首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Three further internode length mutants in peas ( Pisum sativum L.), lh , ls and lk , were examined to determine if they influenced gibberellin synthesis or sensitivity. Two mutants, lh and ls , showed pronounced elongation in response to applied GA1 and extracts from their shoots contained little gibberellin-like activity when assayed on the rice seedling (cv. Tan ginbozu) bioassay compared with similar extracts from essentially isogenic Lh and Ls plants. The third mutant, lk , was almost insensitive to applied GA1 and at no dose rate did it become a phenocopy of normal Lk plants. Extracts from the shoots of lk and Lk segregants contained similar levels of gibberellinlike substances. All three mutants influenced growth in both the light and the dark, although only the effect of genes Lh and Ls were graft transmissible. These results suggest that lh and ls are mutants with reduced gibberellin synthesis, while lk is the first gibberellin-insensitive dwarfing gene identified in peas.  相似文献   

2.
The levels of GA1, 3-epiGA1 and GA8 in genotypes Le, le and led of Pisum sativum L. were determined by gas chromatography-selected ion monitoring (GC-SIM) after feeds of [3H, 13C]-GA20 to each genotype. The levels of endogenous and [13C]-labelled metabolites were determined by reverse isotope dilution with unlabelled GA1, 3-epiGA1 and GA8. The results demonstrate a quantitative relationship between the level of GA1 and the extent of elongation both on a per plant and a per g fresh weight basis. These results are consistent with previous findings in peas and other species possessing a predominant early 13-hydroxylation pathway for GA biosynthesis.
The levels of 3-epiGA1 also decreased in the genotypic sequence Le, le, led although not as rapidly as for the level of GA1. This may suggest that the alleles at the le locus also influence the formation of 3-epiGA1.  相似文献   

3.
In the garden pea ( Pisum sativum L.), shoots of the extremely short plants with the mutant na (phenotype nana) are found by bioassay to contain undetectable levels of gibberellin-like substances. This is confirmed by the use of near isogenic lines differing at the Na locus. Thus, mutant na appears to block a step early in the pathway of gibberellin synthesis. It is suggested that the polar gibberellin-like substance found in the apical portion of shoots of tall ( Le ) but not dwarf ( le ) peas could be GA1. Extracts of shoots of na Le peas treated with GA20 (the major active gibberellin in dwarf peas) possess a large amount of GA1-like activity whereas extracts of shoots of na le peas treated with GA20 possess a much reduced amount. Thus, gene Le may allow the conversion of a less active gibberellin (GA20) into one more active in stimulating elongation in the pea (the GA1-like compound). In contrast to their influence in the shoot, the na and Le genes do not appear to be operative in controlling the gibberellin content of developing seed, indicating that organ specific gibberellin biosynthesis and metabolism occur in peas.  相似文献   

4.
The highly active, polar gibberellin-like substance found in the apical region of shoots of tall (genotype Le ) peas ( Pisum sativum L.) is shown by combined gas chromatography-mass spectrometry (GC/MS) to be GA1. This substance is either absent or present at only low levels in dwarf ( le ) plants. Multiple ion monitoring (MIM) tentatively suggests that GA8 may also be present in shoot tissue of tall peas. Gibberellin A1 is the first 3 β-hydroxylated gibberellin positively identified in peas, and its presence in shoot tissue demonstrates the organ specificity of gibberellin production since GA1 has not been detected in developing seeds. Application of GA1 can mask the Le/le gene difference. However, whilst Le plants respond equally to GA20 and GA1, le plants respond only weakly to GA20, the major biologically active gibberellin found in dwarf peas. These results suggest that the Le gene controls the production of a 3 β-hydroxylase capable of converting GA20 to GA1. Further support for this view comes from feeds of [3H] GA20 to Le and le plants. Plants with Le metabolise [3H] GA20 to three major products whilst le plants produce only one major product after the same time. The metabolite common to Le and le plants co-chromatographs with GA29. The additional two metabolites in Le peas co-chromatograph with GA1 and GA8.  相似文献   

