for chemists, at least in the UK, is not a skills shortage, but a skills mismatch. Ball identified analytical chemistry as one area without enough skilled people, despite the availability of chemists with other specialties. He attributes part of the problem to the pharmaceutical industry''s inability to communicate its requirements to universities and graduates, although he concedes that doing so can be challenging. “One issue is that industry is changing so quickly that it is genuinely difficult to say that in three or four years time we will need people with specific skills,” Ball explained.So far, the EU seems to be holding to the line that it has to invest more into research […] to compete globally through technological innovation underpinned by scientific researchAlongside this shortage of analytical skills, the UK Medical Research Council (MRC) has identified a lack of people with practical research knowledge, and in particular of experience working with animals, as a major factor holding back fundamental and pre-clinical biomedical research in the country. It has responded by encouraging applications from non-UK and even non-EU candidates for doctoral studentships that it funds, in cases where there is a scarcity of suitable UK applicants.But, the underlying problem common to the whole of Europe is more fundamental, at least according to Bengt Norden, Professor of Physical Chemistry at the University of Gothenburg in Sweden. The issue is not a shortage of intellectual capital, Norden argues, but a growing lack of investment into training chemists, which in turn undermines life sciences research. Similarly to many other physical chemists, Norden has worked mainly in biology, where he has applied his expertise in molecular recognition and function to DNA recombination and membrane translocation mechanisms. He therefore views a particularly acute recruitment and retention crisis in chemistry as being a drag on both fundamental and applied research across the life sciences. “The recruitment crisis is severe,” Norden said. “While a small rill of genuinely devoted‘young amateur scientists‘ still may sustain the recruitment chain, there is a general drain of interest in science in general and chemistry in particular.” He attributes this in part to sort of a ‘chemophobia'', resulting from the association of chemistry with environmental pollution or foul odours, but he also blames ignorant politicians and other public figures for their negative attitude towards chemistry. “A former Swedish Prime Minister, Goran Persson, claimed that ‘his political goal was to make Sweden completely free from chemicals'',” Norden explained by way of example.Scientists themselves also need to do a better job of countering the negative perceptions of chemistry and science, perhaps by highlighting the contribution that chemistry is already making to clearing up pollution. Chemistry has been crucial to the development of microorganisms that can be used to break down organic pollutants in industrial waste, or clear up accidental spillage during transport. In fact, chemistry has specifically addressed the two major challenges involved: the risk that genetically engineered microorganisms could threaten the wider environment if they escape, and the problem that the microorganisms themselves can be poisoned if the concentration of pollutants is too high.A team at the University of Buenos Aires in Argentina has solved both problems by developing a material comprising an alginate bead surrounded by a silica gel [2]. This container houses a fungus that produces enzymes that break up a variety of organic pollutants. The pores of the hydrogel can limit the intake of toxic compounds from the polluted surroundings, thus controlling the level of toxicity experienced by the fungus, whilst the fungus itself is encapsulated inside the unit and cannot escape. Norden and others believe that if such examples were given more publicity, they would both improve the reputation of chemistry and science in general, and help to enthuse school students at a formative age.…Europe''s innovation gap equates to a shortage of around 1 million researchers across the EU, including a large number in chemistry and the life sciencesUnfortunately, this is not happening in schools, according to Norden, where the curriculum is failing both to enthuse pupils through practical work, and to inform them of the value of chemistry across society: “school chemistry neither stimulates curiosity nor does it promote understanding of what is most important to everybody,” he said. “It should be realized that well-taught chemistry is a necessary tool for dealing with everyday problems, at home or at work, and in the environment, relating to function of medicines, as well as what is poisonous and what is less noxious. As it is, all chemicals are presented simply as poisons.”Norden believes that a broader cultural element also tends to explain the particular shortage of analytical skills in chemistry. He believes that young people are more inclined than ever before to weigh up the probable rewards of a chosen profession in relation to the effort involved. “There seems to be a ‘cost–benefit'' aspect that young people apply when choosing an academic career: science, including maths, is too hard in relation to the jobs that eventually are available in research,” he explained. This ‘cost–benefit'' factor might not deter people from studying subjects up to university level, but can divert them into careers that pay a lot more. Ball believes that there is also an issue of esteem, in that people tend to gravitate towards careers where they feel valued. “Our most able graduates don''t see parity in esteem between research and other professions being represented by