首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aim Although bats of the Caribbean have been studied extensively, previous work is largely restricted to zoogeography, phylogeography or the effects of island characteristics on species richness. Variation among islands in species composition that is related to geographical or environmental variation remains poorly understood for much of the Caribbean. Location Caribbean islands, including the Bahamas, Greater Antilles and Lesser Antilles. Methods Using presence–absence data, we assessed the extent to which island area, maximum island elevation, inter‐island distance and hurricane‐induced disturbance affected patterns of composition and nestedness for bats in the Bahamas, Greater Antilles and Lesser Antilles. Analyses were conducted for all species, as well as for two broadly defined guilds: carnivores and herbivores. Results For the Bahamas, only inter‐island distance accounted for variation in species composition between islands. For the Greater and Lesser Antilles, differences in island area and inter‐island distance accounted for differences in species composition between islands. Variation in species composition was not related significantly to differences in elevation or hurricane‐related disturbance. In general, results of analyses restricted to a particular broad guild (i.e. carnivores or herbivores) mirrored those for all bats. Bat species composition was nested significantly in each island group. Nestedness was stronger in the Greater Antilles and in the Lesser Antilles than in the Bahamas. Carnivore assemblages were nested significantly in the Greater and in the Lesser Antilles, but not in the Bahamas. In contrast, herbivore assemblages were nested significantly in each island group. Main conclusions Inter‐island distance had a greater effect on compositional similarity of Caribbean bat assemblages than did island area, elevation or disturbance related to hurricanes. Differential immigration and hierarchical habitat distributions associated with elevational relief are likely to be primary causes for nestedness of Caribbean bat assemblages.  相似文献   

2.
Aim We evaluate characteristics of species ranges (i.e. coherence, species turnover and range boundary clumping) to determine the structure of bat metacommunities and metaensembles from Caribbean islands. We evaluate the effects of endemic species on that structure, and quantify associations between island characteristics and latent environmental gradients that structure these metacommunities and metaensembles. Location Sixty‐five Caribbean islands throughout the Bahamas, Greater Antilles and Lesser Antilles. Methods Metacommunity structure is an emergent property of a set of ecological communities at different sites defined by species distributions across geographic or environmental gradients. We analysed elements of metacommunity structure (coherence, range turnover and range boundary clumping) to determine the best‐fit pattern for metacommunities from all Caribbean islands, as well as from the Bahamas, the Greater Antilles and the Lesser Antilles separately. For each island group, analyses were conducted for all bats and for each of two broadly defined guilds (i.e. carnivores and herbivores). In addition, analyses were conducted for all species and for a subset in which endemic species were removed from the fauna. Spearman rank correlations identified island characteristics (area, elevation, latitude, longitude) that were associated significantly with island scores for ordination axes based on reciprocal averaging. Results Metacommunity structure for all bats and for carnivores was similar for each island group, with Clementsian distributions (i.e. discrete communities with groups of species replacing other groups of species along the gradient) for all islands, the Bahamas and the Lesser Antilles, but with nested distributions for the Greater Antilles. Herbivore distributions were random for the Bahamas, but were Clementsian for all other island groups. Removal of endemic species affected the best‐fit model of metacommunity structure in only 3 of 12 cases. In general, ordination scores for islands were correlated with longitude or latitude, but not with island area or elevation. Main conclusions Characteristics of bat species ranges and associated metacommunity structure were primarily dependent on the number and geographic arrangement of primary sources of colonization, and not on interspecific interactions, species‐specific levels of environmental tolerance, or the physical characteristics of islands. Endemic species did not greatly affect metacommunity structure in Caribbean bats.  相似文献   