5.
There is a strong relationship across the full range of gibberellin deficient, internode length genotypes ( le, lh, is, na ) between internode length in the dark and in red or white light. Further, the new, more severe allele at the le locus. Ie d, is shown to influence growth in the dark as well as in the light. These results suggest that darkeness does not specifically overcome any of the steps blocked by the gibberellin (GA) synthesis genes contrasting with the conclusions drawn by other workers. Supporting this conclusion in relation to the Ie gene are results which show that, at least at certain dosage rates, dark-grown Ie na plants respond better to GA1 than to GA20 similar to the response previously reported in light grown plants.
The greater response by plants of the nana line NGB1766 ( na ) to GA1 in the dark than in the light suggests that light may influence internode length by altering GA-sensitivity. These results are discussed in relation to previous views on the control of stem elongation by light.  相似文献   

6.
Evidence was obtained by gas chromatography-mass spectrometry and gas chromatography-selected ion monitoring for the presence of gibberellin A20), GA1, GA29, GA8 and 2-epiGA29 in vegetative shoots of tall sweet pea, Lathyrus odoratus L. Both tall (genotype L –) and dwarf (genotype II ) sweet peas elongated markedly in response to exogenous GA1 attaining similar internode lengths at the highest dose levels. Likewise internode length in both genotypes was reduced by application of the GA biosynthesis inhibitor, PP333. The ratio of leaflet length to width was reduced by application of PP333 to tall plants and this effect was reversed by GA1. When applied to plants previously treated with PP333, GA20 promoted internode elongation of L – plants as effectively as GA1, but GA29 was not as effective as GA1 when applied to II plants. In contrast, GA20 and GA1 were equally effective when applied to the semidwarf lb mutant but GA-treated lblb plants did not attain the same internode length as comparable GA-treated Lb – plants. The difference in stature between the tall and dwarf types persisted in dark-grown plants. It is concluded that GA1 may be important for internode elongation and leaf growth in sweet pea. Mutant l may influence GA1 synthesis by reducing 3β-hydroxylation of GA20 whereas mutant lb appears to affect GA sensitivity.  相似文献   

7.
After the application of [13C3H]-gibberellin A20 to wild-type (tall) sweet peas ( Lathyrus odoratus L.) labelled gibberellin A1 (GA1), GA8, GA29 and 2-epiGA29 were identified as major metabolities by gas chromatography-mass spectrometry after high performance liquid chromatography. By contrast in genetically comparable dwarf ( II ) plants only labelled GA29 and 2-epiGA29 were produced in significant amounts, although evidence was obtained for trace amounts of labelled GA1 and GA8. The apical portions of dwarf plants contained 8–10 times less GA1 than those of tall plants but at least as much GA20 (measured using di-deuterated internal standards). In conjunction with previous data these results strongly indicate that in genotype ll internode length is reduced and leaf growth altered by a reduction in GA1 levels attributable to a partial block in the 3β-hydroxylation of GA20 to GA1.
In contrast to dwarf plants, semidwarf plants (genotype lblb ) contained more GA1 in the apical portion than wild-type counterparts. This is consistent with the suggestion that lb alters some aspect of GA sensitivity.  相似文献   

8.
Internode length in Pisum. Gibberellins and the slender phenotype   总被引:3,自引:0,他引:3  
Pea plants ( Pisum sativum L.) possessing the slender phenotype (conferred by the gene combination la crys ) have extremely long, thin internodes and are phenotypically similar to dwarf plants (possessing genes La and/or Cry ) that have been treated with a non-limiting dose of gibberellin (GA3). In contrast to tall and dwarf plants, slender plants are virtually insensitive to treatment with AMO 1618, PP333 or GA3 and addition of the "gibberellin-less" mutant gene na does not alter the phenotype of slender plants. Na slender segregates possessed lower levels of gibberellin-like substances than comparable dwarf segregates when extracts from shoots were assayed using the lettuce hypocotyl or rice seedling bioassays. In addition, na slenders possessed little or no gibberellin-like activity even though they possessed a slender phenotype. Thus the gene combination la crys causes slender plants to respond as if they are saturated with gibberellins for growth. In addition, the gene combinations la crys and le la cryc (allele cryc is less extreme in effect than crys ) are shown to be almost completely epistatic to the alleles at the na locus. All these results suggest that gibberellin levels are not important in determining the internode length of slender peas (genotype la crys ). The possible mechanisms by which this could occur are discussed.  相似文献   

