首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Wear of ultrahigh molecular weight polyethylene remains a primary factor limiting the longevity of total knee replacements (TKRs). However, wear testing on a simulator machine is time consuming and expensive, making it impractical for iterative design purposes. The objectives of this paper were first, to evaluate whether a computational model using a wear factor consistent with the TKR material pair can predict accurate TKR damage measured in a simulator machine, and second, to investigate how choice of surface evolution method (fixed or variable step) and material model (linear or nonlinear) affect the prediction. An iterative computational damage model was constructed for a commercial knee implant in an AMTI simulator machine. The damage model combined a dynamic contact model with a surface evolution model to predict how wear plus creep progressively alter tibial insert geometry over multiple simulations. The computational framework was validated by predicting wear in a cylinder-on-plate system for which an analytical solution was derived. The implant damage model was evaluated for 5 million cycles of simulated gait using damage measurements made on the same implant in an AMTI machine. Using a pin-on-plate wear factor for the same material pair as the implant, the model predicted tibial insert wear volume to within 2% error and damage depths and areas to within 18% and 10% error, respectively. Choice of material model had little influence, while inclusion of surface evolution affected damage depth and area but not wear volume predictions. Surface evolution method was important only during the initial cycles, where variable step was needed to capture rapid geometry changes due to the creep. Overall, our results indicate that accurate TKR damage predictions can be made with a computational model using a constant wear factor obtained from pin-on-plate tests for the same material pair, and furthermore, that surface evolution method matters only during the initial "break in" period of the simulation.  相似文献   

2.
There is renewed interest in metal-on-metal (MOM) total hip replacements (THRs), however, variable wear rates have been observed clinically. It is hypothesised that changes in soft tissue tensioning during surgery may alter loading of THRs during the swing phase of gait leading to changes in fluid film lubrication, friction and wear. This study aimed to assess the effect of swing phase load on the lubrication, friction and wear of MOM hip replacements. Theoretical lubrication modelling was carried out using elastohydrodynamic theory. All the governing equations were solved numerically for the lubricant film thickness between the articulating surfaces under the transient dynamic conditions with low and high swing phase loads. Friction testing was completed using a single axis pendulum simulator, simplified loading cycles were applied with low and high swing phase loads. MOM hip replacements were tested in a hip simulator, modified to provide different swing phase loading regimes; a low (100 N) and a high load (as per ISO 14242-1; 280 N). Results demonstrated that the performance of MOM bearings is highly dependent on swing phase load. Hence, changes in the tension of the tissues at surgery and variations in muscle forces may increase swing phase load, reduce lubrication, increase friction and accelerate wear. This may explain some of the variations that have been observed with clinical wear rates.  相似文献   

3.
Osteolysis due to wear debris is a primary cause of failure of total joint replacements. Although debris produced by the joint articulating surfaces has been studied and simulated extensively, fretting wear debris, produced at nonarticulating surfaces, has not received adequate attention. We developed a three-station fretting wear simulator to reproduce in vivo motion and stresses at the interfaces of total joint replacements. The simulator is based on the beam bending theory and is capable of producing cyclic displacement from 3 to 1000 microns, under varying magnitudes of contact stresses. The simulator offers three potential advantages over previous studies: The ability to control the displacement by load, the ability to produce very small displacements, and dynamic normal loads as opposed to static. A pilot study was designed to test the functionality of the simulator, and verify that calculated displacements and loads produced the predicted differences between two commonly used porous ingrowth titanium alloy surfaces fretting against cortical bone. After 1.5 million cycles, the simulator functioned as designed, producing greater wear of bone against the rougher plasma-sprayed surface compared to the fiber-mesh surface, as predicted. A novel pin-on-disk apparatus for simulating fretting wear at orthopaedic implant interfaces due to micromotion is introduced. The test parameters measured with the fretting wear simulator were as predicted by design calculations, and were sufficient to measure differences in the height and weight of cortical bone pins rubbing against two porous ingrowth surfaces, plasma-sprayed titanium and titanium fiber mesh.  相似文献   

