首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Papain catalysed peptide synthesis was followed to determine the optimum conditions for adsorption and covalent binding immobilization methods. The synthesis of the dipeptide Gly-Phe was studied in two different reaction systems: a) For adsorbed papain, in an organic medium containing low water concentration, b) For covalently bound enzyme, in a two-liquid phase system, using trichloroethylene as organic phase. The amount of enzyme offered to the immobilization support and the pH of the immobilization procedure were the main parameters studied.  相似文献   

2.
Selective lipase-catalyzed synthesis of glucose fatty acid esters in two-phase systems consisting of an ionic liquid (1-butyl-3-methyl imidazolium tetrafluoroborate [BMIM][BF4] or 1-butyl-3-methyl imidazolium hexafluorophosphate [BMIM][PF6]) and t-butanol as organic solvent was investigated. The best enzyme was commercially available lipase B from Candida antarctica (CAL-B), but also lipase from Thermomyces lanuginosa (TLL) gave good conversion. After thorough optimization of several reaction conditions (chain-length and type of acyl donor, temperature, reaction time, percentage of co-solvent) conversions up to 60% could be achieved using fatty acid vinyl ester as acyl donors in [BMIM][PF6] in the presence of 40% t-BuOH with CAL-B at 60 °C.  相似文献   

3.
海藻糖酶法合成途径及其酶基因的重组表达研究   总被引:1,自引:0,他引:1  
在生物抗逆研究中,海藻糖合酶基因是继甘露醇、脯氨酸、甜菜碱合成酶基因之后又一个与抗逆相关的基因。海藻糖具有独特的生物学功能,能提高生物体对干旱、高温、冷冻和渗透压的抗性,发现以来就受到人们的普遍关注。随着对海藻糖化学性质、生理功能、作用机理及代谢途径等方面研究的深入,其在生物制品、食品、医药、作物育种及精细化工等领域广阔的应用前景日益显现。就海藻糖在生物体中的合成途径,以及海藻糖合成酶的基因工程研究进展进行了综述。  相似文献   

4.
The physicochemical mechanism of protease-catalyzed peptide synthesis in heterogenous etuectic mixtures of substrates has been examined by a combination of microscopic techniques. Using a number of model reactions of dipeptide amide synthesis, it was determined that liquid phase catalysis was mostly, if not exclusively, responsible for the observed conversion of substrates. Furthermore, the formation of liquid or semiliquid eutectics was an important requirement for the occurrence of those reactions where both substrates were solids in the pure state. The addition of small quantities of hydrophilic solvents (adjuvants) often resulted in significat improvements in the rates and yields of the reactions. This was due to the ability of these adjuvants to promote the formation of eutectics, thereby increasing the proportion, as well as affecting the composition the properties, as well as affecting the composition and properties of the liquid phase. (c) 1994 John Wiley & Sons, Inc.  相似文献   

5.
Enzymatic hydrolysis of penicillin G by immobilized penicillin acylase in a nonionic surfactant mediated cloud point system was presented. The effect of the operation parameters on equilibrium pH of this enzymatic hydrolysis process without pH control was examined. A relatively high equilibrium pH in cloud point system without pH control can be obtained. The feasibility of recycling utilization of the nonionic surfactant, a novel green solvent, was also investigated experimentally. Enzymatic hydrolysis of penicillin G in a discrete semi-batch mode, which simulates a semi-continuous process, envisages a completely eco-friendly, sustainable and efficient process for production of 6-aminopenicillanic acid.  相似文献   

6.
-Chymotrypsin was crosslinked to give a water-insoluble polymer by treatment with the bifunctional reagent glutaraldehyde. The specific activity of the crosslinked enzyme in aqueous media was three orders of magnitude lower than for the native chymotrypsin. In a medium containing more than 50% (v/v) of dimethylformamide the specific activities of both enzymes were comparable. In addition, the insoluble polymer was more stable in the presence of 60% (v/v) dimethylformamide compared with the native enzyme. Therefore, in this medium enzymatic peptide synthesis could be successfully accomplished with the crosslinked enzyme, but not with the same amount of native chymotrypsin.  相似文献   

