首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In this report we studied the effect of the antimicrobial peptide, microcin J25, on the rat heart mitochondria. This peptide induced an important inhibition of the ATP synthesis with the concomitant enhancement of the ATP degradation. These effects were the result of two processes: on one hand, microcin J25 was able to insert into the membrane and hence alter its permeability with the consequent dissipation of the proton motive force. On the other, microcin J25 inhibited the enzymatic activity of the cytochrome c reductase (complex III) of the respiratory chain. The relevance of this study to the potential use of microcin J25 as an anti-tumoral agent is discussed.  相似文献   

2.
The three-dimensional solution structure of microcin J25, the single cyclic representative of the microcin antimicrobial peptide class produced by enteric bacteria, was determined using two-dimensional 1H NMR spectroscopy and molecular modeling. This hydrophobic 21-residue peptide exhibits potent activity directed to Gram-negative bacteria. Its primary structure, cyclo(-V1GIGTPISFY10GGGAGHVPEY20F-), has been determined previously [Blond, A., Péduzzi, J., Goulard, C., Chiuchiolo, M. J., Barthélémy, M., Prigent, Y., Salomón, R.A., Farías, R.N., Moreno, F. & Rebuffat, S. (1999) Eur. J. Biochem., 259, 747-755]. Conformational parameters (3JNHCalphaH coupling constants, quantitative nuclear Overhauser enhancement data, chemical shift deviations, temperature coefficients of amide protons, NH-ND exchange rates) were obtained in methanol solution. Structural restraints consisting of 190 interproton distances inferred from NOE data, 11 phi backbone dihedral angle and 9 chi1 angle restraints derived from the coupling constants and three hydrogen bonds in agreement with the amide exchange rates were used as input for simulated annealing calculations and energy minimization in the program XPLOR. Microcin J25 adopts a well-defined compact structure consisting of a distorted antiparallel beta sheet, which is twisted and folded back on itself, thus resulting in three loops. Residues 7-10 and 17-20 form the more regular part of the beta sheet. The region encompassing residues Gly11-His16 consists of a distorted beta hairpin, which divides into two small loops and is stabilized by an inverse gamma turn and a type I' beta turn. The reversal of the chain leading to the Phe21-Pro6 loop results from a mixed beta/gamma turn. A cavity, in which the hydrophilic Ser8 side-chain is confined, is delimited by two crab pincer-like regions that comprise residues 6-8 and 18-1.  相似文献   

3.
Microcin J25 (MccJ25) is the single macrocyclic antimicrobial peptide belonging to the ribosomally synthesized class of microcins that are secreted by Enterobacteriaceae. It showed potent antibacterial activity against several Salmonella and Escherichia strains and exhibited a compact three-dimensional structure [Blond et al. (2001) Eur. J. Biochem., 268, 2124-2133]. The molecular mechanisms involved in the biosynthesis, folding and mode of action of MccJ25 are still unknown. We have investigated the structure and the antimicrobial activity of thermolysin-linearized MccJ25 (MccJ25-L1-21: VGIGTPISFY10GGGAGHVPEY20F), as well as two synthetic analogs, sMccJ25-L1-21 (sequence of the thermolysin-cleaved MccJ25) and sMccJ25-L12-11 (C-terminal sequence of the MccJ25 precursor: G12GAGHVPEYF21V1GIGTPISFYG11). The three-dimensional solution structure of MccJ25-L1-21, determined by two-dimensional NMR, consists of a boot-shaped hairpin-like well-defined 8-19 region flanked by disordered N and C termini. This structure is remarkably similar to that of cyclic MccJ25, and includes a short double-stranded antiparallel beta-sheet (8-10/17-19) perpendicular to a loop (Gly11-His16). The thermolysin-linearized MccJ25-L1-21 had antibacterial activity against E. coli and S. enteritidis strains, while both synthetic analogues lacked activity and organized structure. We show that the 8-10/17-19 beta-sheet, as well as the Gly11-His16 loop are required for moderate antibacterial activity and that the Phe21-Pro6 loop and the MccJ25 macrocyclic backbone are necessary for complete antibacterial activity. We also reveal a highly stable 8-19 structured core present in both the native MccJ25 and the thermolysin-linearized peptide, which is maintained under thermolysin treatment and resists highly denaturing conditions.  相似文献   