9.
Transgenic plants of Nicotiana tabacum overexpressing a gibberellin (GA) 20-oxidase cDNA ( CcGA20ox1 ) from citrus, under the control of the 35S promoter, were taller (up to twice) and had larger inflorescences and longer flower peduncles than those of control plants. Hypocotyls of transgenic seedlings were also longer (up to 4 times), and neither the seedlings nor the growing plants elongated further after application of GA3. Hypocotyl and stem lengths were reduced by application of paclobutrazol, and this inhibition was reversed by exogenous GA3. The ectopic overexpression of CcGA20ox1 enhanced the non-13-hydroxylation pathway of GA biosynthesis leading to GA4, apparently at the expense of the early-13-hydroxylation pathway. The level of GA4 (the active GA from the non-13-hydroxylation pathway) in the shoot of transgenic plants was 3–4 times higher than in control plants, whereas that of GA1, formed via the early-13-hydroxylation pathway (the main GA biosynthesis pathway in tobacco), decreased or was not affected. GA4 applied to the culture medium or to the expanding leaves was found to be at least equally active as GA1 on stimulating hypocotyl and stem elongation of tobacco plants. The results suggest that the tall phenotype of tobacco transgenic plants was due to their higher content of GA4, and that the GA response was saturated by the presence of the transgene.  相似文献   

10.
We describe a new mutation, lrs , which reduces internode length in Pisum sativum L. The mutation appears to act by reducing both GA synthesis and the response to GA1. The levels of the 13‐hydroxylated GAs, GA53, GA44, GA19, GA20, GA1, and GA8 in the lrs mutant were greatly reduced compared with the wild‐type. The extent of the reduction in GA1 content in the apical tissues would, at least in part, account for the dwarf phenotype of the mutant. The reduced GA responsiveness of the new mutant was indicated by the inability of applied GA1 to remove the difference in elongation between lrs and LRS plants. The lrs mutant appears to be unique amongst internode length genotypes, possessing characteristics of both GA synthesis and GA response mutants.  相似文献   

11.
The regulation by phytochrome of stem elongation in light-grown plants depends on gibberellins (GAs). To investigate whether this is mediated by a change in GA metabolism, the effect of the GA biosynthesis inhibitor LAB 198 999 (an acylcyclohexadione derivative) on the end-of-day far-red (FR) response in cowpea ( Vigna sinensis L.) epicotyl explants has been investigated. Growth of epicotyl explants of light-grown seedlings was enhanced when treated with far-red light before incubation in the dark (end-of-day FR effect). Low doses of LAB 198 999 (0.05 and 0.5 μg explant−1) reduced the effect of FR, whereas 5 to 50 μg explant−1 stimulated elongation of both red light (R)- and FR-treated epicotyl explants while nullifying the differences between R and FR treatments. In paclobutrazol-treated epicotyl explants, FR enhanced the response to applied GA1 and GA20, whereas LAB 198 999 increased the activity of GA1 and decreased that of GA20, [3H]Gibberellin A1, injected into the basal part of the epicotyl, was transported and metabolized mainly to [3H]GA8 in the apical 20 mm of the epicotyl. The conversion of [3H]GA1 to [3H]GA8 was dramatically reduced by both end-of-day FR treatments and LAB 198 999 applications. In addition, both treatments enhanced epicotyl elongation. It is proposed that the regulation of cowpea epicotyl growth by phytocrome is mediated, at least partially, by modifying GA1 degradation.  相似文献   

12.
Jolly, C. J., Reid, J. B. and Ross, J. J. 1987. Internode length in Pisum. Action of gene lw.
Mutant K29 of Pisum sativum L. is shown to possess a recessive gene at a new locus, lw , which results in reduced internode length, delayed flowering and increased symptoms of water congestion compared with the parental cv. Torsdag. The interaction of gene lw with the internode length genes na, le, la and cry 5 is examined. Extracts from the shoots of Iw plants are shown to contain similar levels of gibberellin (GA)-like substances to comparable Lw plants, but Iw plants do not elongate to the same extent as Lw plants when treated with GA19 GA19, or GA20. The effect of gene Iw is not graft-transmissible. Unlike essentially isogenic dwarf lines possessing the GA-synthesis genes le, Ih or Is, lw plants show a relative increase in elongation similar to Torsdag in response to photoperiod extensions from sources rich in far-red light. These results suggest that gene lw probably does not reduce elongation by influencing GA-synthesis and that the response to photoperiod extensions with far-red light may depend on the level of GA.  相似文献   

