首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
学习记忆中的关键物质   总被引:6,自引:0,他引:6  
谷氨酸是神经系统中较普遍的兴奋性神经递质,其受体有三种亚型:海人草酸(kainate,KA)受体、使君子氨酸(quisqualate,QA)受体和N-甲基-D-天门冬氨酸(N-methyl-D-aspartate,NMDA)受体。KA、QA、NMDA都是L-谷氨酸的类似物。KA受体、QA受体通道维持平时的信息传递,而NMDA受体通道只在学习记忆过程中才开启,因而被认为是学习记忆中的关键物质。  相似文献   

2.
亨廷顿氏病(Huntington's disease,HD)作为一种显性遗传性神经退行疾病,表现为运动、智力、心理功能障碍.目前尚无有效的治疗或预防措施;针对各种HD症状的药物和控制措施效果不理想.1993年确认HD发病是由于HD基因(HTT)中CAG序列重复扩增超过36次或以上,翻译为突变的多聚谷氨酰胺,引起兴奋性神...  相似文献   

3.
离子通道是细胞膜上一类特殊亲水性蛋白微孔道,也是肌肉、神经细胞等电活动的物质基础。目前研究通过生物学及离子通道膜片钳等新技术对离子通道有了进一步的认识,并逐步发掘离子通道的结构功能异常与疾病的发生存在的紧密关系。先天性巨结肠症(Hirschsprung's Disease,HD)又称无神经节细胞症,是小儿外科的常见疾病之一。HD临床表现为胎粪排出延迟、顽固性便秘及腹胀,常并发小肠结肠炎、低位肠梗阻等。目前研究尚未完全明确HD的发病机制,本文对HD的发生与结直肠离子通道功能间的关系作一综述。  相似文献   

4.
目的:探讨血液透析(HD)联合血液透析滤过(HDF)对维持性血液透析(MHD)患者营养及微炎症指标的影响。方法:选择2005年12月到2014年12月在我院接受治疗的140例MHD患者,随机分为HD组(n=70)和HD+HDF组(n=70)。比较两组患者治疗前后营养不良-炎症评分(MIS)、C反应蛋白(CRP)、白细胞介素6(IL-6)、白蛋白(ALB)、前白蛋白(PA)、血红蛋白(Hb)、握力(HS)、肱三头肌皮褶厚度(TSF)的变化。结果:治疗后,HD+HDF组患者MIS明显降低,ALB、PA、Hb、HS、TSF明显升高(均P0.05),且各指标改善程度均优于HD组(均P0.05);治疗后,HD+HDF组患者相比于治疗前和HD组治疗后,CRP、IL-6明显降低(均P0.05)。结论:HD联合HDF较单纯HD能更好的改善患者营养状态,减轻微炎症反应。  相似文献   

5.
亨廷顿病的基因诊断   总被引:2,自引:0,他引:2  
莫亚勤  李麓芸  卢光琇 《遗传》2005,27(6):861-864
为了简单高效检测HD基因开放阅读框5’端(CAG)n三核苷酸重复序列,建立快速准确的亨廷顿病(Huntington disease, HD)基因诊断方法,应用TaKaRa LA Taq DNA聚合酶配合GC buffer扩增HD基因包含(CAG)n重复序列的目的片段,非变性聚丙烯酰胺凝胶电泳检测后回收(CAG)n拷贝数异常增多的目的片段,再次PCR扩增后将产物连接至T载体,进行DNA测序确定CAG的拷贝数。应用该方法对一个HD家系的3名成员以及20名正常人进行基因诊断,结果显示该HD家系3名成员的一条染色体上的(CAG)n拷贝数在正常范围内,而另一条染色体上的(CAG)n拷贝数异常增多,分别为39、40、41,而20例正常人(CAG)n拷贝数均在正常范围内,正常和HD等位基因之间的(CAG)n拷贝数不相重叠。因此,应用该方法可以对HD进行准确的基因诊断,结果同时也证明HD基因的动态突变是导致中国人亨廷顿病的遗传基础。  相似文献   

