首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The family of p21-activated kinases (PAKs) have been implicated in the rearrangement of actin cytoskeleton by acting downstream of the small GTPases Rac and Cdc42. Here we report that even though Cdc42/Rac1 or Akt are not activated, phosphatidylinositol-3 (PI-3) kinase activation induces PAK1 kinase activity. Indeed, we demonstrate that PI-3 kinase associates with the N-terminal regulatory domain of PAK1 (amino acids 67-150) leading to PAK1 activation. The association of the PI-3 kinase with the Cdc42/Rac1 binding-deficient PAK1(H83,86L) confirms that the small GTPases are not involved in the PI-3 kinase-PAK1 interaction. Furthermore, PAK1 was activated in cells expressing the dominant-negative forms of Cdc42 or Rac1. Additionally, we show that PAK1 phosphorylates actin, resulting in the dissolution of stress fibers and redistribution of microfilaments. The phosphorylation of actin was inhibited by the kinase-dead PAK1(K299R) or the PAK1 autoinhibitory domain (PAK1(83-149)), indicating that PAK1 was responsible for actin phosphorylation. We conclude that the association of PI-3 kinase with PAK1 regulates PAK1 kinase activity through a Cdc42/Rac1-independent mechanism leading to actin phosphorylation and cytoskeletal reorganization.  相似文献   

2.
Hepatocyte growth factor (HGF), the ligand for the Met receptor tyrosine kinase, is a potent modulator of epithelial-mesenchymal transition and dispersal of epithelial cells, processes that play crucial roles in tumor development, invasion, and metastasis. Little is known about the Met-dependent proximal signals that regulate these events. We show that HGF stimulation of epithelial cells leads to activation of the Rho GTPases, Cdc42 and Rac, concomitant with the formation of filopodia and lamellipodia. Notably, HGF-dependent activation of Rac but not Cdc42 is dependent on phosphatidylinositol 3-kinase. Moreover, HGF-induced lamellipodia formation and cell spreading require phosphatidylinositol 3-kinase and are inhibited by dominant negative Cdc42 or Rac. HGF induces activation of the Cdc42/Rac-regulated p21-activated kinase (PAK) and c-Jun N-terminal kinase, and translocation of Rac, PAK, and Rho-dependent Rho-kinase to membrane ruffles. Use of dominant negative and activated mutants reveals an essential role for PAK but not Rho-kinase in HGF-induced epithelial cell spreading, whereas Rho-kinase activity is required for the formation of focal adhesions and stress fibers in response to HGF. We conclude that PAK and Rho-kinase play opposing roles in epithelial-mesenchymal transition induced by HGF, and provide new insight regarding the role of Cdc42 in these events.  相似文献   

3.
The Shank/ProSAP family of multidomain proteins is known to play an important role in organizing synaptic multiprotein complexes. Here we report a novel interaction between Shank and beta PIX, a guanine nucleotide exchange factor for the Rac1 and Cdc42 small GTPases. This interaction is mediated by the PDZ domain of Shank and the C-terminal leucine zipper domain and the PDZ domain-binding motif at the extreme C terminus of beta PIX. Shank colocalizes with beta PIX at excitatory synaptic sites in cultured neurons. In brain, Shank forms a complex with beta PIX and beta PIX-associated signaling molecules including p21-associated kinase (PAK), an effector kinase of Rac1/Cdc42. Importantly, overexpression of Shank in cultured neurons promotes synaptic accumulation of beta PIX and PAK. Considering the involvement of Rac1 and PAK in spine dynamics, these results suggest that Shank recruits beta PIX and PAK to spines for the regulation of postsynaptic structure.  相似文献   

4.
Cytoskeletal remodeling is critical for cell adhesion, spreading, and motility. p21-activated kinase (PAK), an effector molecule of the Rho GTPases Rac and Cdc42, has been implicated in cytoskeletal remodeling and cell motility. PAK kinase activity and subcellular distribution are tightly regulated by rapid and transient localized Rac and Cdc42 activation, and by interactions mediated by adapter proteins. Here, we show that endogenous PAK is constitutively activated in certain breast cancer cell lines and that this active PAK is mislocalized to atypical focal adhesions in the absence of high levels of activated Rho GTPases. PAK localization to focal adhesions in these cells is independent of PAK kinase activity, NCK binding, or GTPase binding, but requires the association of PAK with PIX. Disruption of the PAK-PIX interaction with competitive peptides displaces PAK from focal adhesions and results in a substantial reduction in PAK hyperactivity. Moreover, disruption of the PAK-PIX interaction is associated with a dramatic decrease of PIX and paxillin in focal adhesions, indicating that PAK localization to these structures via PIX is required for the maintenance of paxillin- and PIX-containing focal adhesions. Abnormal regulation of PAK localization and activity may contribute to the tumorigenic properties of certain breast cancer cells.  相似文献   

