首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
It has been proposed that cis-retinol dehydrogenase (cRDH) acts within the body to catalyze the oxidation of 9-cis-retinol, an oxidative step needed for 9-cis-retinoic acid synthesis, the oxidation of 11-cis-retinol [an oxidative step needed for 11-cis-retinal (visual chromophore) synthesis], and 3 alpha-hydroxysteroid transformations. To assess in vivo the physiological importance of each of these proposed actions of cRDH, we generated cRDH-deficient (cRDH-/-) mice. The cRDH-/- mice reproduce normally and appear to be normal. However, the mutant mice do have a mild visual phenotype of impaired dark adaptation. This phenotype is evidenced by electroretinagram analysis of the mice and by biochemical measures of eye levels of retinoid intermediates during recovery from an intense photobleach. Although it is thought that cRDH is expressed in the eye almost solely in retinal pigment epithelial cells, we detected cRDH expression in other retinal cells, including ganglion cells, amacrine cells, horizontal cells, and the inner segments of the rod photoreceptor cells. Aside from the eye, there are no marked differences in retinoid levels in other tissues throughout the body for cRDH-/- compared with cRDH+/+ mice. Moreover, we did not detect any non-visual phenotypic changes for cRDH-/- mice, suggesting that these mice do not have problems in metabolizing 3 alpha-hydroxysteroids.Thus, cRDH may act essentially in the visual cycle but is redundant for catalyzing 9-cis-retinoic acid formation and 3 alpha-hydroxysteroid metabolism.  相似文献   

3.
4.
5.
6.
Ischemic revascularization involves extensive structural adaptation of the vasculature, including both angiogenesis and arteriogenesis. Previous studies suggest that fibroblast growth factor (FGF)-2 participates in both angiogenesis and arteriogenesis. Despite this, the specific role of endogenous FGF-2 in vascular adaptation during ischemic revascularization is unknown. Therefore, we used femoral artery ligation in Fgf2(+/+) and Fgf2(-/-) mice to test the hypothesis that endogenous FGF-2 is an important regulator of angiogenesis and arteriogenesis in the setting of hindlimb ischemia. Femoral ligation increased capillary and arteriole density in the ischemic calf in both Fgf2(+/+) and Fgf2(-/-) mice. The level of angiographically visible arteries in the thigh was increased in the ischemic hindlimb in all mice, and no significant differences were observed between Fgf2(+/+) and Fgf2(-/-) mice. Additionally, limb perfusion progressively improved to peak values at day 35 postsurgery in both genotypes. Given the equivalent responses observed in Fgf2(+/+) and Fgf2(-/-) mice, we demonstrate that endogenous FGF-2 is not required for revascularization in the setting of peripheral ischemia. Vascular adaptation, including both angiogenesis and arteriogenesis, was not affected by the absence of FGF-2 in this model.  相似文献   

7.
Cholecystokinin (CCK), acting at CCK1 receptors (CCK1Rs) on intestinal vagal afferent terminals, has been implicated in the control of gastrointestinal function and food intake. Using CCK1R(-/-) mice, we tested the hypothesis that lipid-induced activation of the vagal afferent pathway and intestinal feedback of gastric function is CCK1R dependent. In anesthetized CCK1R(+/+) ("wild type") mice, meal-stimulated gastric acid secretion was inhibited by intestinal lipid infusion; this was abolished in CCK1R(-/-) mice. Gastric emptying of whole egg, measured by nuclear scintigraphy in awake mice, was significantly faster in CCK1R(-/-) than CCK1R(+/+) mice. Gastric emptying of chow was significantly slowed in response to administration of CCK-8 (22 pmol) in CCK1R(+/+) but not CCK1R(-/-) mice. Activation of the vagal afferent pathway was measured by immunohistochemical localization of Fos protein in the nucleus of the solitary tract (NTS; a region where vagal afferents terminate). CCK-8 (22 pmol ip) increased neuronal Fos expression in the NTS of fasted CCK1R(+/+) mice; CCK-induced Fos expression was reduced by 97% in CCK1R(-/-) compared with CCK1R(+/+) mice. Intralipid (0.2 ml of 20% Intralipid and 0.04 g lipid), but not saline, gavage increased Fos expression in the NTS of fasted CCK1R(+/+) mice; lipid-induced Fos expression was decreased by 47% in CCK1R(-/-) compared with CCK1R(+/+)mice. We conclude that intestinal lipid activates the vagal afferent pathway, decreases gastric acid secretion, and delays gastric emptying via a CCK1R-dependent mechanism. Thus, despite a relatively normal phenotype, intestinal feedback in response to lipid is severely impaired in these mice.  相似文献   