6.
目的:探讨小檗碱对动脉粥样硬化损伤的保护作用。方法:将56只大鼠,随机分为对照组(C),高脂饮食假手术组(HD),肾动脉狭窄组(RAS),肾动脉狭窄高脂饮食组(HD+RAS)。C及RAS组给予正常饮食,HD及HD+RAS组给予高脂饮食,RAS及HD+RAS组采用固定内径银夹夹左肾动脉。饲养12周,每组处死6只进行检测,剩余除C外每日灌胃小檗碱(150mg/kg),C予以等量生理盐水灌服,持续4周,四周后处死进行相同检测,用药前后结果进行对比评价小檗碱功能。结果:与C相比,HD,RAS,HD+RAS组肌酐显著升高(P<0.05),HD及HD+RAS组胆固醇明显升高(P<0.05),超氧化物歧化酶(SOD)在HD,RAS及HD+RAS组显著降低(P<0.05),丙二醛(MDA)在HD,RAS及HD+RAS组显著增高(P<0.05),血管内皮生长因子VEGF在HC,RAS及HD+RAS组表达量升高。给予小檗碱灌胃处理后,检测指标各组间无统计学差异(P>0.05)。结论:小檗碱对动脉粥样硬化性损伤具有良好的保护作用。  相似文献   

7.
利用毛细管电泳 (capillary electrophoresis, CE)建立牛血清白蛋白(bovine serum albumin, BSA)-酪胺(tyramine, TA)分子作用机制的分析方法,构建TA-BSA相互作用模型,并研究其相互作用机理. 生理条件下,采用HD法(Hummel-Dreyer, HD),前沿分析法(frontal analysis, FA)和空峰法(vacant peak, VP)研究TA与BSA的结合机制,构建TA-BSA理论模型,获取TA和BSA相互作用参数,分析理论模型的适用度. 通过分子模拟,构建TA与BSA的结合模型,考察TA的BSA结合机制. 结果表明,HD法和VP法均适用于分析TA-BSA体系的相互作用,VP法最优. 模型适用度分析得出双对数方程最适合模拟TA-BSA相互作用,TA与BSA结合强度较弱,且只有单一类型的结合位点. 构建的TA与BSA结合模型表明,TA与BSA的相互作用力主要是氢键和范德华力,兼有疏水作用力. 本文结果可为分析生物胺-蛋白质分子作用机制研究提供有意义的参考.  相似文献   

8.
Huntington病(HD)是一种由HD基因中的CAG重复扩增导致的遗传性神经变性性疾病。谷氨酸盐受体的过量刺激所致的兴奋毒性细胞损害可能是PD的发病原因之一。HD转基因小鼠模型对兴奋毒性表现出不同的敏感性。目前已经建立了多种HD动物模型,这些模型有不同的遗传背景,不同长度和类型的转基因表达启动子,不同长度的CAG重复序列和/或HD基因。另外,还有转基因和基因敲除等制作方法的区别。所有的这些因素都可能影响到对兴奋毒性的敏感性。作者建立了一种HD转基因大鼠模型,并研究了其对兴奋毒性的敏感性。该模型的转基因片段启动子为HD基因…  相似文献   

9.
目的 探讨配对同源异型盒蛋白2B(paired-like homebox 2B,PHOX2B)在先天性巨结肠症(Hirschsprung's disease,HD)的表达意义及其在HD发病机理中可能起到的作用.方法 构建40只SD乳鼠HD动物模型,取其狭窄段和移行段与40只正常乙状结肠段进行比较.分别在HD狭窄段、移行...  相似文献   

