首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
Solar ultraviolet radiation (UV) is harmful for developing amphibians. As UV increases with altitude and latitude, it is suggested that high altitude and latitude populations have evolved tolerance to high levels of UV. Using laboratory experiments, we tested the hypothesis that Rana temporaria populations from several altitudes (438–2,450 m above sea level) were adapted to UV by assessing the effects of artificial UV on embryos mortality rate, malformations, and body length at hatching. We also tested the protective role of the jelly surrounding the embryos. Without artificial UV exposure, hatching success decreased with altitude of the population. Malformation rates were low for all populations (mean 1.36%), and hatching size increased with altitude. The artificial UV (UV-B, UV-A, and visible) used was similar to the solar spectrum received at high altitude. Exposed embryos had performance similar to that of embryos without exposure: a decreased hatching success with altitude and a low malformation rate (mean 0.85%). However, hatching size did not vary with altitude, and UV-exposed embryos tended to be smaller at hatching than non-exposed embryos. Removal of the protective jelly envelope greatly decreased the performance of UV-exposed embryos: hatching success strongly decreased with altitude and embryos of the highest population (2,450 m asl) did not develop. Malformation reached 4.98%, without population differences, and hatching size of embryos without jelly was smaller than hatching size of non-manipulated embryos with no population effect. This study demonstrates that lowland jellyless embryos were less sensitive (i.e., exhibited a higher survival rate) than highland embryos and, on the other hand, that the jelly envelope was a more efficient protection for embryos in highland than in lowland populations. A trade-off hypothesis is presented to explain this difference in UV tolerance and protection among populations: in a harsh, highland environment (i.e., with a curtailed activity period), embryos have to invest in development and growth and, thus, embryo protection should be a female investment (via the jelly). In a lowland environment, embryonic growth and development are less constrained and embryos are able to invest and use protection or repair mechanisms inherited from their parents.  相似文献   

2.
van de Staaij  J.W.M.  Bolink  E.  Rozema  J.  Ernst  W.H.O. 《Plant Ecology》1997,128(1-2):173-179
A highland (altitude 1600 m) and a lowland (altitude –2 m) population of the perennial herb Silene vulgaris were tested on the effects of elevated levels of UV-B radiation on their reproductivity. Highland populations receive higher natural UV-B doses than lowland populations. Therefore adaptation to high UV-B levels of the highland population is to be expected. The lowland population showed a decrease in the number of seed producing flowers and the number of seeds produced per plant under elevated UV-B levels. The highland population increased the number of seeds per plant under elevated UV-B levels. In both populations individual seed mass as well as seed germination percentages were unaffected by the UV-B flux received by the parental plant. Possible effects of UV-B induced alterations in reproductivity on the geographical distribution of the different populations are discussed.  相似文献   

3.
Eggs of dab (Limanda limanda) and plaice (Pleuronectes platessa) were experimentally exposed to ultraviolet-B (UV-B) radiation in a solar radiation simulator. The experimental design tried to simulate present and future conditions with reference to increased UV-B exposure due to northern hemisphere ozone loss, employing mainly two scenarios, a reduction to 270 (S1) and to 180 (S2) Dobson units (DU) in single or repetitive exposures of 2, 4 or 6 h. Depending on the total dose of UV-B irradiation and the developmental stage, exposed eggs displayed loss of buoyancy as a sublethal effect, as well as increased embryo mortality and reduced viable hatch. In the single exposure experiments only under conditions of 180 DU for 6 h were effects apparent. Double exposure under conditions of 270 DU did not lead to lasting effects. At the sublethal effect level, i.e. loss of buoyancy, considerable photorepair was observed. It was concluded, that under the present general weather conditions in spring and at the present levels of environmental ozone, allowing for a reduction to 180 DU, the embryonic development of North Sea spring spawning fish is not endangered by UV-B radiation. Received in revised form: 19 June 2000 Electronic Publication  相似文献   

