首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The rate of ATP hydrolysis catalyzed by isolated TF1 and reconstituted TF0F1 was measured as a function of the ATP concentration in the presence of inhibitors [ADP, Pi and 3'-O-(1-naphthoyl)ATP]. ATP hydrolysis can be described by Michaelis-Menten kinetics with Km(TF1) = 390 microM and Km (TF0F1) = 180 microM. The inhibition constants are for ADP Ki(TF1) = 20 microM and Ki(TF0F1) = 100 microM, for 3'-O-(1-naphthoyl)ATP Ki(TF1) = 150 microM and Ki(TF0F1) = 3 microM, and for Pi Ki(TF1) = 60 mM. From these results it is concluded that upon binding of TF0 to TF1 the mechanism of ATP hydrolysis catalyzed by TF1 is not changed qualitatively; however, the kinetic constants differ quantitatively.  相似文献   

2.
Basal and trypsin-stimulated adenosine triphosphatase activities of Escherichia coli K 12 have been characterized at pH 7.5 in the membrane-bound state and in a soluble form of the enzyme. The saturation curve for Mg2+/ATP = 1/2 was hyperbolic with the membrane-bound enzyme and sigmoidal with the soluble enzyme. Trypsin did not modify the shape of the curves. The kinetic parameters were for the membrane-bound ATPase: apparent Km = 2.5 mM, Vmax (minus trypsin) = 1.6 mumol-min-1-mg protein-1, Vmax (plus trypsin) = 2.44 mumol-min-1-mg protein-1; for the soluble ATPase: [S0.5] = 1.2 mM, Vmax (-trypsin) = 4 mumol-min-1-mg protein-1; Vmax (+ trypsin) = 6.6 mumol-min-1-mg protein-1. Hill plot analysis showed a single slope for the membrane-bound ATPase (n = 0.92) but two slopes were obtained for the soluble enzyme (n = 0.98 and 1.87). It may suggest the existence of an initial positive cooperativity at low substrate concentrations followed by a lack of cooperativity at high ATP concentrations. Excess of free ATP and Mg2+ inhibited the ATPase but excess of Mg/ATP (1/2) did not. Saturation for ATP at constant Mg2+ concentration (4 mM) showed two sites (groups) with different Kms: at low ATP the values were 0.38 and 1.4 mM for the membrane-bound and soluble enzyme; at high ATP concentrations they were 17 and 20 mM, respectively. Mg2+ saturation at constant ATP (8 mM) revealed michealian kinetics for the membrane-bound ATPase and sigmoid one for the protein in soluble state. When the ATPase was assayed in presence of trypsin we obtained higher Km values for Mg2+. These results might suggest that trypsin stimulates E. coli ATPase by acting on some site(s) involved in Mg2+ binding. Adenosine diphosphate and inorganic phosphate (Pi) act as competitive inhibitors of Escherichia coli ATPase. The Ki values for Pi were 1.6 +/- 0.1 mM for the membrane-bound ATPase and 1.3 +/- 0.1 mM for the enzyme in soluble form, the Ki values for ADP being 1.7 mM and 0.75 mM for the membrane-bound and soluble ATPase, respectively. Hill plots of the activity of the soluble enzyme in presence of ADP showed that ADP decreased the interaction coefficient at ATP concentrations below its Km value. Trypsin did not modify the mechanism of inhibition or the inhibition constants. Dicyclohexylcarbodiimide (0.4 mM) inhibited the membrane-bound enzyme by 60-70% but concentrations 100 times higher did not affect the residual activity nor the soluble ATPase. This inhibition was independent of trypsin. Sodium azide (20 muM) inhibited both states of E. coli ATPase by 50%. Concentrations 25-fold higher were required for complete inhibition. Ouabain, atebrin and oligomycin did not affect the bacterial ATPase.  相似文献   