10.
目的:探讨腹膜透析(PD)和血液透析(HD)对终末期肾脏疾病(ESRD)患者钙磷代谢及微炎症状态的影响。方法:选择2016年1月~2017年2月我院收治的ESRD患者94例为研究对象,采用随机数字表法分为PD组(47例)和HD组(47例),PD组给予非卧床持续性PD治疗,HD组给予HD治疗,治疗6个月后比较两组血清钙磷代谢水平和微炎症状态,并统计两组并发症的发生率。结果:治疗6个月后,两组血清钙水平与治疗前相比显著升高,血清磷水平显著降低(P0.05),但HD组与PD组比较无差异(P0.05);治疗6个月后,两组血清C-反应蛋白(CRP)水平较治疗前明显升高,且HD组高于PD组,差异有统计学意义(P0.05),治疗6个月后,两组降钙素原(PCT)水平与治疗前相比显著降低,差异有统计学意义(P0.05),但HD组与PD组比较无差异(P0.05);PD组感染、低蛋白血症的发生率高于HD组,HD组高血压、心律失常、充血性心衰的发生率高于PD组,差异均有统计学意义(P0.05)。结论:PD和HD治疗均可改善ESRD患者钙磷代谢紊乱,但两者都将加剧患者微炎症反应,其中HD对患者微炎症状态的影响更大。  相似文献   

11.
Brain Quinolinic Acid in Huntington''s Disease   总被引:6,自引:4,他引:2  
Concentrations of the endogenous neurotoxic tryptophan metabolite, quinolinic acid (QA), were measured in postmortem brain tissue obtained from patients with Huntington's disease (HD) and matched controls, using a gas chromatography/mass spectrometry method. There was no significant difference in either the putamen or the frontal cortex between the HD and control groups. These results do not support the hypothesis that increased QA is responsible for neuronal degeneration in HD.  相似文献   

12.
Neuronal loss in Huntington's disease (HD) is seen first in the neostriatum. It has been suggested that impaired metabolism underlies this degeneration, as striatal vulnerability to excitotoxicity is increased by metabolic compromise. At 12 weeks of age, a transgenic mouse carrying the HD mutation (R6/2 line) has been shown to have an increased vulnerability to the mitochondrial toxin 3-nitropropionic acid (3-NP). However, in contrast, younger R6/2 mice appear to be less vulnerable than wild-type (WT) mice to the excitotoxins kainic acid and quinolinic acid (QA). In this study, we examine the possibility that the sensitivity of R6/2 mice to 3-NP might be age dependent. We treated young, symptomatic R6/2 mice with 3-NP and found that despite their progressive neurological phenotype, they were not more susceptible to 3-NP intoxication than their WT littermates. Further, fewer R6/2 than WT mice developed striatal lesions. We suggest that compensatory mechanisms exist in the R6/2 mouse brain that protect it against the toxic effect of the transgene and coincidentally protect against exogenous toxins such as 3-NP, QA, and kainic acid. The existence of similar compensatory mechanisms may explain why, in humans, HD is a late-onset disorder, despite early expression of the genetic mutation.  相似文献   

13.
14.
The pathogenesis of Parkinson’s disease (PD) remains to be elucidated. Metabolomic analysis has the potential to identify biochemical pathways and metabolic profiles that are involved in PD pathogenesis. Here, we performed a targeted metabolomics to quantify the plasma levels of 184 metabolites in a discovery cohort including 82 PD patients and 82 normal controls (NCs) and found two up-regulated (dopamine, putrescine/ornithine ratio) and four down-regulated (octadecadienylcarnitine C18:2, asymmetric dimethylarginine, tryptophan, and kynurenine (KYN)) metabolites in the plasma of PD patients. We then measured the plasma levels of a panel of metabolic products of KYN pathway in an independent validation cohort including 118 PD patients, 22 Huntington’s disease (HD) patients, and 37 NCs. Lower kynurenic acid (KA)/KYN ratio, higher quinolinic acid (QA) level, and QA/KA ratio were observed in PD patients compared to HD patients and NCs. PD patients at advanced stage (Hoehn-Yahr stage >?2) showed lower KA and KA/KYN ratio, as well as higher QA and QA/KA ratio compared to PD patients at early stage (Hoehn-Yahr stage ≤?2) and NCs. Levels of KA and QA, as well as the ratios of KA/KYN and QA/KA between PD patients with and without psychiatric symptoms, dementia, or levodopa-induced dyskinesia in the advanced PD were similar. This metabolomic analyses demonstrate a number of plasma biomarker candidates for PD, suggesting a shift toward neurotoxic QA synthesis and away from neuroprotective KA production in KYN pathway.  相似文献   