4.
Microcin J25 (MccJ25) is a plasmid-encoded, ribosomally synthesized antibacterial peptide with a unique lasso structure. The lasso structure, produced with the aid of two processing enzymes, provides exceptional stability to MccJ25. We report the synthesis of six peptides (1-6), derived from the MccJ25 sequence, that are designed to form folded conformation by disulfide bond formation and electrostatic or hydrophobic interactions. Two peptides (1 and 6) display good activity against Salmonella newport, and are the first synthetic derivatives of MccJ25 that are bactericidal. Peptide 1 displays potent activity against several Salmonella strains including two MccJ25 resistant strains. The solution conformation and the stability studies of the active peptides suggest that they do not fold into a lasso conformation and peptide 1 displays antimicrobial activity by inhibition of target cell respiration. Like MccJ25, the synthetic MccJ25 derivatives display minimal toxicity to mammalian cells suggesting that these peptides act specifically on bacterial cells.  相似文献   

5.
Microcin J25 (MccJ25) is the single representative of the immunity group J of the microcin group of peptide antibiotics produced by Enterobacteriaceae. It induces bacterial filamentation in susceptible cells in a non-SOS-dependent pathway [R. A. Salomon and R. Farias (1992) J. Bacteriol. 174, 7428-7435]. MccJ25 was purified to homogeneity from the growth medium of a microcin-overproducing Escherichia coli strain by reverse-phase HPLC. Based on amino acid composition and absolute configuration determination, liquid secondary ion and electrospray mass spectrometry, extensive two-dimensional NMR, enzymatic and chemical degradations studies, the structure of MccJ25 was elucidated as a 21-residue peptide, cyclo(-Val1-Gly-Ile-Gly-Thr- Pro-Ile-Ser-Phe-Tyr-Gly-Gly-Gly-Ala-Gly-His-Val-Pro-Glu-Tyr-Phe21- ). Although MccJ25 showed high resistance to most of endoproteases, linearization by thermolysin occurred from cleavage at the Phe21-Val1 bond and led to a single peptide, MccJ25-L. While MccJ25 exhibited remarkable antibiotic activity towards Salmonella newport and several E. coli strains (minimal inhibitory concentrations ranging between 0.01 and 0.2 microgram.mL-1), the thermolysin-linearized microcin showed a dramatic decrease of the activity, indicating that the cyclic structure is essential for the MccJ25 biological properties. As MccJ25 is ribosomally synthesized as a larger peptide precursor endowed with an N-terminal extremity, the present study shows that removal of this extension and head-tail cyclization of the resulting propeptide are the only post-translational modifications involved in the maturation of MccJ25, that appears as the first cyclic microcin.  相似文献   

6.
In the present study, we showed that yojI, an Escherichia coli open reading frame with an unknown function, mediates resistance to the peptide antibiotic microcin J25 when it is expressed from a multicopy vector. Disruption of the single chromosomal copy of yojI increased sensitivity of cells to microcin J25. The YojI protein was previously assumed to be an ATP-binding-cassette-type exporter on the basis of sequence similarities. We demonstrate that YojI is capable of pumping out microcin molecules. Thus, one obvious explanation for the protective effect against microcin J25 is that YojI action keeps the intracellular concentration of the peptide below a toxic level. The outer membrane protein TolC in addition to YojI is required for export of microcin J25 out of the cell. Microcin J25 is thus the first known substrate for YojI.  相似文献   

7.
A Tn5 insertion in tolC eliminated microcin J25 production. The mutation had little effect on the expression of the microcin structural gene and presumably acted by blocking microcin secretion. The tolC mutants carrying multiple copies of the microcin genes were less immune to the microcin. TolC is thus likely a component of a microcin export complex containing the McjD immunity protein, an ABC exporter.  相似文献   

8.
A 4.8-kb plasmid region carrying the four genes mcjABCD necessary for production of and immunity to the cyclic peptide antibiotic microcin J25 (MccJ25) has been sequenced. mcjA encodes the primary structure of MccJ25 as a precursor endowed with an N-terminal extension of 37 amino acids. The products of mcjB and mcjC are thought to be involved in microcin maturation, which implies cleavage of McjA and head-tail linkage of the 21-residue pro-MccJ25. The predicted McjD polypeptide, which is highly similar to several ABC exporters, was found to be required for MccJ25 secretion, thus explaining its ability to confer immunity to MccJ25.  相似文献   