3.
Previous analyses of glycolytic metabolites in Artemia embryos indicate that an acute inhibition of glucose phosphorylation occurs during pHi-mediated metabolic arrest under anoxia. We describe here kinetic features of hexokinase purified from brine shrimp embryos in an attempt to explain the molecular basis for this inhibition. At saturating concentrations of cosubstrate, ADP is an uncompetitive inhibitor toward glucose and a partial noncompetitive inhibitor toward ATP (Kis = 0.86 mM, Kii = 1.0 mM, Kid = 1.9 mM). With cosubstrates at subsaturating concentrations, the uncompetitive inhibition versus glucose becomes noncompetitive, while inhibition versus ATP remains partial noncompetitive. The partial noncompetitive inhibition of ADP versus ATP is characterized by a hyperbolic intercept replot. These product inhibition patterns are consistent with a random mechanism of enzyme action that follows the preferred order of glucose binding first and glucose-6-P dissociating last. We propose that inhibition by glucose-6-P (Kis = 65 microM) occurs primarily by competing with ATP at the active site, resulting in the formation of the dead-end complex, enzyme-glucose-glucose-6-P. Versus glucose, inhibition by glucose-6-P is uncompetitive at pH 8.0 and noncompetitive at pH 6.8. Over a physiologically relevant pH range of 8.0 to 6.8 alterations in Km and Ki values do not account for the reduction in glucose phosphorylation, and no evidence suggests that Artemia hexokinase activity is modulated by reversible binding to intracellular structures. Total aluminum in the embryos is 4.01 +/- 0.36 micrograms/g dry weight, or, based upon tissue hydration, 72 microM. This concentration of aluminum dramatically reduces enzyme activity at pH values less than 7.2, even in the presence of physiological metal ion chelators (citrate, phosphate). When pH, aluminum, citrate, phosphate, substrates, and products were maintained at cellular levels measured under anoxia, we can account for a 90% inhibition of hexokinase relative to activity under control (aerobic) conditions.  相似文献   

4.
The effects of components of the transition state analog (creatine, MgADP, planar anion) on the kinetics and conformation of creatine kinase isozyme BB from monkey brain was studied. From analysis of the reaction time course using the pH stat assay, it was shown that during accumulation of the reaction products (ADP and creatine phosphate), among several anions added, nitrate proved the most effective in inhibiting catalytic activity. Maximum inhibition (77%) was achieved with 50 mM nitrate. The Km for ATP was 0.48 mM and in the presence of 2.5 mM nitrate, 2.2 mM; for ATP in the presence of the dead-end complex, creatine and ADP, the apparent Km was 2.0 mM and the Ki was 0.16 mM; in the presence of the transition state analog, MgADP + NO3- + creatine, the Ki was estimated to be 0.04 mM. Ultraviolet difference spectra of creatine kinase revealed significant differences only in the presence of the complete mixture of the components of the transition state analog. Comparison of gel filtration elution profiles for creatine kinase in the absence and presence of the complete mixture of components of the transition state analog did not reveal any differences in elution volume. Addition of components of the transition state analog to creatine kinase resulted in only a marginal change in intrinsic fluorescence. The presence of the components of the transition state analog increased the rate of reactivity of the enzyme with trinitrobenzenesulfonic acid from k = 6.06 +/- 0.05 M-1 min-1 to 6.96 +/- 0.11 M-1 min-1.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Extracts of Acetobacter xylinum catalyze the phosphorylation of glycerol and dihydroxyacetone (DHA) by adenosine 5'-triphosphate (ATP) to form, respectively, L-alpha-glycerophosphate and DHA phosphate. The ability to promote phosphorylation of glycerol and DHA was higher in glycerol-grown cells than in glucose- or succinate-grown cells. The activity of glycerol kinase in extracts is compatible with the overall rate of glycerol oxidation in vivo. The glycerol-DHA kinase has been purified 210-fold from extracts, and its molecular weight was determined to be 50,000 by gel filtration. The glycerol kinase to DHA kinase activity ratio remained essentially constant at 1.6 at all stages of purification. The optimal pH for both reactions was 8.4 to 9.2. Reaction rates with the purified enzyme were hyperbolic functions of glycerol, DHA, and ATP. The Km for glycerol is 0.5 mM and that for DHA is 5 mM; both are independent of the ATP concentration. The Km for ATP in both kinase reactions is 0.5 mM and is independent of glycerol and DHA concentrations. Glycerol and DHA are competitive substrates with Ki values equal to their respective Km values as substrates. D-Glyceraldehyde and l-Glyceraldehyde were not phosphorylated and did not inhibit the enzyme. Among the nucleotide triphosphates tested, only ATP was active as the phosphoryl group donor. Fructose diphosphate (FDP) inhibited both kinase activities competitively with respect to ATP (Ki= 0.02 mM) and noncompetitively with respect to glycerol and DHA. Adenosine 5'-diphosphate (ADP) and adenosine 5'-monophosphate (AMP) inhibited both enzymic activities competitively with respect to ATP (Ki (ADP) = 0.4 mM; Ki (AMP) =0.25 mM). A. xylinum cells with a high FDP content did not grow on glycerol. Depletion of cellular FDP by starvation enabled rapid growth on glycerol. It is concluded that a single enzyme from A. xylinum is responsible for the phosphorylation of both glycerol and DHA. This as well as the sensitivity of the enzyme to inhibition by FDP and AMP suggest that it has a regulatory role in glycerol metabolism.  相似文献   