4.
In the open ocean, where turbidity is very low, UV radiation may be an important factor regulating interactions among planktonic microorganisms. The effect of exposure to UV radiation on grazing by a commonly isolated marine heterotrophic nanoflagellate, Paraphysomonas bandaiensis, on two strains of the cyanobacteria Synechococcus spp. was investigated. Laboratory cultures were exposed to a range of irradiances of artificially produced UV-B (290 to 319 nm) and UV-A (320 to 399 nm) for up to 10 h. At a UV-B irradiance of 0.19 W m, but not 0.12 W m, grazing mortality of Synechococcus spp. and nanoflagellate-specific grazing rates were reduced compared to mortality and grazing rates with UV-A treatment. Within 6 h of exposure, UV-A alone suppressed grazing mortality at irradiances as low as 3.02 W m. The extent to which grazing mortality and nanoflagellate-specific grazing rates were suppressed by UV-A increased with both irradiance and duration of exposure. Over a 6-h exposure period, differences in grazing mortality were largely attributable to differential survival of nanoflagellates. Over a longer period of exposure, there was impairment by UV-A alone of nanoflagellate-specific grazing rates. Rates of primary productivity of Synechococcus spp. were also reduced by UV-A. The extent to which Synechococcus productivity was reduced, compared to the reduction in Synechococcus grazing mortality, depended on the duration of UV-A exposure. These results support the hypothesis that UV-A alone influences the composition and biomass of marine microbial communities by affecting predator-prey interactions and primary production.  相似文献   

5.
Date palm, is a tree of economic importance which is grown around the world, including Saudi Arabia. Its fruit is nutritious and possesses medicinal benefits. Almond moth, is a serious date fruits pest in the field as well as in the storage and causes severe economic losses. In the given research, ultraviolet radiation type B (UV-B, 315 nm) harmful effects were evaluated against all developmental stages of C. cautella. One and 3-d-old eggs, 12 and 18-d-old larvae, 1-d and 6-d-old pupae, and 1-d-old adults, were exposed to UV-B for different intervals. Eggs were exposed for 0–30 min and 0% hatchability was achieved both for 1-d and 3-d-old eggs after 30 min. The larvae were exposed for 6–24 h, and after 24 h, mortality was 100 and 97% for 12 and 18-d-old larvae, respectively. Similarly, the pupae were exposed for 0–30 h, and 100% mortality was achieved after 30 h for 1-d-old pupae. Furthermore, none of the 6-d-old pupae emerged as an adult after 12 h of exposure. When adults were exposed for 1–4 d, no mortality was observed; however, UV-B reduced fecundity and hatchability in the treated adults. The susceptibility order was as follows: eggs > larvae > pupae > adults. Several uncharacteristic behaviors of C. cautella were noted, such as females depositing eggs openly on food items and containers, mature larvae exiting from food, larvae starting to wander for pupation, and pupation occurring typically outside the food. The application of UV-B could be an effective management strategy because all developmental stages of C. cautella were susceptible to UV-B that might be helpful to protect the dates from C. cautella infestation.  相似文献   

6.
7.
The magnitude of oviposition as well as the size, shape and the number of eggs per of egg rafts egg raft were determined after gravid Culex quinquefasciatus Say oviposited on water treated with water dispersible granules (WDG) of Bacillus thuringiensis ssp. israelensis (Bti) and on untreated water. The mean number of eggs/raft was lower in the treated than in the untreated water. Bti concentrations from 0.5 to 2.0mg/L affected the shape of egg rafts and number of eggs in each raft. As the concentration of Bti increased from 0.5 to 2.0 mg/L the shape of egg rafts became more irregular with fewer eggs in each raft. Exposure to Bti at 2- and 26-h reduced the hatching rates, and fewer eggs hatched at 26-h of exposure to Bti. As the concentration of Bti WDG increased from 0.5 to 2.0 mg/L, the hatching rate decreased. Eggs exposed for 2-h to 2.0mg/ L Bti had a hatch of 30% after 24 h, the rate increasing to 57% after 72 h. In contrast, in 26-h exposed eggs to 2.0 mg/L Bti, the hatching rate after 24 h was only 12% and this rate increased to 39% after 72 h. In larvae from eggs exposed for 2 h, the survival rate was 40% at 2.0 mg/L Bti and 87% in untreated controls. In contrast, the survival rates of larvae from 26-h exposed eggs was 91% in controls while it was 30% at 2.0 mg/L Bti. As the concentration of Bti increased from 0.5 to 2.0 mg/ 1 the survival rates of larvae decreased. The combined effects of reductions of egg rafts, low number of eggs per egg raft, and reduced hatching and survival rates could have significant cumulative effects on the yield of adult mosquitoes, and this could result in a greater control potential of this microbial agent.  相似文献   