5.
Remodeling of the vascular smooth muscle cytoskeleton is essential for cell motility involved in the development of diseases such as arteriosclerosis and restenosis. The p21-activated kinase (PAK), which is an effector of the Rho GTPases Rac and Cdc42, has been shown to be involved in cytoskeletal remodeling and cell motility. We show herein that expression of cytoskeletally active constructs of PAK1 is able to induce the formation of dynamic, podosome-like F-actin columns in the A7r5 vascular smooth muscle cell line. Most of these actin columns appear at the junctions between stress fibers and focal adhesions and contain several known podosomal protein markers, such as cortactin, Arp2/3, -actinin, and vinculin. The kinase activity of PAK plays a role in the regulation of the turnover rates of these actin columns but is not essential for their formation. The ability of PAK to interact with the PAK-interacting exchange factor (PIX) but not with Rac or Cdc42, however, is required for the formation of the actin columns as well as for the translocation of PIX and G protein-coupled receptor kinase-interacting protein (GIT) to focal adhesions adjacent to the actin columns. These findings suggest that interaction between PAK and PIX, as well as the recruitment of PIX and GIT to focal adhesions, plays an important role in the formation of actin columns that resemble podosomes induced by phorbol ester in vascular smooth muscle cells. actin cytoskeleton; p21-activated kinase  相似文献   

6.
7.
p21-activated kinases (PAKs) associate with a guanine nucleotide exchange factor, Pak-interacting exchange factor (PIX), which in turn binds the paxillin-associated adaptor GIT1 that targets the complex to focal adhesions. Here, a detailed structure-function analysis of GIT1 reveals how this multidomain adaptor also participates in activation of PAK. Kinase activation does not occur via Cdc42 or Rac1 GTPase binding to PAK. The ability of GIT1 to stimulate alphaPAK autophosphorylation requires the participation of the GIT N-terminal Arf-GAP domain but not Arf-GAP activity and involves phosphorylation of PAK at residues common to Cdc42-mediated activation. Thus, the activation of PAK at adhesion complexes involves a complex interplay between the kinase, Rho GTPases and protein partners that provide localization cues.  相似文献   

8.
Activation of Rac and Cdc42 by Integrins Mediates Cell Spreading   总被引:20,自引:7,他引:13       下载免费PDF全文
Adhesion to ECM is required for many cell functions including cytoskeletal organization, migration, and proliferation. We observed that when cells first adhere to extracellular matrix, they spread rapidly by extending filopodia-like projections and lamellipodia. These structures are similar to the Rac- and Cdc42-dependent structures observed in growth factor-stimulated cells. We therefore investigated the involvement of Rac and Cdc42 in adhesion and spreading on the ECM protein fibronectin. We found that integrin-dependent adhesion led to the rapid activation of p21-activated kinase, a downstream effector of Cdc42 and Rac, suggesting that integrins activate at least one of these GTPases. Dominant negative mutants of Rac and Cdc42 inhibit cell spreading in such a way as to suggest that integrins activate Cdc42, which leads to the subsequent activation of Rac; both GTPases then contribute to cell spreading. These results demonstrate that initial integrin-dependent activation of Rac and Cdc42 mediates cell spreading.  相似文献   

9.
Jung ID  Lee J  Yun SY  Park CG  Choi WS  Lee HW  Choi OH  Han JW  Lee HY 《FEBS letters》2002,532(3):351-356
Autotaxin (ATX) is a strong motogen that can increase invasiveness and angiogenesis. In the present study, we investigated the signal transduction mechanism of ATX-induced tumor cell motility. Unlike N19RhoA expressing cells, the cells expressing N17Cdc42 or N17Rac1 showed reduced motility against ATX. ATX activated Cdc42 and Rac1 and increased complex formation between these small G proteins and p21-activated kinase (PAK). Furthermore, ATX phosphorylated focal adhesion kinase (FAK) that was not shown in cells expressing dominant negative mutants of Cdc42 or Rac1. Collectively, these data strongly indicate that Cdc42 and Rac1 are essential for ATX-induced tumor cell motility in A2058 melanoma cells, and that PAK and FAK might be also involved in the process.  相似文献   