4.
A new definition of the experimental wear factor was established and reported as a function of cross-shear motion and contact pressure using a multi-directional pin-on-plate wear testing machine for conventional polyethylene in the present study. An independent computational wear model was developed by incorporating the cross-shear motion and contact pressure-dependent wear factor into the Archard's law, in additional to load and sliding distance. The computational prediction of wear volume was directly compared with a simulator testing of a polyethylene hip joint with a 28 mm diameter. The effect of increasing the femoral head size was subsequently considered and was shown to increase wear, as a result of increased sliding distance and reduced contact pressure.  相似文献   

5.
Osteolysis and loosening of artificial joints caused by polyethylene wear debris has prompted renewed interest in alternative bearing materials for hip prosthesis designs. Lower wearing metal-on-metal (MOM) and ceramic-on-ceramic prostheses are being used more extensively, and there is considerable interest in further improving on their performance. This study investigated the wear properties and debris morphology of a novel differential hardness ceramic-on-metal (COM) prosthesis, in comparison with MOM articulations in a physiological anatomical hip joint simulator.The COM pairings were found to have wear rates approximately 100-fold lower than the MOM pairings. The MOM pairings showed a higher "bedding in" wear rate (3.09+/-0.46mm(3)/10(6) cycles) in the first million cycles, which then reduced to a steady state wear rate of 1.23+/-0.5mm(3)/10(6) cycles. The wear rate of the COM pairings over the duration of the test was approximately 0.01mm(3)/10(6) cycles with very little wear detected on the surface of the prosthesis components.The wear particles from both articulations were oval to round in shape and in the nanometer size range. After one million cycles the mean maximum diameter of the MOM and COM wear particles were 30+/-2.25 and 17.57+/-1.37nm, respectively. After five million cycles the wear particles were statistically significantly smaller than at one million cycles, 13.9+/-0.72nm for the MOM pairings and 6.11+/-0.40nm for the COM pairings.The wear rates of the MOM prostheses were representative of clinical values. The use of differential hardness COM pairings dramatically reduced the wear rate compared to MOM hip prostheses. The wear particles from the MOM articulation were similar to particles found in retrieved tissues from around MOM prostheses. The extremely low wearing differential hardness COM bearings presented in this study produced far smaller volumetric particle loads compared to MOM prostheses currently used clinically.  相似文献   

6.
In this work,a friction and wear simulator was used to reproduce the Anterior-Posterior (AP) sliding and the Flexion-Extension (FE) rotation generated in the knee joint during human gait cycle.We chose to simplify the contact geometry between the Total Knee Arthroplasty (TKA) femoral component and tibial insert.A 304L stainless steel cylinder which replaces the femoral component was loaded onto a flat High Density Polyethylene (HDPE) block which replaces the tibial insert.The tribological behavior of the considered contact was analyzed by tracking the number of cycles,the friction coefficient,the roughness of the wear track on HDPE,the HDPE weight loss and the damage mechanisms.The friction coefficient shows a gradual increase with the number of cycles for both AP and FE kinematics.The evolution of friction coefficient with the number of cycles is not affected by the value of the imposed normal load in the case of AP sliding.For the FE rotation,decreased friction coefficient is obtained when the imposed normal load increases.For both considered AP and FE kinematics,the roughness of the wear track on the HDPE is not affected by the imposed normal load.It shows a progressive decrease when the number of cycles increases.The wear of HDPE obeys the Archard law and the wear coefficient increases with the normal force.For a given value of normal load,the obtained wear coefficient for the AP sliding is larger than that obtained for FE rotation.A predominant adhesive wear mechanism was identified for both AP and FE kinematics.Under the same normal load,damage development in terms of plastic deformation,micro-cracking and debonding is more pronounced for the AP sliding if compared with the FE rotation.For a given kinematics,the damage severity increases with the normal load.This finding is in good agreement with the predicted values of the wear coefficient according to the Archard law.  相似文献   