7.
Partially purified preparations with proteolytic activity, obtained from South American native plants, were used as biocatalysts in condensation reactions of N-protected arginine alkyl ester derivatives with decylamine and dodecylamine in low-water content systems. The final products are cationic surfactants with potential application as emulsifiers and preservatives. Most of the proteolytic extracts were obtained from latex of species belonging to the Asclepiadaceae family (araujiain from Araujia hortorum, asclepain c from Asclepias curassavica and funastrain from Funastrum clausum). Hieronymain was obtained from unripe fruits of Bromelia hieronymi (Bromeliaceae). Plant proteases from commercial sources (papain and bromelain) were also tested as catalysts in the same reactions. Araujiain and funastrain furnished good reaction conversions (60–84%, with a ratio synthesis/hydrolysis of 2–5) similar to those obtained with commercial papain. Moreover, araujiain was the biocatalyst which rendered the best conversions (60%) for the synthesis of the two novel Bz-Arg-NH-dodecylamide (Bz-Arg-NHC12) and Bz-Arg-NH-decylamide (Bz-Arg-NHC10) derivatives. Moderate to poor conversions (10–50%, showing a ratio synthesis/hydrolysis of 0.5–1) were achieved with asclepain c, hieronymain and bromelain. The screening presented in this work revealed that, although these are structurally similar, their behavior for the synthesis of this kind of products differ among them.  相似文献   

8.
Humicola insolens mutant Cel7B E197A is a powerful endo-glycosynthase displaying an acceptor substrate specificity restricted to β-d-glucosyl, β-d-xylosyl, β-d-mannosyl and β-d-glucosaminyl in +1 subsite. Our aim was to extend this substrate specificity to β-d-N-acetylglucosaminyl, in order to get access to a wider array of oligosaccharidic structures obtained through glycosynthase assisted synthesis. In a first approach a trisaccharide bearing a β-d-N-acetylglucosaminyl residue was docked at the +1 subsite of H. insolens Cel7B, indicating that the mutation of only one residue, His209, could lead to the expected wider acceptor specificity. Three H. insolens Cel7B glycosynthase mutants (H209A, H209G and H209A/A211T) were produced and expressed in Aspergillus oryzae. In parallel, sequence alignment investigations showed that several cellulases from family GH7 display an alanine residue instead of histidine at position 209. Amongst them, Trichoderma reesei Cel7B, an endoglucanase sharing the highest degree of sequence identity with Humicola Cel7B, was found to naturally accept a β-d-N-acetylglucosaminyl residue at +1 subsite. The T. reesei Cel7B mutant nucleophile E196A was produced and expressed in Saccharomyces cerevisiae, and its activity as glycosynthase, together with the H. insolens glycosynthase mutants, was evaluated toward various glycosidic acceptors.  相似文献   

9.
New biocatalysts, preparations of subtilisin Carlsberg immobilized on chitosan (a deacetylated derivative of chitin), were obtained. The enzyme content, hydrolytic activity, and ability to catalyze peptide bond formation in organic solvents were characterized for these preparations. The influence of the form and composition of the biocomplosite (content of the enzyme and glutaraldehyde, the cross-linking agent) and buffer pH on the biocatalytic properties of the immobilized enzyme was studied in the reactions of peptide bond hydrolysis. The synthase activity of the preparations was investigated in the reaction of synthesis of Z-Ala-Ala-Leu-Phe-pNA in a 6:4 DMF-acetonitrile mixture in dependence on the reaction time. The yield of this product was 100% after only 40 min.  相似文献   

10.
Summary Papain-catalyzed regioselective cleavage of-methyl ester in Z-DL-Asu(OMe)-OMe leads to Z-L-Asu(OMe)-OH and Z-D-Asu(OMe)-OMe. Subsequent saponifications yield Z-L-Asu-OH and Z-D-Asu-OH. The enzymatic-ester hydrolysis was also achieved by subtilisin BPN in organic solvent with low water content.Abbreviations Asu 2-aminosuberic acid - Z benzyloxycarbonyl - OMe methyl ester - DCHA dicyclohexylamine  相似文献   