15.
Dopamine (DA), a major neurotransmitter used in the striatum, is involved in movement disorders such as Parkinson's disease and Huntington's chorea. With the loss of neurons in the striatum of patients with Huntington's disease (HD), there is an associated downregulation of DA receptors, which may alter DA-mediated responses. In the present study, DA-mediated electrophysiological depression was studied in animals with quinolinic acid (QA)-induced experimental HD. QA was directly applied to the right striatum of adult female Sprague-Dawley rats. Animals receiving QA developed ipsilateral rotation after the application of apomorphine. Fetal striatal tissue transplants grafted 1 month after lesioning attenuated apomorphine-induced rotation. Six months after lesioning, the animals were anesthetized with urethane for electrophysiological study. DA, applied directly to neurons by pressure microejection, inhibited spontaneous single-unit activity in the striatal neurons of nonlesioned, lesioned and lesioned/grafted rats. QA lesioning reduced responses to DA in the striatal neurons. The dose of DA required to inhibit striatal neuron activity in the lesioned rats was significantly increased compared to that in the nonlesioned rats. Transplantation of fetal striatal tissue restored the electrophysiological sensitivity to DA in the lesioned striatum. The dose of DA used to suppress striatal neuron activity was reduced after grafting. Immunohistostaining showed survival of gamma-aminobutyric acid neurons at the graft site. Tyrosine hydroxylase-positive terminals were found innervating the striatal grafts. In conclusion, our data demonstrate that fetal striatal transplants restore electrophysiological sensitivity to DA in the lesioned striatum of animals with experimental HD.  相似文献   

16.
3-Nitropropionic acid (3-NP)-induced neurotoxicity can be used as a model for the genetic neurodegenerative disorder Huntington’s disease (HD). A metabolic profiling strategy was adopted to explore the biochemical consequences of 3-NP administered to rats in specific brain regions. 1H NMR spectroscopy was used to characterize the metabolite composition of several brain regions following 3-NP-intoxication. Dose-dependent increases in succinate levels were observed in all neuroanatomical regions, resulting from the 3-NP-induced inhibition of succinate dehydrogenase. Global decreases in taurine and GABA were observed in the majority of brain regions, whereas altered lipid profiles were observed only in the globus pallidus and dorsal striatum. Depleted phosphatidylcholine and elevated glycerol levels, which are indicative of apoptosis, were also observed in the frontal cortex of the 3-NP model. Many of the metabolic anomalies are consistent with those reported in HD. The 3-NP-induced model of HD provides a means of monitoring potential mechanisms of pathology and therapeutic response for drug interventions, which can be efficiently assessed using metabolic profiling strategies.  相似文献   

17.
Cleavage of huntingtin (htt) has been characterized in vitro, and accumulation of caspase cleavage fragments represents an early pathological change in brains of Huntington's disease (HD) patients. However, the relationship between htt proteolysis and the pathogenesis of HD is unknown. To determine whether caspase cleavage of htt is a key event in the neuronal dysfunction and selective neurodegeneration in HD, we generated YAC mice expressing caspase-3- and caspase-6-resistant mutant htt. Mice expressing mutant htt, resistant to cleavage by caspase-6 but not caspase-3, maintain normal neuronal function and do not develop striatal neurodegeneration. Furthermore, caspase-6-resistant mutant htt mice are protected against neurotoxicity induced by multiple stressors including NMDA, quinolinic acid (QA), and staurosporine. These results are consistent with proteolysis of htt at the caspase-6 cleavage site being an important event in mediating neuronal dysfunction and neurodegeneration and highlight the significant role of htt proteolysis and excitotoxicity in HD.  相似文献   