7.
Although hip simulators for in vitro wear testing of prosthetic materials used in total hip arthroplasty (THA) have been available for a number of years, similar equipment has yet to appear for endurance testing of fixation in cemented THA, despite considerable evidence of late aseptic loosening as one of the most significant failure mechanisms in this type of replacements. An in vitro study of fatigue behavior in cemented acetabular replacements has been carried out, utilizing a newly developed hip simulator. The machine was designed to simulate the direction and the magnitude of the hip contact force under typical physiological loading conditions, including normal walking and stair climbing, as reported by Bergmann et al. (2001, Hip 98, Freie Universitaet, Berlin). A 3D finite element analysis has been carried out to validate the function of the hip simulator and to evaluate the effects of boundary conditions and geometry of the specimen on the stress distribution in the cement mantle. Bovine pelvic bones were implanted with a Charnley cup, using standard manual cementing techniques. Experiments were carried out under normal walking and descending stairs loading conditions with selected load levels from a body weight of 75-125 kg. Periodically, the samples were removed from the test rigs to allow CT scanning for the purpose of monitoring damage development in the cement fixation. The hip simulator was found to be satisfactory in reproducing the hip contact force during normal walking and stair climbing, as reported by Bergmann et al. Finite element analysis shows that the stress distributions in the cement mantle and at the bone-cement interface are largely unaffected by the geometry and the boundary conditions of the model. Three samples were tested up to 17 x 10(6) cycles and sectioned post-testing for microscopic studies. Debonding at the bone-cement interface of various degrees in the posterior-superior quadrant was revealed in these samples, and the location of the failures corresponds to the highest stressed region from the finite-element analysis. Preliminary experimental results from a newly developed hip simulator seem to suggest that debonding at the bone-cement interface is the main failure mechanism in cemented acetabular replacements, and descending stairs seem to be more detrimental than normal walking or ascending stairs with regard to fatigue integrity of cement fixation.  相似文献   

8.
Despite the fundamental value of wear simulation studies to assess wear resistance of total joint replacements, neither specialised simulators nor established external conditions are available for the human ankle joint. The aim of the present study was to verify the suitability of a knee wear simulator to assess wear rates in ankle prostheses, and to report preliminary this rate for a novel three-component total ankle replacement design. Four intact 'small' size specimens of the Box ankle were analysed in a four-station knee wear simulator. Special component-to-actuator holders were manufactured and starting spatial alignment of the three-components was sought. Consistent load and motion cycles representing conditions at the ankle joint replaced exactly with the prosthesis design under analysis were taken from a corresponding mechanical model of the stance phase of walking. The weight loss for the three specimens, after two million cycles, was 32.68, 14.78, and 62.28mg which correspond to a linear penetration of 0.018, 0.008, and 0.034mm per million-cycle, respectively for the specimens #1, #2, and #3. The knee wear simulator was able to reproduce load-motion patterns typical of a replaced ankle. Motion of the meniscal bearing in between the tibial and talar components was smooth, this component remaining in place and in complete congruence with the metal components throughout the test.  相似文献   

9.
Pre-clinical experimental wear testing of total knee replacement (TKR) components is an invaluable tool for evaluating new implant designs and materials. However, wear testing can be a lengthy and expensive process, and hence parametric studies evaluating the effects of geometric, loading, or alignment perturbations may at times be cost-prohibitive. The objectives of this study were to develop an adaptive FE method capable of simulating wear of a polyethylene tibial insert and to compare predicted kinematics, weight loss due to wear, and wear depth contours to results from a force-controlled experimental knee simulator. Finite element-based computational wear predictions were performed to 5 million gait cycles using both force- and displacement-controlled inputs. The displacement-controlled inputs, by accurately matching the experimental tibiofemoral motion, provided an evaluation of the simple wear theory. The force-controlled inputs provided an evaluation of the overall numerical method by simultaneously predicting both kinematics and wear. Analysis of the predicted wear convergence behavior indicated that 10 iterations, each representing 500,000 gait cycles, were required to achieve numerical accuracy. Using a wear factor estimated from the literature, the predicted kinematics, polyethylene wear contours, and weight loss were in reasonable agreement with the experimental data, particularly for the stance phase of gait. Although further development of the simplified wear theory is important, the initial predictions are encouraging for future use in design phase implant evaluation. In contrast to the experimental testing which occurred over approximately 2 months, computational wear predictions required only 2h.  相似文献   