9.
Delgado MA  Salomón RA 《Plasmid》2005,53(3):258-262
The Escherichia coli plasmid pTUC100 encodes production of, and immunity to, the peptide antibiotic microcin J25. In the present study, an approximately 8-kb fragment immediately adjacent to the previously sequenced microcin region was isolated and its DNA sequence was determined. The main features of the newly characterized region are: (i) a basic replicon which is almost identical to that of the RepFIIA plasmid R100; (ii) two ORFs with 96% identity to two ORFs of unknown function on pO157, a large plasmid harbored by enterohemorragic E. coli, and a large ORF which does not show significant homology to any other reported nucleotide or protein sequence; and (iii) two intact insertion sequences, IS1294 and IS1. Sequence analysis, as well as that of the G+C content of both the 8-kb fragment and the previously sequenced microcin locus, lead us to propose that plasmid pTUC100 is a composite structure assembled from DNA elements from various sources.  相似文献   

10.
Schibli DJ  Hwang PM  Vogel HJ 《Biochemistry》1999,38(51):16749-16755
Tritrpticin is a member of the cathelicidin family, a group of diverse antimicrobial peptides found in neutrophil granules. The three Trp and four Arg residues in the sequence VRRFPWWWPFLRR make this a Trp-rich cationic peptide. The structure of tritrpticin bound to membrane-mimetic sodium dodecyl sulfate micelles has been determined using conventional two-dimensional NMR methods. It forms two adjacent turns around the two Pro residues, a distinct fold for peptide-membrane interaction. The first turn involves residues 4-7, followed immediately by a second well-defined 3(10)-helical turn involving residues 8-11. The hydrophobic residues are clustered together and are clearly separated from the basic Arg residues, resulting in an amphipathic structure. Favorable interactions between the unusual amphipathic fold and the micelle surface are probably key to determining the peptide structure. NMR studies of the peptide in the micelle in the presence of the spin-label 5-doxylstearic acid determined that tritrpticin lies near the surface of the micelle, where its many aromatic side chains appear to be equally partitioned into the hydrophilic-hydrophobic interface. Additional fluorescence studies confirmed that the tryptophan residues are inserted into the micelle and are partially protected from the effects of the soluble fluorescence quencher acrylamide.  相似文献   

11.
In this paper we compared the antibacterial activity of native microcin J25, a peptide antibiotic, with the activities of two analogues obtained by chemical modifications. In the first analogue, the negative charge of glutamic carboxyl group was specifically blocked with an L-glycine methyl ester and in the second the histidine imidazole ring was carbethoxylated. Both analogues decreased notably its antibiotic activity against Escherichia coli and Salmonella newport, strains sensible to the native microcin J25. The biological activity of the carbethoxylated analogue was completely recovered after treatment with hydroxylamine. The extreme importance of both polar residues could be interpreted as specific structural features indispensable for the peptide transportation into the cell, extrusion outside the cell or alternatively to inhibit the RNA-polymerase.  相似文献   

12.
Particles formed by the bacteriophage MS2 coat protein mutants with insertions in their surface loops induce a strong immune response against the inserted epitopes. The covalent dimers created by fusion of two copies of the coat protein gene are more tolerant to various insertions into the surface loops than the single subunits. We determined a 4.7‐Å resolution crystal structure of an icosahedral particle assembled from covalent dimers and compared its stability with wild‐type virions. The structure resembled the wild‐type virion except for the intersubunit linker regions. The covalent dimer orientation was random with respect to both icosahedral twofold and quasi‐twofold symmetry axes. A fraction of the particles was unstable in phosphate buffer because of assembly defects. Our results provide a structural background for design of modified covalent coat protein dimer subunits for use in immunization.  相似文献   

13.
Chionodracine (Cnd) is a 22-residue peptide of the piscidin family expressed in the gills of the Chionodraco hamatus as protection from bacterial infections. Here, we report the effects of synthetic Cnd on both Psychrobacter sp. TAD1 and Escherichia coli bacteria, as well as membrane models. We found that Cnd perforates the inner and outer membranes of Psychrobacter sp. TAD1, making discrete pores that cause the cellular content to leak out. Membrane disruption studies using intrinsic and extrinsic fluorescence spectroscopy revealed that Cnd behaves similarly to other piscidins, with comparable membrane partition coefficients. Membrane accessibility assays and structural studies using NMR in detergent micelles show that Cnd adopts a canonical topology of antimicrobial helical peptides, with the hydrophobic face toward the lipid environment and the hydrophilic face toward the bulk solvent. The analysis of Cnd free energy of binding to vesicles with different lipid contents indicates a preference for charged phospholipids and a more marked binding to native E. coli extracts. Taken with previous studies on piscidin-like peptides, we conclude that Cnd first adsorbs to the membrane, and then forms pores together with membrane fragmentation. Since Cnd has only marginal hemolytic activity, it constitutes a good template for developing new antimicrobial agents.  相似文献   