13.
Endogenous gibberellins (GAs) were extracted and purified from apical buds of Eucalyptus nitens (Deane and Maid.) Maid. and the cambial region of E. globulus (Labill.). then analysed by capillary gas chromatography-mass spectrometry. GA1 GA19 GA20 and GA29 were identified by full scan mass spectra. Kovats retention indices and high resolution selected ion monitoring. Using deuterated internal standards. GA1. GA19. GA20 and putative GA29 and GA53 were quantified in the apical buds, while GA4. GA8. GA9 and GA44 were shown to be either absent or present at very low levels. From the cambial region. GA1 and GA20 were quantified at levels of 0.30 ng (g fresh weight)-1 and 8.8 ng (g fresh weight)-1 respectively. These data suggest that the early 13-hydroxylation pathway is the dominant pathway for GA biosynthesis in Eucalyptus .  相似文献   

14.
The lh-2 mutation in garden pea ( Pisum sativum L.) blocks an early step in the gibberellin (GA) biosynthesis pathway, the three-step oxidation of ent -kaurene to ent -kaurenoic acid. As a result, only low levels of GAs, including the bioactive GA1, are found in shoots and seeds of lh-2 plants. Mutant plants are dwarf in stature, and show increased seed abortion and decreased seed weight, compared with seeds of the tall wild-type (WT) progenitor (cv. Torsdag). The aberrant seed development of lh-2 plants is associated with reduced levels of GA1 and GA3, and with an accumulation of abscisic acid (ABA) in young seeds (pre-contact point). This ABA accumulation is typically 3- to 4-fold, and can be up to 6-fold, compared with control plants. To investigate whether the accumulation of ABA is partly responsible for causing the observed seed abortion in lh-2 plants, we constructed a double mutant between the lh-2 allele and wil . The wil mutation blocks ABA biosynthesis, and reduces ABA levels in young seeds by 10-fold. Introduction of the wil mutation reduces the endogenous ABA levels in young lh-2 seeds, but fails to rescue the seeds from abortion. This indicates that the effects of lh-2 on seed development are not mediated through increased ABA levels, and is consistent with previous evidence that GAs are the controlling factor underlying the lh-2 seed phenotype in pea.  相似文献   

15.
It has been shown previously that gibberellins (GAs) mediate the phytochrome (Phy) control of cowpea ( Vigna sinensis L.) epicotyl elongation induced by end-of-day (EOD)-far-red light (FR). In the present work, the EOD-FR effect on GA metabolism and GA levels in cowpea has been investigated. GA1, GA8, GA19 and GA20 were identified in epicotyls, and GA1, GA19, GA20 and GA29-catabolite in leaves of 6-day-old cowpea seedlings. The content of GA1 in the epicotyl paralleled the decrease of its growth rate, supporting the hypothesis that this is the GA bioactive in controlling cowpea epicotyl elongation. FR enhanced both the amount of [3H]GA1 in the epicotyl produced from applied [3H]GA20, and that of applied [3H]GA1 that remained unmetabolized in epicotyl explants, suggesting that Phy may regulate the inactivation of GA1. In agreement with this effect of light on GA1 metabolism, the contents of GA1 in the epicotyl remained higher in FR-treated than in R-treated explants. Moreover, in intact seedlings EOD-FR treatment increased both epicotyl elongation and GA1 content in the responsive epicotyl, whereas it was not altered in the leaves. These results show, for the first time, that photostable Phys modulate the stem elongation in light-grown plants by locally controlling the GA1 levels through regulation of its inactivation.  相似文献   