the salary they are paid,” he explained. “That is an issue that needs to be resolved, and it is not just about money, but working hard to convince these graduates that there is a worthwhile career in research.”Our most able graduates don''t see parity in esteem between research and other professions being represented by the salary they are paid,Lange suggests that it would be much easier to persuade the best graduates to stay in science if they were able to pursue their ideas free from bureaucracy or other constraints. This was a main reason to start the Marie Curie Actions programme of which Lange is a part, and which will be continued under Horizon 2020 with a new name, Marie Skłodowska-Curie Actions, and an increased budget. “The Marie Curie Actions have been applying a bottom-up principle, allowing researchers to freely choose their topic of research,” Lange explained. “The principle of ‘individual-driven mobility'' that is used in the Individual Fellowships empowers researchers to make their own choices about the scientific topic of their work, as well as their host institutions. […] It is a clear win–win situation for both sides: researchers are more satisfied because they are given the opportunity to take their careers in their own hands, while universities and research organizations value top-class scientists coming from abroad to work at their institutes.”Lange also noted that although Marie Curie Fellows choose their own research subjects, they tend to pursue topics that are relevant to societal needs because they want to find work afterwards. “More than 50% of the FP7 Marie Curie budget has been dedicated to research that can be directly related to the current societal challenges, such as an ageing population, climate change, energy shortage, food and water supply and health,” he said. “This demonstrates that researchers are acting in a responsible way. Even though they have the freedom to choose their own research topics, they still address problems that concern society in general.” In addition, Marie Curie Actions also encourages engagement with the public, feeding back into the wider campaign to draw more people into science careers. “Communicating science to the general public will be of importance as well, if we want to attract more young people to science,” Lange said. “Recently, the Marie Curie Actions started encouraging their Fellows to engage in outreach activities. In addition, we have just launched a call for the Marie Curie Prize, where one of the three Prize categories will be ‘Communicating Science''.”Another important element of the EU''s strategy to stimulate innovative cutting edge research is the European Research Council (ERC). It was the first pan-European funding body for front-line research across the sciences, with a budget of €7.5 billion for the FP7 period of 2007–2013, and has been widely heralded as a success. As a result, the ERC is set to receive an even bigger percentage increase than other departments within Horizon 2020 for the period 2014–2020, with a provisional budget of €13.2 billion.Leading scientists, such as Nobel laureate Jean-Marie Lehn, from Strasbourg University in France, believe that the ERC has made a substantial contribution to innovative research and, as a result, has boosted the reputation of European science. “The ERC has done a fantastic job which is quite independent of pressures from the outside,” he said. “It is good to hear that taking risks is regarded as important.” Lehn also highlighted the importance of making it clear that there are plenty of opportunities in research beyond those funded, and therefore dictated, by the big pharmaceutical companies. “There is chemistry outside big pharma, and life beyond return on investment,” he said. Lehn agreed that there must be a blend between blue sky and goal-oriented research, even if there is an argument over what the blend and goals should be.…the ERC has made a substantial contribution to innovative research and, as a result, has boosted the reputation of European scienceThere is growing optimism that Europe''s main funding bodies, including the national research councils of individual countries, have not only recognized the recruitment problem, but are taking significant steps to address it. Even so, there is still work to be done to improve the image of science and to engage students through more stimulating teaching. Chemistry in particular would benefit from broader measures to attract young people to science. Ultimately, the success of such initiatives will have much broader effects in the life sciences and drug development.  相似文献   

19.
Much of the spectacular progress in biomedical science over the last half-century is the direct consequence of the work of thousands of basic scientists whose primary goal was understanding of the fundamental working of living things. Despite this, many politicians, funders, and even scientists have come to believe that the pace of successful applications to medical diagnosis and therapy is limited by our willingness to focus directly on human health, rather than a continuing deficit of understanding. By this theory, curiosity-driven research, aimed at understanding, is no longer important or even useful. What is advocated instead is “translational” research aimed directly at treating disease. I believe this idea to be deeply mistaken. Recent history suggests instead that what we have learned in the last 50 years is only the beginning. The way forward is to invest more in basic science, not less.  相似文献   

20.
我国草坪科学的现状与发展   总被引:11,自引:0,他引:11  
温明章  杜生明 《生命科学》1999,11(5):218-220
本文对草坪科学的主要研究方向的进展进行了综述,指出了我国草坪研究的优势、劣势及存在的主要问题,如种质资源丰富但迫切需要保护;育种工作刚刚起步;草坪管理技术落后。还阐述了今后促进草坪科学发展的工作重点。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号