3.
Caribbean archaeologists have tended to focus exclusively on the prehistory of the largest islands, perhaps because large islands are believed to provide the landmass necessary to support long-term population growth and cultural development. Yet, as research here and elsewhere, e.g., the Pacific, is showing, small islands provided access to resources and landscapes that were not always readily available on the larger islands. Small islands often have superior terrestrial and, especially, marine resources; isolated ritual spaces; and more easily defended locations; although they are susceptible to more rapid overexploitation. This paper examines in detail human needs with regard to island size, demonstrating that small islands were crucial in the development of pre-Columbian Caribbean societies. Four case studies are presented to illustrate that small islands often were preferred over large islands throughout the Caribbean archipelagoes. Finally, these studies show that the prehistoric exploitation and overexploitation of small islands can provide significant insights for establishing baselines that can be used for modern management and conservation efforts.
William F. KeeganEmail:
  相似文献   

4.
Replicate radiations, the repeated multiplication of species associated with ecological divergence, have attracted much attention and generated as much debate. Due to the few well‐studied cases, it remains unclear whether replicate radiations are an exceptional result of evolution or a relatively common example of the power of adaptation by natural selection. We examined the case of Eleutherodactylus frogs, which radiated in the Caribbean islands resulting in more than 160 species that occupy very diverse habitats. A time‐calibrated phylogeny revealed that these frogs independently diversified on all larger islands producing species that occupy a broad range of microhabitats in different islands. Using phylogenetic comparative methods, we found an association between morphological traits and particular microhabitats, and for most microhabitats detected significant morphological convergence. Our results indicate Caribbean Eleutherodactylus are a novel example of replicate radiations, and highlight the predictability of evolutionary processes, as similar ecological opportunities can lead to similar outcomes.  相似文献   

5.
6.
The freshwater fauna (crustaceans, molluscs, fish) of many tropical islands in the Caribbean and Pacific share an amphidromous life‐cycle, meaning their larvae need to develop in saline conditions before returning to freshwater as juveniles. This community dominates the freshwaters of much of the tropics, but is poorly known and at risk from development, in particular dam construction. Amphidromy can theoretically lead to dispersal between different freshwater areas, even to distant oceanic islands, via the sea. The extent and scale of this presumed dispersal, however, is largely unknown in the Caribbean. Recent genetic work in Puerto Rico has shown that many freshwater species have little or no population structure among different river catchments, implying high levels of connectivity within an island, whereas between‐island structure is unknown. We used genetic techniques to infer the geographic scales of population structure of amphidromous invertebrates (a gastropod and a number of crustacean species) between distant parts of the Caribbean, in particular Puerto Rico, Panama and Trinidad. We found virtually no geographic population structure across over 2000 km of open sea for these freshwater species. This implies that they are indeed moving between islands in sea currents as larvae, meaning that continued recruitment requires a continuum of healthy habitat from the freshwater to marine environment. We further discuss the role of amphidromy and suggest its ecological and biogeographic role may be more important than previously presumed.  相似文献   

7.
The role of the landscape in structuring populations has been the focus of numerous studies, in particular, the extent to which islands provide opportunities for isolation, and the consistency of such an effect across lineages. The current study examines this phenomenon using a series of relatively widespread taxa, all within a single genus of spiders, Selenops. We focus on the Caribbean Islands and adjacent Mesoamerican mainland to examine how the islands per se dictate structure across lineages. We use molecular genetic data from mitochondrial and nuclear genes to examine the population structure of seven species of Selenops. Comparisons are made between species found in the Greater Antilles, Lesser Antilles, and adjacent mainland. Results indicate that geography has little effect on the population structure of mainland species. In contrast, population structure appears to be partitioned by island in the insular Caribbean. Within islands, the amount of population structure for each species is variable and may be dictated more by ecological or demographic parameters, rather than geographic location. The overall conclusion is that the extent to which a given lineage is structured is highly variable across species, with this variability overwhelming any general signal of geographical isolation.  相似文献   