8.
Musil  C. F.  Newton  R. J.  Farrant  J. M. 《Plant Ecology》1998,139(1):25-34
Dry seeds of Leucadendron laureolum (Lam.) Fourc. (Proteaceae) were exposed for different intervals (range: 7 to 84 days) to visible, UV-A and UV-B radiation of different biologically effective dose (range: 0 to 11.43 kJ m-2 d-1). Changes in seed germination, physiology and ultrastructure, and residual UV effects on seedling performance, were examined. Germination was depressed in seeds following short (7-day) exposures to UV radiation. This depression was intensified with increased UV exposure dose, and most pronounced at shorter UV-B wavelengths. Also glutathione reductase (GR) activities increased in seeds exposed to shorter UV-B wavelengths, but these were unaffected by irradiation dose level in the UV-B range. Electrolyte leakage rates from UV-irradiated seeds were unaltered, which indicated that germination depression did not result from intrinsic membrane damage. The reversal of germination depression (UV-induced dormancy) in UV-irradiated seeds by red light pointed to the possible involvement of phytochrome in this photo-response. Germination depression disappeared in seeds after 56-days irradiation, possibly due to photoreceptor damage by excess UV light. At this stage, all UV irradiated seeds, irrespective of treatment wavelength or dose level, exhibited increased electrolyte leakage rates, which indicated membrane perturbation. Also, increased GR activities were observed in irradiated seeds, but these were proportionately smaller in seeds exposed to shorter wavelength UV-B radiation (9.1 to 35.8% increase) than longer wavelength UV-A (73.4% increase) and visible (97.7% increase) radiation. This implied a metabolic limitation for scavenging of free radicals and peroxides in aging seeds exposed to UV-B radiation, which pointed to accelerated seed deterioration. It was indirectly supported by ultrastructural evidence of sub-cellular damage (lipid coagulation and plasmalemma withdrawal from cell walls) in embryonic tissues of seeds after 84 days UV-B exposure, and reflected in decreased leaf numbers, photochemical efficiencies, and foliar chlorophyll a and carotenoid levels in seedlings cultured from these seeds.  相似文献   

9.
Ultraviolet (UV) radiation is a component of the solar radiations that alter various physiological and biochemical processes in plants. There have been interests in UV-C and UV-B radiations because of their effects on plant physiology. In this study, we investigated the effect of short term UV irradiance on both biochemical parameters and pathogenicity of several root-infecting fungi in Luffa cylindrica. Plant seedlings were exposed once to UV-B and UV-C radiation for 0, 1, 2, 3, 4, and 5 h. After exposure, plant seedlings were transferred to a potting soil that contained natural populations of root-infecting fungi for 30 days. Initially, the plant height and weight enhanced with the increase of exposure time but then plants showed slower growth at the highest time (5 h) of exposure. Colonization of Macrophomina phaseolina, Rhizoctonia solani, and Fusarium species was reduced when plants were exposed to UV radiation at various time intervals. We also found increased levels of chlorophyll ´a`, chlorophyll ‘b’, and carotenoids in plants exposed to radiation. An increase in protein content was also recorded under UV-B and UV-C exposure. Enhanced catalase (CAT) activity was noted after maximum time exposure with UV-C irradiance. Ascorbate peroxidase (APX) activity was increased with the exposure time to UV radiation. We conclude that short time UV irradiation causes alteration in photosynthetic pigments and stress enzymes activities in L. cylindrica that play a major role in the improvement of resistance against root-infecting fungi.  相似文献   