11.
The residues L40, A113, V291, and V294, in leucine dehydrogenase (LeuDH), predicted to be involved in recognition of the substrate side chain, have been mutated on the basis of the molecular modeling to mimic the substrate specificities of phenylalanine (PheDH), glutamate (GluDH), and lysine dehydrogenases (LysDH). The A113G and A113G/V291L mutants, imitating the PheDH active site, displayed activities toward -phenylalanine and phenylpyruvate with 1.6 and 7.8% of kcat values of the wild-type enzyme for the preferred substrates, -leucine and its keto-analog, respectively. Indeed, the residue A113, corresponding to G114 in PheDH, affects the volume of the side-chain binding pocket and has a critical role in discrimination of the bulkiness of the side chain. Another two sets of mutants, substituting L40 and V294 of LeuDH with the corresponding residues predicted in GluDH and LysDH, were also constructed and characterized. Emergence of GluDH and LysDH activities in L40K/V294S and L40D/V294S mutants, respectively, indicates that the two corresponding residues in the active site of amino acid dehydrogenases are important for discrimination of the hydrophobicity/polarity of the aliphatic substrate side chain. All these results demonstrate that the substrate specificities of the amino acid dehydrogenases can be altered by protein engineering. The engineered dehydrogenases are expected to be used for production and detection of natural and non-natural amino acids.  相似文献   

12.
This study describes the design, synthesis, and use of selective peptide substrates for cysteine peptidases of the C1 papain family, important in many biological processes. The structure of the newly synthesized substrates is Glp-Xaa-Ala-Y (where Glp = pyroglutamyl; Xaa = Phe or Val; and Y = pNA [p-nitroanilide], AMC [4-amino-7-methylcoumaride], or AFC [4-amino-7-trifluoromethyl-coumaride]). Substrates were synthesized enzymatically to guarantee selectivity of the reaction and optical purity of the target compounds, simplifying the scheme of synthesis and isolation of products. The hydrolysis of the synthesized substrates was evaluated by C1 cysteine peptidases from different organisms and with different functions, including plant enzymes papain, bromelain, ficin, and mammalian lysosomal cathepsins B and L. The new substrates were selective for C1 cysteine peptidases and were not hydrolyzed by serine, aspartic, or metallo peptidases. We demonstrated an application of the selectivity of the synthesized substrates during the chromatographic separation of a multicomponent set of digestive peptidases from a beetle, Tenebrio molitor. Used in combination with the cysteine peptidase inhibitor E-64, these substrates were able to differentiate cysteine peptidases from peptidases of other classes in midgut extracts from T. molitor larvae and larvae of the genus Tribolium; thus, they are useful in the analysis of complex mixtures containing peptidases from different classes.  相似文献   

13.
The role of acyl donor structure on the course of peptide bond formation catalyzed by SDS-subtilisin in ethanol was investigated. In the reaction Z---Ala---Ala---Leu---OR+H---Phe---pNA→Z---Ala---Ala---Leu---Phe---pNA, nearly quantitative product yields were observed after 2 h, regardless of whether an activated (R=CH3, p-C6H5Cl) or non-activated (R=H) acyl donor was used. It was found that the enzyme can accept as acyl donors N-protected tri-peptides containing basic or acidic amino acid residues in the P1-position. Tetra-peptides of general formula Z---Ala---Ala---P1---P1′---pNA, where P1=Glu, Asp, Lys, Arg or His and P1′=Phe, Arg or Glu have been obtained in good yield.  相似文献   

14.
    
The aim of this work was to study different immobilization strategies on silica supports in order to obtain robust biocatalysts from latex proteases of Asclepias curassavica L., a South American native plant. Immobilized enzyme performance was evaluated under harsh reaction conditions such as the synthesis of the antihypertensive peptide N-α-CBZ-Val-Gly-OH.Proteases from A. curassavica, named asclepain, were immobilized (0.51–5.56 mg of protein/ g of support) in non-functionalized silica (S), in glyoxyl-silica (GS) and in octyl-glyoxyl-silica (OGS), by adsorption, and multi-point covalent attachment on mono and hetero-functional supports, respectively, under previously determined optimal immobilization conditions. Immobilization yields were expressed as activity yield (Ya) and protein yield (Yp).Asclepain-OGS showed the highest Ya (178 ± 1.62 %) meaning an expressed activity 1.8 times higher than the offered activity, while Yp was 75 ± 0.4 %. Ya for asclepain-S and -GS were 64 ± 1.45 % and 16 ± 0.37 %, respectively. Best results were attributed to the ability of OGS support to guide the enzyme before covalent attachment, increasing its reactivity. Asclepain-OGS led to product yield of 95.5 ± 0.14 %, five times higher than soluble asclepain in the synthesis of N-α-CBZ-Val-Gly-OH, after 3 h in 30 % methanol in 0.1 M Tris-HCl buffer pH 8.  相似文献   