10.
11.
Given the importance of the Rho GTPase family member Rac1 and the Rac1/Cdc42 effector PAK1 in T-cell activation, we investigated the requirements for their activation by the T-cell receptor (TCR). Rac1 and PAK1 activation required the tyrosine kinases ZAP-70 and Syk, but not the cytoplasmic adaptor Slp-76. Surprisingly, PAK1 was activated in the absence of the transmembrane adaptor LAT while Rac1 was not. However, efficient PAK1 activation required its binding sites for Rho GTPases and for PIX, a guanine nucleotide exchange factor for Rho GTPases. The overexpression of ssPIX that either cannot bind PAK1 or lacks GEF function blocked PAK1 activation. These data suggest that a PAK1-PIX complex is recruited to appropriate sites for activation and that PIX is required for Rho family GTPase activation upstream of PAK1. Furthermore, we detected a stable trimolecular complex of PAK1, PIX and the paxillin kinase linker p95PKL. Taken together, these data show that PAK1 contained in this trimolecular complex is activated by a novel LAT- and Slp-76-independent pathway following TCR stimulation.  相似文献   

12.
Rho-family GTPases regulate cytoskeletal dynamics in various cell types. p21-activated kinase 1 (PAK1) is one of the downstream effectors of Rac and Cdc42 which has been implicated as a mediator of polarized cytoskeletal changes in fibroblasts. We show here that the extension of neurites induced by nerve growth factor (NGF) in the neuronal cell line PC12 is inhibited by dominant-negative Rac2 and Cdc42, indicating that these GTPases are required components of the NGF signaling pathway. While cytoplasmically expressed PAK1 constructs do not cause efficient neurite outgrowth from PC12 cells, targeting of these constructs to the plasma membrane via a C-terminal isoprenylation sequence induced PC12 cells to extend neurites similar to those stimulated by NGF. This effect was independent of PAK1 ser/thr kinase activity but was dependent on structural domains within both the N- and C-terminal portions of the molecule. Using these regions of PAK1 as dominant-negative inhibitors, we were able to effectively inhibit normal neurite outgrowth stimulated by NGF. Taken together with the requirement for Rac and Cdc42 in neurite outgrowth, these data suggest that PAK(s) may be acting downstream of these GTPases in a signaling system which drives polarized outgrowth of the actin cytoskeleton in the developing neurite.  相似文献   

13.
14.
P21-activated kinase 1 (PAK1) is activated by binding to GTP-bound Rho GTPases Cdc42 and Rac via its CRIB domain. Here, we provide evidence that S79 in the CRIB domain of PAK1 is not directly involved in this binding but is crucial for PAK1 activation. S79A mutation reduces the binding affinity of PAK1 for the GTPases and inhibits autophosphorylation and kinase activity of PAK1. Thus, this mutation abrogates the ability of PAK1 to induce changes in cell morphology and motility and to promote malignant transformation of prostate epithelial cells. We also show that growth of the prostate cancer cell line PC3 is inhibited by the treatment of a PAK1-inhibiting peptide comprising 19 amino acids centered on S79, but not by the PAK1 peptide containing the S79A mutation, and that this growth inhibition is correlated with reduced autophosphorylation activity of PAK1. Together, these findings demonstrate a significant role of S79 in PAK1 activation and provide evidence for a novel mechanism of the CRIB-mediated interaction of PAK1 with Cdc42 and Rac.  相似文献   

15.
Cell adhesion to extracellular matrix is an important physiological stimulus for organization of the actin-based cytoskeleton. Adhesion to the matrix glycoprotein thrombospondin-1 (TSP-1) triggers the sustained formation of F-actin microspikes that contain the actin-bundling protein fascin. These structures are also implicated in cell migration, which may be an important function of TSP-1 in tissue remodelling and wound repair. To further understand the function of fascin microspikes, we examined whether their assembly is regulated by Rho family GTPases. We report that expression of constitutively active mutants of Rac or Cdc42 triggered localization of fascin to lamellipodia, filopodia, and cell edges in fibroblasts or myoblasts. Biochemical assays demonstrated prolonged activation of Rac and Cdc42 in C2C12 cells adherent to TSP-1 and activation of the downstream kinase p21-activated kinase (PAK). Expression of dominant-negative Rac or Cdc42 in C2C12 myoblasts blocked spreading and formation of fascin spikes on TSP-1. Spreading and spike assembly were also blocked by pharmacological inhibition of F-actin turnover. Shear-loading of monospecific anti-fascin immunoglobulins, which block the binding of fascin to actin into cytoplasm, strongly inhibited spreading, actin cytoskeletal organization and migration on TSP-1 and also affected the motility of cells on fibronectin. We conclude that fascin is a critical component downstream of Rac and Cdc42 that is needed for actin cytoskeletal organization and cell migration responses to thrombospondin-1.  相似文献   