10.
Irradiation with artificial quasi-solar light was used to investigate lethal and sublethal effects of enhanced ultraviolet-B (UV-B) radiation on eggs, larval and juvenile stages of North Sea plaice. The irradiation experiments resembled a worst-case scenario with a synchronous occurrence of ozone depletion, sunny weather, and low water turbulence. In eggs, UV-B exposure increased mortality and induced loss of positive buoyancy. UV-B exposures for 1 or 2 days, according to the weather conditions in spring, impaired eggs only if UV-B intensities and doses exceeded those under a further 60% ozone loss. In larvae and juveniles, long-term UV-B exposures during and after metamorphosis affected ventilation rate at normoxia and ventilatory regulation during hypoxic incubations. Oxygen consumption rates of juveniles were not affected by UV-B irradiation. Received in revised form: 20 April 2000 Electronic Publication  相似文献   

11.
Changes in buoyancy in fertilized bathypelagic eggs of the walleye pollock, Theragra chalcogramma , collected from Shelikof Strait in the Gulf of Alaska were measured under controlled laboratory conditions in density gradient columns from 90 h post–fertilization through hatching. Eggs were incubated at 6° C and exposed to either diel light or constant dark. Eggs held under diel light conditions became more dense than eggs under constant dark beginning <10 h after exposure to light and remained so until 12 h before hatching. Eggs held under constant dark then became more dense than those under diel light. Hatching of eggs under both conditions began at the same time but eggs under diel light showed a delayed hatching rate. Light–induced changes in egg density indicate the ability of walleye pollock eggs to respond to external stimuli and thereby alter their position in the water column in an ecologically meaningful way.  相似文献   

12.
1. The effects of low pH water on embryogenesis and vitellogenesis in kokanee and sockeye salmon (Oncorhynchus nerka) were investigated. Eggs were exposed to low pH from fertilization to 45 days post-median hatch or to an episodic exposure at pH 4.0. Adult kokanee were also exposed to low pH just prior to ovulation and spawning. 2. The most sensitive stages of development during chronic or episodic exposure to low pH were early embryonic development and newly-hatched alevins. 3. Incubation of eggs at low pH caused a lower median survival, delayed hatching, higher alevin mortality and reduced the efficiency of yolk conversion to tissue of yolk-sac alevins. Those effects were more pronounced when the eggs were fertilized at low pH. 4. Exposure of sexually mature kokanee salmon to acidified water reduced egg and alevin survival, delayed embryo hatching and decreased the percent hatch. Those effects were more pronounced when their eggs were incubated at low pH.  相似文献   

13.
In the open ocean, where turbidity is very low, UV radiation may be an important factor regulating interactions among planktonic microorganisms. The effect of exposure to UV radiation on grazing by a commonly isolated marine heterotrophic nanoflagellate, Paraphysomonas bandaiensis, on two strains of the cyanobacteria Synechococcus spp. was investigated. Laboratory cultures were exposed to a range of irradiances of artificially produced UV-B (290 to 319 nm) and UV-A (320 to 399 nm) for up to 10 h. At a UV-B irradiance of 0.19 W m−2, but not 0.12 W m−2, grazing mortality of Synechococcus spp. and nanoflagellate-specific grazing rates were reduced compared to mortality and grazing rates with UV-A treatment. Within 6 h of exposure, UV-A alone suppressed grazing mortality at irradiances as low as 3.02 W m−2. The extent to which grazing mortality and nanoflagellate-specific grazing rates were suppressed by UV-A increased with both irradiance and duration of exposure. Over a 6-h exposure period, differences in grazing mortality were largely attributable to differential survival of nanoflagellates. Over a longer period of exposure, there was impairment by UV-A alone of nanoflagellate-specific grazing rates. Rates of primary productivity of Synechococcus spp. were also reduced by UV-A. The extent to which Synechococcus productivity was reduced, compared to the reduction in Synechococcus grazing mortality, depended on the duration of UV-A exposure. These results support the hypothesis that UV-A alone influences the composition and biomass of marine microbial communities by affecting predator-prey interactions and primary production.  相似文献   