15.
Protein expression and secretion in insect cells have been widely studied in the baculovirus-infected insect cell system. In directly transfected insect cells only intracellular expression and purification of recombinant proteins have been studied in detail. To examine multiple recombinant protein variants, easy and fast expression and a purification screening system are required. The aim of this study was to establish an effective and rapid secretion system for human azurocidin using directly transfected insect cells. We also constructed and tested expression vectors possessing heterologous signal peptides derived from human azurocidin, yellow lupin diphosphonucleotide phosphatase/phosphodiesterase (PPD1), and papaya papain IV to secrete yellow lupin and red kidney bean purple acid phosphatases, PPD1, and papain IV. Our results demonstrate that the secretion vectors used here can direct recombinant proteins to the culture medium very effectively, allowing their simple purification on a small/medium scale. Based on secretion and activity analyses it seems that the azurocidin signal peptide is one of the most potent secretion signals.  相似文献   

16.
Porcine pancreas lipase (PPL) resolution of the α-methyl group of racemic methyl 2-methyl-4-oxopentanoate, a valuable synthetic precursor of fragrances and marine natural products, was enhanced by salt modulation of the enzymatic hydrolysis. For the enantioselective hydrolysis of the title ester, PPL was selected from a series of esterases and lipases, and its enantioselectivity was evaluated by changing the reaction medium parameters. The use of 1.6?mol L–1 sodium sulfate in phosphate buffer (pH 7.2) improved the enantioselectivity allowing the formation of methyl (2R)-(+)-2-methyl-4-oxopentanoate and (2S)-(–)-2-methyl-4-oxopentanoic acid with an enantiomeric excess of >99% and 71%, respectively. The study showed that a modulation of PPL enantioselectivity could be achieved by using kosmotropic salts in the reaction media. The present method consists of a practical and low-cost option to improve enzymatic kinetic resolution reactions.  相似文献   

17.
    
UDP-GalNAc has been synthesised with high yield from GalNAc, UTP and ATP using recombinant human GalNAc kinase GK2 and UDP-GalNAc pyrophosphorylase AGX1. Both enzymes have been prepared in one step from 1 L cultures of transformed Escherichia coli and the UDP-GalNAc produced has been purified by a simple procedure. The method described is a rapid and efficient means to produce UDP-GalNAc as well as analogues like UDP-N-azidoacetylgalactosamine (UDP-GalNAz).  相似文献   

18.
生物转化-从全细胞催化到代谢工程   总被引:2,自引:0,他引:2  
与传统的化学合成方法相比,利用生物的手段转化生产活性化合物及其衍生物无疑具有更大的吸引力。随着用于生物转化微生物种类的增多,生物转化的应用领域不断得到扩大。生物转化的发展经历了野生型全细胞催化,基因工程微生物全细胞反应,以及利用系统分析和代谢工程进行全局性调控等几个阶段。以下对这一发展趋势及相关研究的最新进展作一简要综述。  相似文献   

19.
本文从酶、酶的作用底物和合成体系三个方面综述了酶法合成天冬甜精中的几个问题。  相似文献   

20.
The kinetically controlled condensation of Z-Gly-Trp-OMe and H-Met-OEt catalyzed by α-chymo-trypsin in organic media is reported. The influence of thermodynamic water activity and the support material used to adsorb α-chymotrypsin, on both the product yield and enzymatic activity was investigated. Polyamide based materials were the best support at low water activity rendering the highest reaction rates and yields. The activity of the adsorbed enzyme at low water activities depends on both the accessible surface area and the hydrophobicity of the support. Polyamide had both adequate hydrophilicity and high surface area yielding the best results. Polypropylene based supports were strongly hydrophobic and, although they presented a high surface area, the enzymatic activity was much lower. The solvents used to carry out the synthesis were acetonitrile and ethyl acetate. No significant differences were observed on the performance of the reaction in either solvent. The tripeptide selected is a fragment of the cholecystokinin C-terminal octapeptide (CCK-8), a biological active peptide involved in the control of gastrointestinal function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号