18.
Pathological-length polyglutamine (Q(n)) expansions, such as those that occur in the huntingtin protein (htt) in Huntington's disease (HD), are excellent substrates for tissue transglutaminase in vitro, and transglutaminase activity is increased in post-mortem HD brain. However, direct evidence for the participation of tissue transglutaminase (or other transglutaminases) in HD patients in vivo is scarce. We now report that levels of N(epsilon)-(gamma-L-glutamyl)-L-lysine (GGEL)--a 'marker' isodipeptide produced by the transglutaminase reaction--are elevated in the CSF of HD patients (708 +/- 41 pmol/mL, SEM, n = 36) vs. control CSF (228 +/- 36, n = 27); p < 0.0001. These data support the hypothesis that transglutaminase activity is increased in HD brain in vivo.  相似文献   

19.
Huntington disease (HD) is one of several fatal neurodegenerative disorders associated with misfolded proteins. Here, we report a novel method for the sensitive detection of misfolded huntingtin (HTT) isolated from the brains of transgenic (Tg) mouse models of HD and humans with HD using an amyloid seeding assay (ASA), which is based on the propensity of misfolded proteins to act as a seed and shorten the nucleation-associated lag phase in the kinetics of amyloid formation in vitro. Using synthetic polyglutamine peptides as the substrate for amyloid formation, we found that partially purified misfolded HTT obtained from end-stage brain tissue of two Tg HD mouse models and brain tissue of post-mortem human HD patients was capable of specifically accelerating polyglutamine amyloid formation compared with unseeded reactions and controls. Alzheimer and prion disease brain tissues did not do so, demonstrating the specificity of the ASA. It is unclear whether early intermediates or later conformational species in the protein misfolding process act as seeds in the ASA for HD. However, we were able to detect misfolded protein in the brains of YAC128 mice early in disease pathogenesis (11 weeks of age), whereas large inclusion bodies have not been observed in the brains of these mice by histology until 78 weeks of age, much later in the pathogenic process. The sensitive detection of misfolded HTT protein early in the disease pathogenesis in the YAC128 Tg mouse model strengthens the argument for a causative role of protein misfolding in HD.  相似文献   

20.
Huntington’s disease (HD) is an autosomal dominantly inherited neurodegenerative disorder caused by expansion of CAG repeats in the coding area of huntingtin gene. In the HD brain, mutant huntingtin protein goes through proteolysis, and its amino-terminal portion consisting of polyglutamine repeats accumulate as inclusions that result in progressive impairment of cellular protein quality control system. Here, we demonstrate that partial rescue of the defective protein quality control in HD model mouse by azadiradione (a bioactive limonoids found in the seed of Azadirachta indica) could potentially improve the disease pathology. Prolonged treatment of azadiradione to HD mice significantly improved the progressive deterioration in body weight, motor functioning along with extension of lifespan. Azadiradione-treated HD mice brain also exhibited considerable decrease in mutant huntingtin aggregates load and improvement of striatal pathology in comparison with age-matched saline-treated HD controls. Biochemical analysis further revealed upregulation and activation of not only HSF1 (master regulator of protein folding) but also Ube3a (an ubiquitin ligase involved in the clearance of mutant huntingtin) in azadiradione-treated mice. Our results indicate that azadiradione-mediated enhanced folding and clearance of mutant huntingtin might underlie improved disease pathology in HD mice and suggests that it could be a potential therapeutic molecule to delay the progression of HD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号