6.
A K Verma  J T Penniston 《Biochemistry》1984,23(21):5010-5015
The highly purified Ca2+-pumping ATPase from human erythrocyte membranes displays two p-nitrophenylphosphatase (NPPase) activities: one of these requires calmodulin and low concentrations of Ca2+, while the other requires ATP and higher Ca2+ concentrations. The free Ca2+ concentrations required for the expression of the two NPPase activities differed very substantially. Both activities required high free Mg2+ concentrations and displayed simple hyperbolic kinetics toward p-nitrophenyl phosphate (NPP) with a Km in the range of 5-20 mM. Study of the dependence of the calmodulin-stimulated NPPase on Mg2+ and NPP indicated that the Mg-NPP complex is not the substrate of the enzyme. Under conditions optimal for ATP-requiring NPPase (1 mM free Ca2+), the Ca2+-ATPase displayed simple hyperbolic kinetics with a low Km for ATP. NPP competitively inhibited this activity, and the apparent Ki for NPP was less than 1 mM, much lower than the Km for NPP as a substrate. If NPP were inhibiting the ATPase by binding at the same site at which NPP is hydrolyzed, the apparent Ki for NPP as inhibitor would be the same as the Km for NPP as substrate. (Under these circumstances, the apparent Ki and the Km can be directly compared, since NPP was being hydrolyzed under both circumstances.) Since Ki was much lower than Km, NPP must have been inhibiting at another site; thus, these data show the existence of two types of NPP sites on the enzyme, one at which NPP is hydrolyzed and the other at which it inhibits ATP hydrolysis.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Saccharomyces cerevisiae mitochondria contain an NADH:Q6 oxidoreductase (internal NADH dehydrogenase) encoded by NDI1 gene in chromosome XIII. This enzyme catalyzes the transfer of electrons from NADH to ubiquinone without the translocation of protons across the membrane. From a structural point of view, the mature enzyme has a single subunit of 53 kDa with FAD as the only prosthetic group. Due to the fact that S. cerevisiae cells lack complex I, the expression of this protein is essential for cell growth under respiratory conditions. The results reported in this work show that the internal NADH dehydrogenase follows a ping-pong mechanism, with a Km for NADH of 9.4 microM and a Km for oxidized 2,6-dichorophenolindophenol (DCPIP) of 6.2 microM. NAD+, one of the products of the reaction, did not inhibit the enzyme while the other product, reduced DCPIP, inhibited the enzyme with a Ki of 11.5 microM. Two dead-end inhibitors, AMP and flavone, were used to further characterize the kinetic mechanism of the enzyme. AMP was a linear competitive inhibitor of NADH (Ki = 5.5 mM) and a linear uncompetitive inhibitor of oxidized DCPIP (Ki = 11.5 mM), in agreement with the ping-pong mechanism. On the other hand, flavone was a partial inhibitor displaying a hyperbolic uncompetitive inhibition regarding NADH, and a hyperbolic noncompetitive inhibition with respect to oxidized DCPIP. The apparent intercept inhibition constant (Kii = 5.4 microM) and the slope inhibition constant (Kis = 7.1 microM) were obtained by non linear regression analysis. The results indicate that the ternary complex F-DCPIPox-flavone catalyzes the reduction of DCPIP, although with lower efficiency. The effect of pH on Vmax was studied. The Vmax profile shows two groups with pKa values of 5.3 and 7.2 involved in the catalytic process.  相似文献   