14.
Although Alpine newts (Triturus alpestris) are found at altitudes up to 2500 m, their larvae proved to be extremely sensitive to UV radiation when exposed in clear tapwater to natural sunlight or to comparable artificial UV-B radiation in the laboratory. The experiments revealed severe skin damages (lysis of epithelial cells) and mortality after a few days of exposure. In their natural habitats above the timberline, however, the larvae are protected by the high concentration of dissolved organic carbon in the water leading to an almost complete absorption of UV radiation within the first few centimeters of the water layer. Furthermore, when exposed to UV radiation larvae show erratic swimming activities that may carry them into protected areas. Only in very shallow natural habitats did we detect sublethal UV-like histological effects. Shallow high mountain ponds with clear water normally lack newt populations, probably as a consequence of both low temperature and the effects of UV radiation. Received: 4 October 1996 / Accepted: 7 February 1997  相似文献   

15.
Sisson WB 《Plant physiology》1981,67(1):120-124
Net photosynthesis, growth, and ultraviolet (UV) radiation absorbance were determined for the first leaf of Cucurbita pepo L. exposed to two levels of UV-B irradiation and a UV-B radiation-free control treatment. Absorbance by extracted flavonoid pigments and other UV-B radiation-absorbing compounds from the first leaves increased with time and level of UV-B radiation impinging on leaf surfaces. Although absorbance of UV-B radiation by extracted pigments increased substantially, UV-B radiation attenuation apparently was insufficient to protect completely the photosynthetic apparatus or leaf growth processes. Leaf expansion was repressed by daily exposure to 1365 Joules per meter per day of biologically effective UV-B radiation but not by exposure to 660 Joules per meter per day. Photosynthesis measured through ontogenesis of the first leaf was depressed by both UV-B radiation treatments. Repression of photosynthesis by UV-B radiation was especially evident during the ontogenetic period of maximum photosynthetic activity.  相似文献   

16.
Environmental changes, including those associated with the atmosphere may significantly affect individual animals and ultimately populations. Ultraviolet (UV) radiation, perhaps increasing due to stratospheric ozone depletion, has been linked to mortality in a number of organisms, including amphibians. The eggs and larvae of certain amphibian species hatch at significantly lower rates when exposed to ambient ultraviolet light. Yet little is known about the sublethal effects of UV radiation. For example, UV radiation may affect specific behaviors of an animal that could alter its ability to survive. To examine if UV radiation affects amphibian behavior, we used roughskin newts ( Taricha granulosa ) as a model. Newts were exposed to low-level doses of UV in the laboratory and then tested in the field to examine if UV-exposed and control (no UV) newts differed in orientation towards water or in locomotor activity levels. UV-exposed and control newts both exhibited a significant orientation towards water in field tests but there was no significant difference in orientation between treatments. However, UV-exposed newts were significantly more active than control newts. Our results suggest that exposure to short-term low levels of UV radiation alters certain behaviors. Environmentally induced changes in behavior may have significant ecological and evolutionary consequences.  相似文献   

17.
Brief exposure of eggs of Globodera pallida to potato root diffusate not only initiated hatching but also caused the majority of unhatched juveniles to respond more rapidly to subsequent treatment with diffusate. Eggs previously exposed to diffusate had a peak hatch after 1 or 2 days compared with 4 days for untreated eggs. Mustard root diffusate prevented hatch, and further stimulation with potato root diffusate was necessary to re-initiate it. Eggs previously treated with potato root diffusate for 24 h were much more sensitive to drought than untreated eggs. These results are discussed in relation to the theory that potato root diffusate alters the permeability of the eggshell as an initial step in the hatching process.  相似文献   