10.
Computational simulations of wear of orthopaedic total joint replacement implants have proven to valuably complement laboratory physical simulators, for pre-clinical estimation of abrasive/adhesive wear propensity. This class of numerical formulations has primarily involved implementation of the Archard/Lancaster relationship, with local wear computed as the product of (finite element) contact stress, sliding speed, and a bearing-couple-dependent wear factor. The present study introduces an augmentation, whereby the influence of interface cross-shearing motion transverse to the prevailing molecular orientation of the polyethylene articular surface is taken into account in assigning the instantaneous local wear factor. The formulation augment is implemented within a widely utilized commercial finite element software environment (ABAQUS). Using a contemporary metal-on-polyethylene total disc replacement (ProDisc-L) as an illustrative implant, physically validated computational results are presented to document the role of cross-shearing effects in alternative laboratory consensus testing protocols. Going forward, this formulation permits systematically accounting for cross-shear effects in parametric computational wear studies of metal-on-polyethylene joint replacements, heretofore a substantial limitation of such analyses.  相似文献   

11.
Laboratory joint wear simulator testing has become the standard means for preclinical evaluation of wear resistance of artificial knee joints. Recent simulator designs have been advanced and become successful at reproducing the wear patterns observed in clinical retrievals. However, a single simulator test can be very expensive and take a long time to run. On the other hand computational wear modelling is an alternative attractive solution to these limitations. Computational models have been used extensively for wear prediction and optimisation of artificial knee designs. However, all these models have adopted the classical Archard's wear law, which was developed for metallic materials, and have selected wear factors arbitrarily. It is known that such an approach is not generally true for polymeric bearing materials and is difficult to implement due to the high dependence of the wear factor on the contact pressure. Therefore, these studies are generally not independent and lack general predictability. The objective of the present study was to develop a new computational wear model for the knee implants, based on the contact area and an independent experimentally determined non-dimensional wear coefficient. The effects of cross-shear and creep on wear predictions were also considered. The predicted wear volume was compared with the laboratory simulation measurements. The model was run under two different kinematic inputs and two different insert designs with curved and custom designed flat bearing surfaces. The new wear model was shown to be capable of predicting the difference of the wear volume and wear pattern between the two kinematic inputs and the two tibial insert designs. Conversely, the wear factor based approach did not predict such differences. The good agreement found between the computational and experimental results, on both the wear scar areas and volumetric wear rates, suggests that the computational wear modelling based on the new wear law and the experimentally calculated non-dimensional wear coefficient should be more reliable and therefore provide a more robust virtual modelling platform.  相似文献   

12.
The need to critically evaluate the efficacy of current total knee replacement (TKR) wear testing methodologies is great. Proposed international standards for TKR wear simulation have been drafted, yet their methods continue to be debated. The "gold standard" to which all TKR wear testing methodologies should be compared is measured in vivo TKR performance in patients. The current study compared patient TKR kinematics from fluoroscopic analysis and simulator TKR kinematics from force-controlled wear testing to quantify similarities in clinical ranges of motion and contact bearing kinematics and to evaluate the proposed ISO force-controlled wear testing methodology. The treadmill walking kinematics from eight well-functioning, 13 month average post-op patients were compared to the 2 million cycle interval walking cycle kinematics from a force-controlled (Instron/Stanmore Knee Joint Simulator, Instron, Canton, MA) knee simulator using identical implant designs (Natural Knee II, Standard Congruent, Zimmer, Warsaw, IN). The in vivo and simulator data showed good agreement in kinematic patterns and ranges of clinical motion. Tribologically the data sets showed similar contact pathway ranges of motion and wear travel distances per cycle. Surgical and simulator alignments of the implant systems were determined to be a contributing factor in observed kinematic differences. This study's statistical findings offer supporting evidence that the simulation of in vivo walking cycle wear kinematics can be accurately reproduced with a force controlled testing methodology.  相似文献   

13.
The cost and time efficiency of computational polyethylene wear simulations may enable the optimization of total knee replacements for the reduction of polyethylene wear. The present study proposes an energy dissipation wear model for polyethylene which considers the time dependent molecular behavior of polyethylene, aspects of tractive rolling and contact pressure. This time dependent – energy dissipation wear model was evaluated, along with several other wear models, by comparison to pin-on-disk results, knee simulator wear test results under various kinematic conditions and knee simulator wear test results that were performed following the ISO 14243-3 standard. The proposed time dependent – energy dissipation wear model resulted in improved accuracy for the prediction of pin-on-disk and knee simulator wear test results compared with several previously published wear models.  相似文献   