8.
The Mg2+-ATPase activity of myosin and its subfragment 1 (ATP phosphohydrolase, EC 3.6.1.3) always followed normal Michaelis-Menten kinetics for ATP concentrations less than 10 microM. The average Km values at pH 7.4 and 25 degrees C are 0.33 +/- 0.04 microM for myosin and 0.43 +/- 0.11 microM for subfragment 1. At low salt concentration myosin yields a second hyperbolic increase in Mg2+-ATPase activity as the ATP rises from 10.2 microM to 153 microM: V doubles with a Km of 11 +/- 5 microM. This second low-salt-dependent increase in Mg2+-ATPase activity occurred between pH 6.8 and pH 8.7. It was not affected by the presence of 0.10 M EGTA to remove Ca2+ contamination. Solubilization of the catalytic sites by assaying myosin for ATPase activity in the presence of 0.60 M NaCl or by conversion of myosin to subfragment 1 eliminated the secondary hyperbolic increase. Subfragment 1 has a significantly different pH-activity curve from that of myosin. Subfragment 1 has an activity peak at pH 6.0, a rising activity as the pH goes from 8.7 to 9.8, and a deep activity valley between pH 6.8 and pH 8.4. Myosin has a very shallow trough of activity at pH 6.8 to 8.4, and in 1.0 mM ATP its activity drops as the pH decreases from 6.8 to 6.0. NaCl is a noncompetitive inhibitor of the Mg2+-ATPase activity of myosin and subfragment 1. Myosin has a greater affinity for NaCl (Ki = 0.101 +/- 0.004 M) than does subfragment 1 (Ki = 0.194 +/- 0.009 M).  相似文献   

9.
The enzymes responsible for the phosphorylation of deoxyadenosine and nucleoside analogs are important in the pathogenesis of adenosine deaminase deficiency and in the activation of specific anticancer and antiviral drugs. We examined the role of adenosine kinase in catalyzing these reactions using an enzyme purified 4000-fold (2.1 mumol/min/mg) from human placenta. The Km values of deoxyadenosine and ATP are 135 and 4 microM, respectively. Potassium and magnesium are absolute requirements for deoxyadenosine phosphorylation, and 150 mM potassium and 5 mM MgCl2 are critical for linear kinetics. With only 0.4 mM MgCl2 in excess of ATP levels, the Km for deoxyadenosine is increased 10-fold. ADP is a competitive inhibitor with a Ki of 13 microM with variable MgATP2-, while it is a mixed inhibitor with a Ki and Ki' of 600 and 92 microM, respectively, when deoxyadenosine is variable. AMP is a mixed inhibitor with Ki and Ki' of 177 and 15 microM, respectively, with variable deoxyadenosine; it is a non-competitive inhibitor with a Ki of 17 microM and Ki' of 27 microM with variable ATP. Adenosine kinase phosphorylates adenine arabinoside with an apparent Km of 1 mM using deoxyadenosine kinase assay conditions. The Km values for 6-methylmercaptopurine riboside and 5-iodotubercidin, substrates for adenosine kinase, are estimated to be 4.5 microM and 2.6 nM, respectively. Other nucleoside analogs are potent inhibitors of deoxyadenosine phosphorylation, but their status as substrates remains unknown. These data indicate that deoxyadenosine phosphorylation by adenosine kinase is primarily regulated by its Km and the concentrations of Mg2+, ADP, and AMP. The high Km values for phosphorylation of deoxyadenosine and adenine arabinoside suggest that adenosine kinase may be less likely to phosphorylate these nucleosides in vivo than other enzymes with lower Km values. Adenosine kinase appears to be important for adenosine analog phosphorylation where the Michaelis constant is in the low micromolar range.  相似文献   