8.
Geminiviruses Associated with Diseased Tomatoes in Cuba   总被引:2,自引:0,他引:2  
Tomato plants displaying symptoms of yellowing and leaf curling were analysed for the presence of geminiviruses. Two distinct geminiviruses were present in the plants studied. One had a genome size and coat protein gene sequence similar to the Israeli strain of tomato yellow leaf curl virus (TYLCV), while the other had a smaller genome size than TYLCV that could not be amplified using primers specific for Israeli TYLCV. The presence of the Israeli strain of TYLCV has been reported in other Caribbean islands, but not in Southern Florida (USA) which is close to those islands where TYLCV has been detected. This suggests that the introduction of the Israeli strain of TYLCV to the Caribbean area may have occurred within recent times.  相似文献   

9.
Recently diverged populations in the early stages of speciation offer an opportunity to understand mechanisms of isolation and their relative contributions. Drosophila willistoni is a tropical species with broad distribution from Argentina to the southern United States, including the Caribbean islands. A postzygotic barrier between northern populations (North America, Central America, and the northern Caribbean islands) and southern populations (South American and the southern Caribbean islands) has been recently documented and used to propose the existence of two different subspecies. Here, we identify premating isolation between populations regardless of their subspecies status. We find no evidence of postmating prezygotic isolation and proceeded to characterize hybrid male sterility between the subspecies. Sterile male hybrids transfer an ejaculate that is devoid of sperm but causes elongation and expansion of the female uterus. In sterile male hybrids, bulging of the seminal vesicle appears to impede the movement of the sperm toward the sperm pump, where sperm normally mixes with accessory gland products. Our results highlight a unique form of hybrid male sterility in Drosophila that is driven by a mechanical impediment to transfer sperm rather than by an abnormality of the sperm itself. Interestingly, this form of sterility is reminiscent of a form of infertility (azoospermia) that is caused by lack of sperm in the semen due to blockages that impede the sperm from reaching the ejaculate.  相似文献   

10.
Phenotypic variability is the engine that drives future diversification with the expectation that polymorphic ancestors give rise to descendants harboring a subset of the ancestral variation. Here we examine evolutionary transitions from polymorphism to monomorphism in a visually striking New World radiation of fruit flies, the Drosophila cardini group. This group is distributed across the Americas and the Caribbean islands and exhibits a wide spectrum of abdominal pigmentation variation. Specifically, the D. dunni subgroup consists of Caribbean island endemics, each of which is monomorphic for its pigmentation pattern, with an interspecific cline of pigmentation across the islands. The D. cardini subgroup consists of American continental species with wide-ranging distributions and intraspecifically variable abdominal pigmentation. We determined the phylogeny of 18 species and subspecies using three nuclear and three mitochondrial regions analyzed with maximum parsimony, maximum likelihood, and Bayesian methods. The topology produced from a combined dataset exhibited high support values at all nodes, and differed from earlier phylogenetic hypotheses based on polytene chromosome inversion patterns and isozyme data. We find that the D. dunni subgroup species, with the exception of D. belladunni, are derived from a single source not of direct South American origin and their dispersal across the islands of the Caribbean does not follow a simple stepping-stone model. Morphological changes in pigmentation across the island species are incongruent with the colonization history of the group indicating that natural selection may have played a role in the determination of this character. Finally, we demonstrate that monomorphic species have arisen independently from polymorphic ancestors two to three times.  相似文献   