14.
Finite element simulation of early creep and wear in total hip arthroplasty   总被引:4,自引:0,他引:4  
Polyethylene wear particulate has been implicated in osteolytic lesion development and may lead to implant loosening and revision surgery. Wear in total hip arthroplasty is frequently estimated from patient radiographs by measurement of penetration of the femoral head into the polyethylene liner. Penetration, however, is multi-factorial, and includes components of wear and deformation due to creep. From a clinical perspective, it is of great interest to separate these elements to better evaluate true wear rates in vivo. Thus, the aim of this study was to determine polyethylene creep and wear penetration and volumetric wear during simulated gait loading conditions for variables of head size, liner thickness, and head–liner clearance. A finite element model of hip replacement articulation was developed, and creep and wear simulation was performed to 1 million gait cycles. Creep of the liner occurred quickly and increased the predicted contact areas by up to 56%, subsequently reducing contact pressures by up to 41%. Greater creep penetration was found with smaller heads, thicker liners, and larger clearance. The least volumetric wear but the most linear penetration was found with the smallest head size. Although polyethylene thickness increases from 4 to 16 mm produced only slight increases in volumetric wear and modest effects on total penetration, the fraction of creep in total penetration varied with thickness from 10% to over 50%. With thicker liners and smaller heads, creep will comprise a significant fraction of early penetration. These results will aid an understanding of the complex interaction of creep and wear.  相似文献   

15.
Patient imaging and explant analysis has shown evidence of edge loading of hard-on-hard hip replacements in vivo. Experimental hip simulator testing under edge loading conditions has produced increased, clinically-relevant, wear rates for hard-on-hard bearings when compared to concentric conditions. Such testing, however, is time consuming and costly. A quick running computational edge loading model (Python Edge Loading (PyEL) - quasi-static, rigid, frictionless), capable of considering realistic bearing geometries, was developed. The aim of this study was to produce predictions of separation within the typical experimental measurement error of ∼0.5 mm. The model was verified and validated against comparable finite element (FE) models (including inertia and friction) and pre-existing experimental test data for 56 cases, covering a variety of simulated cup orientations, positions, tissue tensions, and loading environments. The PyEL model agreed well with both the more complex computational modelling and experimental results. From comparison with the FE models, the assumption of no inertia had little effect on the maximum separation prediction. With high contact force cases, the assumption of no friction had a larger effect (up to ∼5% error). The PyEL model was able to predict the experimental maximum separations within ∼0.3 mm. It could therefore be used to optimise an experimental test plan and efficiently investigate a much wider range of scenarios and variables. It could also help explain trends and damage modes seen in experimental testing through identifying the contact locations on the liner that are not easily measured experimentally.  相似文献   

16.
Wear particle accumulation is one of the main contributors to osteolysis and implant failure in hip replacements. Altered kinematics produce significant differences in wear rates of hip replacements in simulator studies due to varying degrees of multidirectional motion. Gait analysis data from 153 hip-replacement patients 10-years post-operation were used to model two- and three-dimensional wear paths for each patient. Wear paths were quantified in two dimensions using aspect ratios and in three dimensions using the surface areas of the wear paths, with wear-path surface area correlating poorly with aspect ratio. The average aspect ratio of the patients wear paths was 3.97 (standard deviation=1.38), ranging from 2.13 to 10.86. Sixty percent of patients displayed aspect ratios between 2.50 and 3.99. However, 13% of patients displayed wear paths with aspect ratios >5.5, which indicates reduced multidirectional motion. The majority of total hip replacement (THR) patients display gait kinematics which produce multidirectional wear paths, but a significant minority display more linear paths.  相似文献   

17.
This paper presents a computational simulator for the hip to compute the wear and heat generation on artificial joints. The friction produced on artificial hip joints originates wear rates that can lead to failure of the implant. Furthermore, the frictional heating can increase the wear. The developed computational model calculates the wear in the joint and the temperature in the surrounding zone, allowing the use of different combinations of joint materials, daily activities and different individuals. The pressure distribution on the joint bearing surfaces is obtained with the solution of a contact model. The heat generation by friction and the volumetric wear is computed from the pressure distribution and the sliding distance. The temperature is obtained from the solution of a transient heat conduction problem that includes the time-dependent heat generated by friction. The contact and heat conduction problems are solved numerically with the Finite Element Method. The developed computational model performs a full simulation of the acetabular bearing surface behaviour, which is useful for acetabular cup design and material selection. The results obtained by the present model agree with experimental and clinical data, as well as other numerical studies.  相似文献   