8.
Inosine 5'-monophosphate dehydrogenase (IMPDH) is the critical, rate-limiting enzyme in the de novo biosynthesis pathway for guanine nucleotides. Two separate isoenzymes, designated IMPDH types I and II, contribute to IMPDH activity. An additional pathway salvages guanine through the activity of hypoxanthine-guanine phosphoribosyltransferase (HPRT) to supply the cell with guanine nucleotides. In order to better understand the relative contributions of IMPDH types I and II and HPRT to normal biological function, a mouse deficient in IMPDH type I was generated by standard gene-targeting techniques and bred to mice deficient in HPRT or heterozygous for IMPDH type II. T-cell activation in response to anti-CD3 plus anti-CD28 antibodies was significantly impaired in both single- and double-knockout mice, whereas a more general inhibition of proliferation in response to other T- and B-cell mitogens was observed only in mice deficient in both enzymes. In addition, IMPDH type I(-/-) HPRT(-/0) splenocytes showed reduced interleukin-4 production and impaired cytolytic activity after antibody activation, indicating an important role for guanine salvage in supplementing the de novo synthesis of guanine nucleotides. We conclude that both IMPDH and HPRT activities contribute to normal T-lymphocyte activation and function.  相似文献   

9.
10.
Gallbladder mucins play a critical role in the pathogenesis of cholesterol gallstones because of their ability to bind biliary lipids and accelerate cholesterol crystallization. Mucin secretion and accumulation in the gallbladder is determined by multiple mucin genes. To study whether mucin gene 1 (Muc1) influences susceptibility to cholesterol cholelithiasis, we investigated male Muc1-deficient (Muc1(-/-)) and wild-type mice fed a lithogenic diet containing 1% cholesterol and 0.5% cholic acid for 56 days. Gene expression of the gallbladder Muc1 and Muc5ac was significantly reduced in Muc1(-/-) mice in response to the lithogenic diet. Muc3 and Muc4 levels were upregulated and were similar between Muc1(-/-) and wild-type mice. Little or no Muc2 and Muc5b mRNAs were detected. Muc1(-/-) mice displayed significant decreases in total mucin secretion and accumulation in the gallbladder as well as retardation of crystallization, growth, and agglomeration of cholesterol monohydrate crystals. At 56 days of feeding, gallstone prevalence was decreased by 40% in Muc1(-/-) mice. However, cholesterol saturation indices of gallbladder bile, hepatic secretion of biliary lipids, and gallbladder size were comparable in Muc1(-/-) and wild-type mice. We conclude that decreased gallstone formation in mice with disrupted Muc1 gene results from reduced mucin secretion and accumulation in the gallbladder.  相似文献   

11.
Myotilin, palladin, and myopalladin form a novel small subfamily of cytoskeletal proteins that contain immunoglobulin-like domains. Myotilin is a thin filament-associated protein localized at the Z-disk of skeletal and cardiac muscle cells. The direct binding to F-actin, efficient cross-linking of actin filaments, and prevention of induced disassembly of filaments are key roles of myotilin that are thought to be involved in structural maintenance and function of the sarcomere. Missense mutations in the myotilin-encoding gene cause dominant limb girdle muscular dystrophy type 1A and spheroid body myopathy and are the molecular defect that can cause myofibrillar myopathy. Here we describe the generation and analysis of mice that lack myotilin, myo(-/-) mice. Surprisingly, myo(-/-) mice maintain normal muscle sarcomeric and sarcolemmal integrity. Also, loss of myotilin does not cause alterations in the heart or other organs of newborn or adult myo(-/-) mice. The mice develop normally and have a normal life span, and their muscle capacity does not significantly differ from wild-type mice even after prolonged physical stress. The results suggest that either myotilin does not participate in muscle development and basal function maintenance or other proteins serve as structural and functional compensatory molecules when myotilin is absent.  相似文献   

12.
13.
In an effort to define the molecular basis for morphogenesis of major sperm tail structures, including outer dense fibers, we recently cloned the Spag5 gene by virtue of its strong and specific leucine-zipper-mediated interaction with Odf1, the 27-kDa major outer dense fiber protein. Spag5 is expressed during meiosis and in round spermatids and is similar, if not identical, to Deepest, a putative spindle pole protein. Here we report the disruption of the Spag5 gene by homologous recombination. Spag5-null mice lack Spag5 mRNA and protein. However, male mice are viable and fertile. Analysis of the process of spermatogenesis and sperm produced in Spag5-null mice did not reveal a major phenotype as a consequence of the knockout event. This result suggests that if Spag5 plays a role in spermatogenesis it is likely compensated for by unknown proteins.  相似文献   