11.
The Human immunodeficiency virus type-1 (HIV-1) epidemic in the Caribbean region is mostly driven by subtype B; but information about the pattern of viral spread in this geographic region is scarce and different studies point to quite divergent models of viral dissemination. In this study, we reconstructed the spatiotemporal and population dynamics of the HIV-1 subtype B epidemic in the Caribbean. A total of 1,806 HIV-1 subtype B pol sequences collected from 17 different Caribbean islands between 1996 and 2011 were analyzed together with sequences from the United States (n = 525) and France (n = 340) included as control. Maximum Likelihood phylogenetic analyses revealed that HIV-1 subtype B infections in the Caribbean are driven by dissemination of the pandemic clade (BPANDEMIC) responsible for most subtype B infections across the world, and older non-pandemic lineages (BCAR) characteristics of the Caribbean region. The non-pandemic BCAR strains account for >40% of HIV-1 infections in most Caribbean islands; with exception of Cuba and Puerto Rico. Bayesian phylogeographic analyses indicate that BCAR strains probably arose in the island of Hispaniola (Haiti/Dominican Republic) around the middle 1960s and were later disseminated to Trinidad and Tobago and to Jamaica between the late 1960s and the early 1970s. In the following years, the BCAR strains were also disseminated from Hispaniola and Trinidad and Tobago to other Lesser Antilles islands at multiple times. The BCAR clades circulating in Hispaniola, Jamaica and Trinidad and Tobago appear to have experienced an initial phase of exponential growth, with mean estimated growth rates of 0.35–0.45 year−1, followed by a more recent stabilization since the middle 1990s. These results demonstrate that non-pandemic subtype B lineages have been widely disseminated through the Caribbean since the late 1960s and account for an important fraction of current HIV-1 infections in the region.  相似文献   

12.
We analyzed the avifaunas of the Caribbean islands and nearby continental areas and their relationships using Parsimony Analysis of Endemicity (PAE), in order to assess biogeographical patterns and their concordance with geological and phylogenetic evidence. Using distributional information of birds obtained from published literature, a presence/absence matrix for 695 genera and 2026 species of land and freshwater birds was constructed and analyzed. Three different analyses were performed: for species, for genera, and for species and genera combined. In the combined analysis, the Lesser Antilles appear paraphyletic at the base of the cladogram. Then, two major clades are identified: South America (Andes, Venezuelan lowlands, Dutch West Indies and Trinidad and Tobago) and North America, including the Greater Antilles in a clade that is the sister area to Yucatan and the Central American countries nested from north to south. PAE results support Caribbean vicariant models and cladistic biogeographical hypotheses on area relationships, and show relative congruence with available phylogenetic data. Bird biogeography on the Caribbean islands appears to have been caused by both vicariance and dispersal processes. © The Willi Hennig Society 2007.  相似文献   

13.
Terrestrial plants and animals on oceanic islands occupy zones of volcanism found at intraplate localities and along island arcs at subduction zones. The organisms often survive as metapopulations, or populations of separate sub‐populations connected by dispersal. Although the individual islands and their local subpopulations are ephemeral and unstable, the ecosystem dynamism enables metapopulations to persist in a region, more or less in situ, for periods of up to tens of millions of years. As well as surviving on systems of young volcanic islands, metapopulations can also evolve there; tectonic changes can break up widespread insular metapopulations and produce endemics restricted to fewer islands or even a single island. These processes explain the presence of old endemic clades on young islands, which is often reported in molecular clock studies, and the many distribution patterns in island life that are spatially correlated with tectonic features. Metapopulations can be ruptured by sea floor subsidence, and this occurs with volcanic loading in zones of active volcanism and with sea floor cooling following its production at mid‐ocean ridges. Metapopulation vicariance will also result if an active zone of volcanism is rifted apart. This can be caused by the migration of an arc (by slab rollback) away from a continent or from another subduction zone, by the offset of an arc at transform faults and by sea floor spreading at mid‐ocean ridges. These mechanisms are illustrated with examples from islands in the Caribbean and the Pacific. Endemism on oceanic islands has usually been attributed to chance, long‐distance dispersal, but the processes discussed here will generate endemism on young volcanic islands by vicariance.  相似文献   

14.
Summary The helminth communities from ten species of lizard on seven islands in the Caribbean were sampled by collecting one hundred specimens of each species. Nine genera of parasites were identified; these included six nematodes, two digeneans and an acanthocephalan. No relationship was discernible between parasite density or abundance and island area or altitude, although dry islands tend to have fewer species of parasites. Anolis lizards of the bimaculatus and wattsi series share similar parasites with four out of nine species common to both series. The parasite community of lizards on these islands is depauperate with respect to similar surveys on the larger islands of the Greater Antilles.On three of the islands lizards were sub-sampled by collecting from moist woodland and more xeric habitats. These data suggest that differences between habitats are as significant as differences between islands in determining parasite burdens. Worm burdens of the commonest parasite species, T. cubensis, increased monotonically with host body size and no evidence was found to suggest that these parasites affect either host survival or fecundity. The sex-ratio of this species correlated with mean abundance of the parasite, with females the dominant sex on islands or in habitats where the parasite was common. This pattern may reflect haplodiploid sexual determination in this species.  相似文献   