10.
Subcellular fractionation of cell-free extracts obtained by nitrogen cavitation showed that Penicillium chrysogenum Q176 contains a cytosolic as well as a mitochondrial homocitrate synthase activity. The cytosolic isoenzyme was purified about 500-fold, and its kinetic and molecular properties were investigated. Native homocitrate synthase shows a molecular mass of 155 +/- 10 kDa as determined by gel filtration and a pH of 4.9 +/- 0.1 as determined by chromatofocusing. The kinetic behaviour towards 2-oxoglutarate is hyperbolic, with Km = 2.2 mM; with respect to acetyl-CoA the enzyme shows sigmoidal saturation kinetics, with [S]0.5 = 41 microM and h = 2.6. The enzyme was inhibited strongly by L-lysine (Ki = 8 +/- 2 microM; 50% inhibition by 53 microM at 6 mM-2-oxoglutarate), competitively with 2-oxoglutarate, in protamine sulphate-treated and desalted cell-free extracts and in partially purified preparations. The extent of this inhibition was strongly pH-dependent. Both isoenzymes are equally susceptible to inhibition by lysine. The same inhibition pattern is shown by the enzyme from strain D6/1014A, which is a better producer of penicillin than strain Q176.  相似文献   

11.
12.
A nonhydrolyzable ATP analog, adenylyl imidodiphosphate (AMP-PNP), has been used to study the role of ATP binding in flagellar motility. Sea urchin sperm of Lytechinus pictus were demembranated, reactivated, and locked in "rigor waves" by a modification of the method of Gibbons and Gibbons (11). Rigor wave sperm relaxed within 2 min after addition of 4 micrometer ATP, and reactivated upon addition of 10-12 micrometer ATP. The beat frequency of the reactivated sperm varied with ATP concentration according to Michaelis-Menten kinetics ("Km" = 0.24 mM; "Vmax" = 44 Hz) and was competitively inhibited by AMP-PNP (Ki" approximately to 8.1 mM). Rigor wave sperm were completely relaxed (straightened) within 2 min by AMP-PNP at concentrations of 2-4 mM. The possibilities that relaxation in AMP-PNP was a result of ATP contamination, AMP-PNP hydrolysis, or lowering of the free Mg++ concentration were conclusively ruled out. The results suggest that dynein cross-bridge release is dependent upon ATP binding but not hydrolysis.  相似文献   

13.
The main kinetic parameters for purified phosphorylase kinase from chicken skeletal muscle were determined at pH 8.2: Vm = 18 micromol/min/mg; apparent Km values for ATP and phosphorylase b from rabbit muscle were 0.20 and 0.02 mM, respectively. The activity ratio at pH 6.8/8.2 was 0.1-0.4 for different preparations of phosphorylase kinase. Similar to the rabbit enzyme, chicken phosphorylase kinase had an absolute requirement for Ca2+ as demonstrated by complete inhibition in the presence of EGTA. Half-maximal activation occurred at [Ca2+] = 0.4 microM at pH 7.0. In the presence of Ca2+, the chicken enzyme from white and red muscles was activated 2-4-fold by saturating concentrations of calmodulin and troponin C. The C0.5 value for calmodulin and troponin C at pH 6.8 was 2 and 100 nM, respectively. Similar to rabbit phosphorylase kinase, the chicken enzyme was stimulated about 3-6-fold by glycogen at pH 6.8 and 8.2 with half-maximal stimulation occurring at about 0.15% glycogen. Protamine caused 60% inhibition of chicken phosphorylase kinase at 0.8 mg/ml. ADP (3 mM) at 0.05 mM ATP caused 85% inhibition with Ki = 0.2 mM. Unlike rabbit phosphorylase kinase, no phosphorylation of the chicken enzyme occurred in the presence of the catalytic subunit of cAMP-dependent protein kinase. Incubation with trypsin caused 2-fold activation of the chicken enzyme.  相似文献   