14.
Antimicrobial resistance is a growing health concern. Antimicrobial peptides (AMPs) disrupt harmful microorganisms by nonspecific mechanisms, making it difficult for microbes to develop resistance. Accordingly, they are promising alternatives to traditional antimicrobial drugs. In this study, we developed an improved AMP classification model, called AMP-BERT. We propose a deep learning model with a fine-tuned bidirectional encoder representations from transformers (BERT) architecture designed to extract structural/functional information from input peptides and identify each input as AMP or non-AMP. We compared the performance of our proposed model and other machine/deep learning-based methods. Our model, AMP-BERT, yielded the best prediction results among all models evaluated with our curated external dataset. In addition, we utilized the attention mechanism in BERT to implement an interpretable feature analysis and determine the specific residues in known AMPs that contribute to peptide structure and antimicrobial function. The results show that AMP-BERT can capture the structural properties of peptides for model learning, enabling the prediction of AMPs or non-AMPs from input sequences. AMP-BERT is expected to contribute to the identification of candidate AMPs for functional validation and drug development. The code and dataset for the fine-tuning of AMP-BERT is publicly available at https://github.com/GIST-CSBL/AMP-BERT .  相似文献   

15.
P18 (KWKLFKKIPKFLHLAKKF-NH2) is an antimicrobial peptide designed from a cecropin A-magainin 2 hybrid that has potent antibacterial activity without hemolytic activity against human erythrocytes. In this study, P18 displayed potent fungicidal activity (MIC: 12.5 approximately 25 microM) against pathogenic fungi, Candida albicans, Trichosporon beigelii, Aspergillus flavus and Fusarium oxyspovrum. The central Pro9 residue and the entire sequence of P18 are essential for its full fungicidal activity. Circular dichroism analysis suggested that the higher alpha-helical content of the peptides did not correlate with the stronger fungicidal activity.  相似文献   

16.
Cationic antimicrobial peptides have attracted increasing attention as a novel class of antibiotics to treat infectious diseases caused by pathogenic bacteria. However, susceptibility to protease is a shortcoming in their development. Cyclization is one approach to increase the proteolytic resistance of peptides. Therefore, to improve the proteolytic resistance of Polybia‐MPI, we have synthesized the MPI cyclic analogs C‐MPI‐1 (i‐to‐i+4) and C‐MPI‐2 (i‐to‐i+6) by copper(I)‐catalyzed azide–alkyne cycloaddition. Compared with MPI, C‐MPI‐1 displayed sustained antimicrobial activity and had enhanced anti‐trypsin resistance, while C‐MPI‐2 displayed no antimicrobial activity. The relationship between peptide structure and bioactivity was further investigated by probing the secondary structure of the peptides by circular dichroism. This showed that C‐MPI‐1 adopted an α‐helical structure in aqueous solution and, interestingly, had increased α‐helical conformation in 30 mM sodium dodecyl sulfate and 50% trifluoroethyl alcohol compared with MPI. C‐MPI‐2 that was not α‐helical in structure, suggesting that the propensity for α‐helix conformation may play an important role in cyclic peptide design. In addition, scanning electron microscopy, propidium iodide uptake, and membrane permeabilization assays indicated that MPI and the optimized analog C‐MPI‐1 had membrane‐active action modes, indicating that the peptides would not be susceptible to conventional resistance mechanisms. Our study provides additional insight into the influence of intramolecular cyclization at various positions on peptide structure and biological activity. In conclusion, the design and synthesis of cyclic analogs via click chemistry offer a new strategy for the development of stable antimicrobial agents. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