18.
The clinical success of second-generation metal-on-metal hip replacement and the good tribological performance of alumina ceramic revived an interest in hip articulation as a solution to reduce wear.This study was aimed at characterizing the wear behaviour of new hybrid ceramic-on-metal bearings. In particular, this study investigated the wear behaviour of ceramic-on-metal hip components (three different diameters configurations: 28, 32 and 36 mm), not specifically proposed to be coupled, in order to compare them with ceramic-on-ceramic, which is considered to be the gold standard for wear resistance. For this purpose, the weight loss over a standard wear simulation was monitored. Moreover, scanning electronic microscope observations were used to verify if any carbides removal, for the metallic components, triggered wears debris production promoting abrasive third-body wear.After five million cycles, our results showed significantly greater wear-in ceramic-on-metal compared with ceramic-on-ceramic, and significant greater wear for the 32-mm diameter compared with the 36-mm one. Our findings showed an increase in wear for the proposed hybrid specimens with respect to that of the ceramic-on-ceramic ones confirming that even in the case of ceramic-on-metal bearings, mixing and matching could not prove effective wear behaviour, not even comparable with that of the ceramic-on-ceramic gold standard. Wear patterns and roundness tolerances certainly discourage the coupling of components not specifically intended to be coupled. Unsuitable geometrical conformity could, in fact, result in a poor dynamic behaviour and lead to clinical failure.  相似文献   

19.
Though changes in normal joint motions and loads (e.g., following anterior cruciate ligament injury) contribute to the development of knee osteoarthritis, the precise mechanism by which these changes induce osteoarthritis remains unknown. As a first step toward identifying this mechanism, this study evaluates computational wear simulations of a patellofemoral joint specimen wear tested on a knee simulator machine. A multibody dynamic model of the specimen mounted in the simulator machine was constructed in commercial computer-aided engineering software. A custom elastic foundation contact model was used to calculate contact pressures and wear on the femoral and patellar articular surfaces using geometry created from laser scan and MR data. Two different wear simulation approaches were investigated--one that wore the surface geometries gradually over a sequence of 10 one-cycle dynamic simulations (termed the "progressive" approach), and one that wore the surface geometries abruptly using results from a single one-cycle dynamic simulation (termed the "non-progressive" approach). The progressive approach with laser scan geometry reproduced the experimentally measured wear depths and areas for both the femur and patella. The less costly non-progressive approach predicted deeper wear depths, especially on the patella, but had little influence on predicted wear areas. Use of MR data for creating the articular and subchondral bone geometry altered wear depth and area predictions by at most 13%. These results suggest that MR-derived geometry may be sufficient for simulating articular cartilage wear in vivo and that a progressive simulation approach may be needed for the patella and tibia since both remain in continuous contact with the femur.  相似文献   

20.
<正> Ceramics are good alternative to metal as bearing couple materials because of their better wear resistance. A Finite Element(FE) study was performed to investigate the contact mechanics and stress distribution of Ceramic-on-Ceramic (COC) hip resurfacingprostheses. It was focused in particular on a parametric study to examine the effects of radial clearance, loading,alumina coating on the implants, bone quality, and fixation of cup-bone interface. It was found that a reduction in the radialclearance had the most significant effect on the predicted contact pressure distribution among all of the parameters considered inthis study. It was determined that there was a significant influence of non-metallic materials, such as the bone underneath thebearing components, on the predicted contact mechanics. Stress shielding within the bone tissue was found to be a major concernwhen regarding the use of ceramic as an alternative to metallic resurfacing prostheses. Therefore, using alumina implantswith a metal backing was found to be the best design for ceramic resurfacing prostheses in this study. The loading, bone quality,and acetabular cup fixation conditions were found to have only minor effects on the predicted contact pressure distribution alongthe bearing surfaces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号