14.
Cysthathionine [gamma]-synthase (CS), an enzyme involved in methionine biosynthesis, was purified from an acetone powder prepared from wheat (Triticum aestivum L.). After several chromatographic steps and radiolabeling of the partially purified enzyme with sodium cyanoboro[3H]hydride, a single polypeptide with a molecular weight of 34,500 was isolated by sodium dodecyl sulfate-high performance electrophoresis chromatography. Since the molecular weight of the native enzyme was 155,000, CS apparently consists of four identical subunits. The pyridoxal 5[prime]-phosphate-dependent forward reaction has a pH optimum of 7.5 and follows a hybrid ping-pong mechanism with Km values of 3.6 mM and 0.5 mM for L-homoserine phosphate and L-cysteine, respectively. L-Cysteine methyl ester, thioglycolate methyl ester, and sodium sulfide were also utilized as thiol substrates. The latter observation suggests that CS and phosphohomoserine sulfhydrase might be a single enzyme. CS does not seem to be a regulatory enzyme but was irreversibly inhibited by DL-propargylglycine (Ki = 45 [mu]M, Kinact = 0.16 min-1). Furthermore, the homoserine phosphate analogs 4-(phosphonomethyl)-pyridine-2-carboxylic acid, Z-3-(2-phosphonoethen-1-yl)pyridine-2-carboxylic acid, and DL-E-2-amino-5-phosphono-3-pentenoic acid acted as reversible competitive inhibitors with Ki values of 45, 40, and 1.1 [mu]M, respectively.  相似文献   

15.
Glucose-6-phosphate dehydrogenase from sporangiophores of Phycomyces blakesleeanus NRRL 1555 (-) was partially purified. The enzyme showed a molecular weight of 85 700 as determined by gel-filtration. NADP+ protected the enzyme from inactivation. Magnesium ions did not affect the enzyme activity. Glucose-6-phosphate dehydrogenase was specific for NADP+ as coenzyme. The reaction rates were hyperbolic functions of substrate and coenzyme concentrations. The Km values for NADP+ and glucose 6-phosphate were 39.8 and 154.4 microM, respectively. The kinetic patterns, with respect to coenzyme and substrate, indicated a sequential mechanism. NADPH was a competitive inhibitor with respect to NADP+ (Ki = 45.5 microM) and a non-competitive inhibitor with respect to glucose 6-phosphate. ATP inhibited the activity of glucose-6-phosphate dehydrogenase. The inhibition was of the linear-mixed type with respect to NADP+, the dissociation constant of the enzyme-ATP complex being 2.6 mM, and the enzyme-NADP+-ATP dissociation constant 12.8 mM.  相似文献   

16.
17.
Di(adenosine-5')oligophosphate nucleotides of general structure ApnA (n = 3-6) inhibited the protein kinase activity of homogeneous phorboid receptor. These nucleotides did not affect the phorboid binding activity. Ap4A competed for an ATP binding site on the phorboid receptor. Km for ATP was increased from 0.5 to 2 microM in the presence of 0.2 mM of Ap4A. KI was calculated to be approximately 0.1 mM. Ap4A-elicited inhibition of phorboid receptor kinase activity was independent of receptor concentration as well as of phosphoacceptor substrate concentration.  相似文献   

18.
Hydrolysis of adenosine 5'-triphosphate (ATP) and p-nitrophenyl phosphate by the hydrogen ion-transporting potassium-stimulated adenosine triphosphatase (H,K-ATPase) was investigated. Hydrolysis of ATP was studied at pH 7.4 in vesicles treated with the ionophore nigericin. The kinetic analysis showed negative cooperativity with one high affinity (Km1 = 3 microM) and one low affinity (Km2 = 208 microM) site for ATP. The rate of hydrolysis decreased at 2000 microM ATP indicating a third site for ATP. When the pH was decreased to 6.5 the experimental results followed Michaelis-Menten enzyme kinetics with one low affinity site (Km = 116 microM). Higher concentrations than 750 microM ATP were inhibitory. Proton transport was measured as accumulation of acridine orange in vesicles equilibrated with 150 mM KCl. The transport at various concentrations of ATP in the pH interval from 6.0 to 8.0 correlated well with the Hill equation with a Hill coefficient between 1.5-1.9. The concentration of ATP resulting in half-maximal transport rate (S0.5) increased from 5 microM at pH 6.0 to 420 microM at pH 8.0. At acidic pH the rate of proton transport decreased at 1000 microM ATP. The K+-stimulated p-nitrophenylphosphatase (pNPPase) activity resulted in a Hill coefficient close to 2 indicating cooperative binding of substrate. The pNPPase was noncompetitively inhibited by ATP and ADP; half-maximal inhibition was obtained at 2 and 100 microM, respectively. Phospholipase C-treated vesicles lost 80% of the pNPPase activity, but the Hill coefficient did not change. These kinetic results are used for a further development of the reaction scheme of the H,K-ATPase.  相似文献   