17.
All atom molecular dynamics simulations of the 18-residue beta-hairpin antimicrobial peptide protegrin-1 (PG-1, RGGRLCYCRRRFCVCVGR-NH(2)) in a fully hydrated dilauroylphosphatidylcholine (DLPC) lipid bilayer have been implemented. The goal of the reported work is to investigate the structure of the peptide in a membrane environment (previously solved only in solution [R.L. Fahrner, T. Dieckmann, S.S.L. Harwig, R.I. Lehrer, D. Eisenberg, J. Feigon, Solution structure of protegrin-1, a broad-spectrum antimicrobial peptide from porcine leukocytes. Chemistry and Biology, 3 (1996) 543-550]), and to delineate specific peptide-membrane interactions which are responsible for the peptide's membrane binding properties. A novel, previously unknown, "kick" shaped conformation of the peptide was detected, where a bend at the C-terminal beta-strand of the peptide caused the peptide backbone at residues 16-18 to extend perpendicular to the beta-hairpin plane. This bend was driven by a highly persistent hydrogen-bond between the polar peptide side-chain of TYR7 and the unshielded backbone carbonyl oxygen atom of GLY17. The H-bond formation relieves the unfavorable free energy of insertion of polar groups into the hydrophobic membrane core. PG-1 was anchored to the membrane by strong electrostatic binding of the protonated N-terminus of the peptide to the lipid head group phosphate anions. The orientation of the peptide in the membrane, and its influence on bilayer structural and dynamic properties are in excellent agreement with solid state NMR measurements [S. Yamaguchi, T. Hong, A. Waring, R.I. Lehrer, M. Hong, Solid-State NMR Investigations of Peptide-Lipid Interaction and Orientation of a b-Sheet Antimicrobial Peptide, Protegrin, Biochemistry, 41 (2002) 9852-9862]. Importantly, two simulations which started from different initial orientations of the peptide converged to the same final equilibrium orientation of the peptide relative to the bilayer. The kick-shaped conformation was observed only in one of the two simulations.  相似文献   

18.
Botulinum neurotoxins can block neurotransmitter release for several months. The molecular mechanism of these toxins' action is known, but the persistence of neuromuscular paralysis that they cause is unexplained. At frog neuromuscular junctions, application of botulinum toxin type A caused paralysis and reduced the C-terminus immunoreactivity of SNAP-25, but not that of the remaining N-terminus fragment. Botulinum toxin type C caused paralysis and reduced syntaxin immunoreactivity without affecting that of SNAP-25. Co-application of botulinum A and C reduced syntaxin immunoreactivity, and that of both C and N termini of SNAP-25. Application of hydroxylamine to de-palmitoylate SNAP-25 resulted in a slight reduction of the immunoreactivity of SNAP-25 N terminus, while it had no effect on immunoreactivity of botulinum A cleaved SNAP-25. In contrast, application of hydroxylamine to nerve terminals where syntaxin had been cleaved by botulinum C caused a considerable reduction in SNAP-25 N-terminus immunoreactivity. Hence the retention of immunoreactive SNAP-25 at the neuromuscular junction depends on its interactions with syntaxin and plasma membrane. Persistence of cleaved SNAP-25 in nerve terminals may prevent insertion of new SNAP-25 molecules, thereby contributing to the longevity of botulinum A effects.  相似文献   

19.
The antimicrobial activity of bovine lactoferrin is attributed to lactoferricin, situated in the N1-domain. Based on common features of antimicrobial peptides, a second putative antimicrobial domain was identified in the N1-domain of lactoferrin, designated lactoferrampin. This novel peptide exhibited candidacidal activity, which was substantially higher than the activity of lactoferrin. Furthermore, lactoferrampin was active against Bacillus subtilis, Escherichia coli, and Pseudomonas aeruginosa, but not against the fermenting bacteria Actinomyces naeslundii, Porphyromonas gingivalis, Streptococcus mutans and Streptococcus sanguis. Notably, lactoferrampin is located in the N1-domain in close proximity to lactoferricin, which plays a crucial role in membrane-mediated activities of lactoferrin.  相似文献   

20.
The transition of the state of alamethicin from its inactive state to its active state of pore formation was measured as a function of the peptide concentration in three different membrane conditions. In each case the fraction of the alamethicin molecules occupying the active state, phi, showed a sigmoidal concentration dependence that is typical of the activities of antimicrobial peptides. Such a concentration dependence is often interpreted as due to peptide aggregation. However, we will show that a simple effect of aggregation cannot explain the data. We will introduce a model based on the elasticity of membrane, taking into consideration the membrane-thinning effect due to protein inclusion. The elastic energy of membrane provides an additional driving force for aggregation. The model produces a relation that not only predicts the correct concentration dependence but also explains qualitatively how the dependence changes with membrane conditions. The result shows that the membrane-mediated interactions between monomers and aggregates are essential for the strong cooperativity shown in pore formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号