16.
Mott HR  Nietlispach D  Evetts KA  Owen D 《Biochemistry》2005,44(33):10977-10983
The PAK Ser/Thr kinases are important downstream effectors of the Rho family GTPases Cdc42 and Rac, partly mediating the role of these G proteins in cell proliferation and cytoskeletal rearrangements. As well as small G proteins, PAK interacts with the Cdc42/Rac exchange factor beta-PIX via the PIX SH3 domain and a nontypical Pro-rich region in PAK. This interaction is thought to affect the localization of PAK, as well as increased GTP/GDP exchange of Rac and Cdc42. We have determined the structure of the PIX-SH3/PAK peptide complex and shown that it differs from typical Src-like SH3/peptide complexes. The peptide makes contacts through the Pro-rich sequence in a similar way to standard SH3/peptide complexes, even though the Pro residue positions are not conserved. In addition, there are interactions with a Pro and Lys in the PAK, which are C-terminal to the conserved Arg found in all SH3-binding sequences. These contact a fourth binding pocket on the SH3 domain. We have measured the affinity of PIX-SH3 for the PAK peptide and found that it is of intermediate affinity. When PAK is activated, Ser-199 in the PIX-binding site is phosphorylated. This phosphorylation is sufficient to reduce the affinity for PIX 6-fold.  相似文献   

17.
p21-activated kinase (PAK) has been shown to be an upstream mediator of JNK in angiotensin II (AngII) signaling. Little is known regarding other signaling molecules involved in activation of PAK and JNK by AngII. Rho family GTPases Rac and Cdc42 have been shown to enhance PAK activity by binding to p21-binding domain of PAK (PAK-PBD). In vascular smooth muscle cells (VSMC) AngII stimulated Rac1 binding to GST-PAK-PBD fusion protein. Pretreatment of VSMC by genistein inhibited AngII-induced Rac1 activation, whereas Src inhibitor PP1 had no effect. Inhibition of protein kinase C by phorbol 12,13-dibutyrate pretreatment also decreased AngII-mediated activation of Rac1. The adaptor molecule Nck has been shown previously to mediate PAK activation by facilitating translocation of PAK to the plasma membrane. In VSMC AngII stimulated translocation of Nck and PAK to the membrane fraction. Overexpression of dominant-negative Nck in Chinese hamster ovary (CHO) cells, stably expressing the AngII type I receptor (CHO-AT1), inhibited both PAK and JNK activation by AngII, whereas it did not affect ERK1/2. Finally, dominant-negative Nck inhibited AngII-induced DNA synthesis in CHO-AT1 cells. Our data provide evidence for Rac1 and Nck as upstream mediators of PAK and JNK in AngII signaling and implicate JNK in AngII-induced growth responses.  相似文献   

18.
Li Z  Hannigan M  Mo Z  Liu B  Lu W  Wu Y  Smrcka AV  Wu G  Li L  Liu M  Huang CK  Wu D 《Cell》2003,114(2):215-227
Efficient chemotaxis requires directional sensing and cell polarization. We describe a signaling mechanism involving G beta gamma, PAK-associated guanine nucleotide exchange factor (PIX alpha), Cdc42, and p21-activated kinase (PAK) 1. This pathway is utilized by chemoattractants to regulate directional sensing and directional migration of myeloid cells. Our results suggest that G beta gamma binds PAK1 and, via PAK-associated PIX alpha, activates Cdc42, which in turn activates PAK1. Thus, in this pathway, PAK1 is not only an effector for Cdc42, but it also functions as a scaffold protein required for Cdc42 activation. This G beta gamma-PAK1/PIX alpha/Cdc42 pathway is essential for the localization of F-actin formation to the leading edge, the exclusion of PTEN from the leading edge, directional sensing, and the persistent directional migration of chemotactic leukocytes. Although ligand-induced production of PIP(3) is not required for activation of this pathway, PIP(3) appears to localize the activation of Cdc42 by the pathway.  相似文献   

19.
We previously showed that p21-activated kinase 2 (PAK2), a major PAK isoform expressed in PC12 cells, mediates neurite outgrowth via Rac1 GTPase. RhoGDI1 forms a complex with Rac1, resulting in its inhibition. Rac1 activation requires dissociation from RhoGDI1. Here, we show that PAK2 mediates basic fibroblast growth factor (bFGF)-stimulated neurite outgrowth via phosphorylation of RhoGDI1. RhoGDI1 was shown to be associated with PAK2, with phosphorylation of Ser34 and Ser101 by active PAK2 evident in vitro and in vivo. A RhoGDI1 phosphomimetic mutant (S34E/S101E) was dissociated from Rac1/Cdc42, whereas the wild-type or a nonphosphorylatable mutant (S34A/S101A) formed a tight complex. Consistent with this, PC12 cells expressing the phosphomimetic mutant displayed Rac1/Cdc42 activation in response to bFGF stimulation. Neurite outgrowth was also enhanced in PC12 cells expressing the phosphomimetic mutant. These results suggest that PAK2-mediated RhoGDI1 phosphorylation stimulates dissociation of RhoGDI1-Rac1/Cdc42 complex accompanied by relief of inhibitory effect on Rac1/Cdc42, which promotes neuronal differentiation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号