16.
Three rapid cycling Brassica rapa genotypes were grown in greenhouse conditions to investigate the possible relationships between endogenous gibberellin (GA) content and shoot growth. Endogenous GA1 GA3 and GA20 were extracted from stem samples harvested at 3 weekly intervals and analyzed by gas chromatography-mass spectrometry with selected ion monitoring, using [2H2]-GA1 and [2H2]-GA20 as quantitative internal standards. During the first 2 weeks, GA levels of the dwarf, rosette ( ros ), averaged 36% of levels in normal plants (on a per stem basis). Levels in the tall mutant, elongated internode (ein) , were consistently higher, averaging 305% of levels in normal plants.
Differences in shoot height across the genotypes resulted from varying internode length which resulted from epidermal cell length and number being increased in ein and decreased in ros relative to the normal genotype. The exogenous application of GA3 to normal plants increased cell length while the application of paclobutrazol (PP333), a triazole plant growth retardant, reduced cell size. Thus, exogenous GA manipulations mimicked the influence of the mutant genes ros and ein. The dwarf, ros , had reduced shoot dry weights and relative growth rates compared to the other genotypes. Total dry weights were similar in ein and the normal genotype but stem weights were increased in ein , compensating for decreased leaf weights. Thus, the gibberellin-deficiency of ros resulted in generally reduced shoot growth. The overproduction of endogenous GA by ein did not result in enhanced shoot growth but rather a specific enhancement of internode elongation and stem growth at the expense of leaf size.  相似文献   

17.
18.
Extracts of Douglas fir ( Pseudotsuga menziesii [Mirb.] Franco) shoots were purified by reversed and normal phase HPLC; gibberellin (GA)-like compounds detected by radioimmunoassay with antibodies against GA4 and the Tan-ginbozu dwarf rice micro-drop biossay were analyzed by GC-MS. Three major components were identified as GA4, GA7, and GA9 while smaller amounts of GA1, GA3 and putative GA9-glucosyl ester were also present.  相似文献   

19.
In the temperate-zone woody species Salix pentandra elongation growth is regulated by the photoperiod. Long days sustain active growth, whereas short days induce cessation of apical growth, which is a prerequisite for winter hardening. It is shown that this is correlated to quantitative changes in levels of endogenous GA19 GA20, and GA1. Within two short days the amount of the active GA1 and its immediate precursor GA20, decreased markedly in young leaves us well as in stem tissue. Also, the amount of GA19, declined, but the decrease was delayed relative to that of GA1 and GA20. The ability of S. pentandra seedlings to respond to exogenous GA19, decreased with increasing numbers of short days. Observations that support the hypothesis that the level of GA1 in S. pentandra is regulated by the photoperiod in a quantitative mode with conversion of GA19, to GA20, being one target for control.
Different distribution of GAs in various plant parts was observed. The level of GA was higher in young leaves than in other plant parts, and the amount of GA19 was 5–10 times higher in stem tissue than in leaves and roots. The ratios of GA8 to GA1 and GA20, were higher in roots as compared with other parts, as rods contained very low levels of GA1 and GA20, but amounts of GA20 comparable with other parts.  相似文献   

20.
The role of gibberellins (GAs) in the induction of parthenocarpic fruit-set and growth by the pat-3/pat-4 genetic system in tomato ( Lycopersicon esculentum Mill.) was investigated using wild type (WT; Cuarenteno) and a near-isogenic line derived from the German line RP75/59 (the source of pat-3/pat-4 parthenocarpy). Unpollinated WT ovaries degenerated but GA3 application induced parthenocarpic fruit growth. On the contrary, parthenocarpic growth of pat-3/pat-4 fruits, which occurs in the absence of pollination and hormone treatment, was not affected by applied GA3. Unpollinated pat-3/pat-4 fruit growth was negated by paclobutrazol, an inhibitor of ent -kaurene oxidase, and this inhibitory effect was negated by GA3. The quantification of the main GAs of the early 13-hydroxylation pathway (GA1, GA8, GA19, GA20, GA29 and GA44) in unpollinated ovaries at 3 developmental stages (flower bud, FB; pre-anthesis, PR; and anthesis, AN), by gas chromatography-selected ion monitoring, showed that the concentration of most of them was higher in pat-3/pat-4 than in WT ovaries at PR and AN stages. The concentration of GA1, suggested previously to be the active GA in tomate, was 2–4 times higher. Unpollinated pat-3/pat-4 ovaries at FB, PR and AN stages also contained relatively high amounts (5–12 ng g−1) of GA3, a GA found at less than 0.5 ng g−1 in WT ovaries. It is concluded that the mutations pat-3/pat-4 may induce natural facultative parthenocarpy capacity in tomato by increasing the concentration of GA1 and GA3 in the ovaries before pollination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号