15.
Variable socio‐cultural influences developed in the colonial Caribbean as a result of competing European hegemonic rule. In this study, we examine how colonial regulations regarding social hierarchies and mate choice worked to influence the genetic landscape of contemporary African Caribbean populations. To this end, 420 individuals from Dominica, Grenada, St. Kitts, St. Lucia, St. Thomas, St. Vincent, Jamaica, and Trinidad were genotyped for 105 autosomal ancestry informative markers. Based on these data, population substructure and admixture were assessed using an exact test, a model‐based clustering method, and principal components analysis. On average, individual admixture estimates of the pooled African Caribbean sample were 77% (SD ± 18%) West African, 15% (SD ± 15%) European, and 7.7% (SD ± 8%) Native American. In general, ancestry estimates were significantly different between Dominica and all other islands. Genetic structure analyses indicated subdivision into two subpopulations on most islands. Finally, unlike all of the other Caribbean populations that clustered adjacent to African populations, the Dominican population was more intermediate between the three parental groups in the principal components plot. As a result of the significant French influence throughout Dominican history, Dominica did not have the same cultural influences that typified other Anglophone colonies. Consequently, there were different social hierarchies and resulting mate choices on Dominica compared with the other considered islands. This study highlights the complex socio‐cultural history of a broad region of the Caribbean and attests to the interplay between social and biological factors in shaping the genetic diversity present in present‐day communities. Am J Phys Anthropol 151:135–143, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

16.
The Caribbean region includes a geologically complex mix of islands, which have served as a backdrop for some significant studies of biogeography, mostly with vertebrates. Here, we use the tropical/subtropical spider genus Selenops (Selenopidae) to obtain a finer resolution of the role of geology in shaping patterns of species diversity. We obtained a broad geographic sample from over 200 localities from both the islands and American mainland. DNA sequence data were generated for three mitochondrial genes and one nuclear gene for eleven outgroup taxa and nearly 60 selenopid species. Phylogenetic analysis of the data revealed several biogeographic patterns common to other lineages that have diversified in the region, the most significant being: (1) a distinct biogeographic break between Northern and Southern Lesser Antilles, although with a slight shift in the location of the disjunction; (2) diversification within the islands of Jamaica and Hispaniola; (3) higher diversity of species in the Greater Antilles relative to the Lesser Antilles. However, a strikingly unique pattern in Caribbean Selenops is that Cuban species are not basal in the Caribbean clade. Analyses to test competing hypotheses of vicariance and dispersal support colonization through GAARlandia, an Eocene–Oligocene land span extending from South America to the Greater Antilles, rather than over‐water dispersal. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 101 , 288–322.  相似文献   

17.
Cecropia of South and Central America, and Trinidad and Tobago, maintain a symbiotic relationship with Azteca ants. The plant provides a domicile and food supply and in return the ants defend the plant from insect attack and/or vine overgrowth. Cecropia is present on certain Caribbean islands, north of Trinidad and Tobago, but does not maintain a relationship with ants. The Cecropia on Puerto Rico have lost all structures normally associated with the production of the ant food. On the islands between Trinidad and Puerto Rico, stages in the loss of traits related to the ant symbiosis are present.  相似文献   