19.
The kinetic mechanism and evaluation of several potential inhibitors of purified arginine kinase from the cockroach (Periplanta americana) were investigated. This monomeric phosphagen kinase is important in maintaining ATP levels during the rapid energy demands of muscle required for contraction and motility. Analysis reveals the following dissociation constants (mM) for the binary complex: E.Arg P-->E+Arg P, K=1.0; E.Arg-->E+Arg, K=0.45; E.MgATP-->E+MgATP, K=0.17; E.MgADP-->E+MgADP, K=0.12; and the ternary complex: Arg P.E.MgADP-->E.MgADP+Arg P, K=0.94; Arg.E.MgATP-->E.MgATP+Arg, K=0.49; MgATP.Enz.Arg-->E.Arg+MgATP, K=0.14; MgADP.E.Arg P-->E.Arg P+MgADP, K=0.09. For a particular substrate, the ratio of the dissociation constants for the binary to ternary complex is close to one, indicating little, if any, cooperativity in substrate binding for the rapid equilibrium, random addition mechanism. The time course of the arginine kinase reaction exhibits a pronounced curvature, which, as described for enzyme from other sources, is attributed to formation of an inhibitory catalytic dead-end complex, MgADP.E.Arg. The curvature is accentuated by the addition of monovalent anions, including borate, thiocyanate, and, most notably, nitrite and nitrate. This effect is attributed to stabilization of the dead-end complex through formation of a transition state analog. However, the substantial decrease in initial velocity (92%) caused by nitrate is due to an additional inhibitory effect, further characterized as non-competitive inhibition (Ki=8.0 mM) with the substrate L-arginine. On the other hand, borate inhibition of the initial velocity is only 30% with significant subsequent curvature, suggesting that this anion functions as an inhibitor mainly by formation of a transition state analog. However, some component of the borate inhibition appears to be mediated by an apparent partial competitive inhibition with L-arginine. D-arginine is not a substrate for arginine kinase from the cockroach, but is an effective competitive inhibitor with a Ki=0.31 mM. L-Canavanine is a weak substrate for arginine kinase (Km=6.7 mM) with a Vmax for the pure enzyme that is approximately one-third that of L-arginine. However, initial velocity experiments of substrate mixtures suggest that competition between L-canavanine and L-arginine may not be a simple summation effect and may involve a structural modification. Sensitivity of arginine kinase activity to D-arginine as well as nitrate and borate anions, coupled with the fact that L-arginine is an essential amino acid for the cockroach, suggest that arginine kinase could be a useful chemotherapeutic target for the control of cockroach proliferation.  相似文献   

20.
Kinetic studies with substrate analogs and group-directed chemical modification agents were carried out for the purpose of identifying the enzyme-substrate interactions required for phosphonoacetaldehyde (P-Ald) binding and catalyzed hydrolysis by P-Ald hydrolase (phosphonatase). Malonic semialdehyde (Ki = 1.6 mM), phosphonoacetate (Ki = 10 mM), phosphonoethanol (Ki = 10 mM), and fluorophosphate (Ki = 20 mM) were found to be competitive inhibitors of the enzyme but not substrates. Thiophosphonoacetaldehyde and acetonyl phosphonate underwent phosphonatase-catalyzed hydrolysis but at 20-fold and 140-fold slower rates, respectively, than did P-Ald. In the presence of NaBH4, acetonyl-phosphonate inactivated phosphonatase at a rate exceeding that of its turnover. Sequence analysis of the radiolabeled tryptic peptide generated from [3-3H]acetonylphosphonate/NaBH4-treated phosphonatase revealed that Schiff base formation had occurred with the catalytic lysine. From the Vm/Km and Vm pH profiles for phosphonatase-catalyzed P-Ald hydrolysis, an optimal pH range of 6-8 was defined for substrate binding and catalysis. The pH dependence of inactivation by acetylation of the active site lysine with acetic anhydride and 2,4-dinitrophenyl acetate evidenced protonation of the active site lysine residue as the cause for activity loss below pH 6. The pH dependence of inactivation of an active site cysteine residue with methyl methanethiol-sulfonate indicated that deprotonation of this residue may be the cause for the loss of enzyme activity above pH 8.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号