18.
1. The freshwater ostracod (Ostracoda), Eucypris virens, is commonly found in European temporary pools, where its long‐term persistence completely relies on the build‐up of resting egg banks. Extreme tolerance of dormant eggs and seeds is widely assumed, but freshwater ostracod eggs are relatively poorly studied. The study of ostracod resting eggs is of particular relevance as it may yield the key to understanding the distribution of the sexes in many species capable of both sexual and asexual reproduction. 2. We assessed the tolerance of dried resting eggs produced by females originating from three populations with males and three all‐female E. virens populations. Hatching time and success was compared between control eggs and eggs exposed to one of seven ecologically relevant stressors: digestive enzymes, high salinity, deep freezing, hydration, UV‐B radiation, hypoxia and insecticide treatment. 3. None of the stressors reduced significantly the viability of either sexual or asexual eggs. When compared with the reproductive mode–specific controls, exposure to UV‐B radiation had a mild impact on the survival of sexual and asexual eggs (?16.8 and ?22.4%, respectively), but this was only significant for asexual eggs. These results point to an extreme tolerance of E. virens resting eggs and have important implications for the ecology and evolution of the species. 4. The timing of hatching was not affected by the stress treatment, except for UV‐B radiation. A marginally significant delay in hatching response was observed for UV‐B‐radiated eggs when compared to the overall mean, but this treatment effect was absent when compared with the reproductive mode–specific controls. 5. The populations with males produced eggs that hatched on average earlier (?1.5 days at 17 °C) and were more successful (+26%) than asexual eggs. Due to the limited number of populations and the population‐specific origin and age of the eggs, the possibility due to the differences in age and origin of the resting eggs, or to variations in local conditions, cannot be ruled out.  相似文献   

19.
Adult bed bugs were exposed to the sublethal temperatures 34.0°C, 35.5°C, 37.0°C, 38.5°C, or 40.0°C for 3, 6, or 9 days. The two uppermost temperatures induced 100% mortality within 9 and 2 days, respectively, whereas 34.0°C had no observable effect. The intermediate temperatures interacted with time to induce a limited level of mortality but had distinct effects on fecundity, reflected by decreases in the number of eggs produced and hatching success. Adult fecundity remained low for up to 40 days after heat exposure, and the time until fertility was restored correlated with the temperature-sum experienced during heat exposure. Three or 6 days of parental exposure to 38.5°C significantly lowered their offspring’s feeding and moulting ability, which consequently led to a failure to continue beyond the third instar. Eggs that were deposited at 22.0°C before being exposed to 37.0°C for 3 or 6 days died, whereas eggs that were exposed to lower temperatures were not significantly affected. Eggs that were deposited during heat treatment exhibited high levels of mortality also at 34.0°C and 35.5°C. The observed negative effects of temperatures between 34.0°C and 40.0°C may be utilized in pest management, and sublethal temperature exposure ought to be further investigated as an additional tool to decimate or potentially eradicate bed bug populations. The effect of parental heat exposure on progeny demonstrates the importance of including maternal considerations when studying bed bug environmental stress reactions.  相似文献   

20.
Three-year-old birch (Betula pendula Roth.) seedlings were exposed, in the field, to supplemental levels of UV-B radiation. Control seedlings were exposed to ambient levels of UV radiation, using arrays of unenergized lamps. A control for UV-A radiation was also included in the experiment. Enhanced UV-B radiation had no significant effects on height growth, and shoot and root biomass of birch seedlings. Leaf expansion rate increased transiently in the middle of the growing period in enhanced UV-B- and UV-A-exposed plants; however, final leaf size and relative growth rate remained unaffected. Leaf thickness and spongy intercellular spaces were increased in UV-B-exposed seedlings along with increased density of glandular trichomes. At the ultrastructural level, enhanced UV-B increased the number of cytoplasmic lipid bodies, and abnormal membrane whorls were found. Both enhanced UV-B and UV-A radiation induced swelling of chloroplast thylakoids. Stomatal density and conductance were significantly increased by elevated UV-B radiation. UV-A radiation increased the length and width of stomata, whereas UV-B radiation had only a marginal effect on stomatal size. UV-A and enhanced UV-B radiation attenuated the appearance of necrotic spots in autumn, probably caused by the fungus Pyrenopeziza betulicola, suggesting a direct harmful effect of UV on pathogens or reduced susceptibility to pathogens in UV-exposed seedlings. Secondary metabolite analysis showed increases in (+)-catechin, quercetin, cinnamic acid derivative, apigenin and pentagalloylglucose in birch leaves under enhanced UV-B radiation. Negative correlations between apigenin, and particularly quercetin concentrations and lipid peroxidation levels indicated an antioxidant role of secondary metabolites in birch leaves exposed to UV-B radiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号