18.
Caribbean avifaunal biogeography has been mainly studied based on mitochondrial DNA. Here, we investigated both past and recent island differentiation and micro-evolutionary changes in the Zenaida Dove (Zenaida aurita) based on combined information from one mitochondrial (Cytochrome c Oxydase subunit I, COI) and 13 microsatellite markers and four morphological characters. This Caribbean endemic and abundant species has a large distribution, and two subspecies are supposed to occur: Z. a. zenaida in the Greater Antilles (GA) and Z. a. aurita in the Lesser Antilles (LA). Doves were sampled on two GA islands (Puerto Rico and the British Virgin Islands) and six LA islands (Saint Barthélemy, Guadeloupe, Les Saintes, Martinique, Saint Lucia and Barbados). Eleven COI haplotypes were observed that could be assembled in two distinct lineages, with six specific to GA, four to LA, the remaining one occurring in all islands. However, the level of divergence between those two lineages was too moderate to fully corroborate the existence of two subspecies. Colonisation of the studied islands appeared to be a recent process. However, both phenotypic and microsatellite data suggest that differentiation is already under way between all of them, partly associated with the existence of limited gene flow. No isolation by distance was observed. Differentiation for morphological traits was more pronounced than for neutral markers. These results suggest that despite recent colonisation, genetic drift and/or restricted gene flow are promoting differentiation for neutral markers. Variation in selective pressures between islands may explain the observed phenotypic differentiation.  相似文献   

19.
Reconstructing the evolutionary history of island biotas is complicated by unusual morphological evolution in insular environments. However, past human-caused extinctions limit the use of molecular analyses to determine origins and affinities of enigmatic island taxa. The Caribbean formerly contained a morphologically diverse assemblage of caviomorph rodents (33 species in 19 genera), ranging from ∼0.1 to 200 kg and traditionally classified into three higher-order taxa (Capromyidae/Capromyinae, Heteropsomyinae, and Heptaxodontidae). Few species survive today, and the evolutionary affinities of living and extinct Caribbean caviomorphs to each other and to mainland taxa are unclear: Are they monophyletic, polyphyletic, or paraphyletic? We use ancient DNA techniques to present the first genetic data for extinct heteropsomyines and heptaxodontids, as well as for several extinct capromyids, and demonstrate through analysis of mitogenomic and nuclear data sets that all sampled Caribbean caviomorphs represent a well-supported monophyletic group. The remarkable morphological and ecological variation observed across living and extinct caviomorphs from Cuba, Hispaniola, Jamaica, Puerto Rico, and other islands was generated through within-archipelago evolutionary radiation following a single Early Miocene overwater colonization. This evolutionary pattern contrasts with the origination of diversity in many other Caribbean groups. All living and extinct Caribbean caviomorphs comprise a single biologically remarkable subfamily (Capromyinae) within the morphologically conservative living Neotropical family Echimyidae. Caribbean caviomorphs represent an important new example of insular mammalian adaptive radiation, where taxa retaining “ancestral-type” characteristics coexisted alongside taxa occupying novel island niches. Diversification was associated with the greatest insular body mass increase recorded in rodents and possibly the greatest for any mammal lineage.  相似文献   

20.
Seventy-eight cattle samples from three Creole Caribbean islands and one Brazilian breed were analyzed for sequence variation in the hypervariable segment of the mitochondrial DNA control region. Seventy-three samples displayed Bos taurus haplotypes, and five samples exhibited haplotypes that were of Bos indicus ancestry. Phylogenetic analysis revealed that all sampled B. taurus sequences fell into two distinct clusters with separate African and European origins. European sequences were encountered in each population; however, the distribution of African haplotypes was uneven, with the highest proportion of African influence found in the Guadeloupe Creole. The reduced levels of African haplotypic variation within the Caribbean and Brazilian are consistent with prior founder effects. Additionally, genetic variation at three microsatellite loci illustrated African influence uniquely in the Guadeloupe Creole. Collectively, the data suggest that this African influence is, at least in part, attributable to the historical importation of African cattle to the Americas. Furthermore, alleles of B. indicus ancestry were detected at appreciable frequencies in all Caribbean Creole populations and may reflect zebu introgressions from either West Africa or the Indian subcontinent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号