14.
To understand the physiological function of glutaredoxin, a thiotransferase catalyzing the reduction of mixed disulfides of protein and glutathione, we generated a line of knockout mice deficient in the cytosolic glutaredoxin 1 (Grx1). To our surprise, mice deficient in Grx1 were not more susceptible to acute oxidative insults in models of heart and lung injury induced by ischemia/reperfusion and hyperoxia, respectively, suggesting that either changes in S-glutathionylation status of cytosolic proteins are not the major cause of such tissue injury or developmental adaptation in the Glrx1-knockout animals alters the response to oxidative insult. In contrast, mouse embryonic fibroblasts (MEFs) isolated from Grx1-deficient mice displayed an increased vulnerability to diquat and paraquat, but they were not more susceptible to cell death induced by hydrogen peroxide (H(2)O(2)) and diamide. A deficiency in Grx1 also sensitized MEFs to protein S-glutathionylation in response to H(2)O(2) treatment and retarded deglutathionylation of the S-glutathionylated proteins, especially for a single prominent protein band. Additional experiments showed that MEFs lacking Grx1 were more tolerant to apoptosis induced by tumor necrosis factor alphaplus actinomycin D. These findings suggest that various oxidants may damage the cells via distinct mechanisms in which the action of Grx1 may or may not be protective and Grx1 may exert its function on specific target proteins.  相似文献   

15.
16.
Involucrin is synthesized in abundance during terminal differentiation of keratinocytes. Involucrin is a substrate for transglutaminase and one of the precursors of the cross-linked envelopes present in the corneocytes of the epidermis and other stratified squamous epithelia. These envelopes make an important contribution to the physical resistance of the epidermis. We have generated mice lacking involucrin from embryonic stem cells whose involucrin gene had been ablated by homologous recombination. These mice developed normally, possessed apparently normal epidermis and hair follicles, and made cornified envelopes that could not be distinguished from those of wild-type mice. No compensatory increase of mRNA for other envelope precursors was observed.  相似文献   

17.
Alterations in homocysteine, methionine, folate, and/or B12 homeostasis have been associated with neural tube defects, cardiovascular disease, and cancer. Methionine synthase, one of only two mammalian enzymes known to require vitamin B12 as a cofactor, lies at the intersection of these metabolic pathways. This enzyme catalyzes the transfer of a methyl group from 5-methyl-tetrahydrofolate to homocysteine, generating tetrahydrofolate and methionine. Human patients with methionine synthase deficiency exhibit homocysteinemia, homocysteinuria, and hypomethioninemia. They suffer from megaloblastic anemia with or without some degree of neural dysfunction and mental retardation. To better study the pathophysiology of methionine synthase deficiency, we utilized gene-targeting technology to inactivate the methionine synthase gene in mice. On average, heterozygous knockout mice from an outbred background have slightly elevated plasma homocysteine and methionine compared to wild-type mice but seem to be otherwise indistinguishable. Homozygous knockout embryos survive through implantation but die soon thereafter. Nutritional supplementation during pregnancy was unable to rescue embryos that were completely deficient in methionine synthase. Whether any human patients with methionine synthase deficiency have a complete absence of enzyme activity is unclear. These results demonstrate the importance of this enzyme for early development in mice and suggest either that methionine synthase-deficient patients have residual methionine synthase activity or that humans have a compensatory mechanism that is absent in mice.  相似文献   

18.
The aspartate pathway of Streptomyces clavuligerus is an important primary metabolic pathway which provides substrates for β-lactam synthesis. In this study, the hom gene which encodes homoserine dehydrogenase was cloned from the cephamycin C producer S. clavuligerus NRRL 3585 and characterized. The fully sequenced open reading frame encodes 433 amino acids with a deduced M r of 44.9 kDa. The gene was heterologously expressed in the auxotroph mutant Escherichia coli CGSC 5075 and the recombinant protein was purified. The cloned gene was used to construct a plasmid containing a hom disruption cassette which was then transformed into S. clavuligerus. A hom mutant of S. clavuligerus was obtained by insertional inactivation via double crossover, and the effect of hom gene disruption on cephamycin C yield was investigated by comparing antibiotic levels in culture broths of this mutant and in the parental strain. Disruption of hom gene resulted in up to 4.3-fold and twofold increases in intracellular free l-lysine concentration and specific cephamycin C production, respectively, during stationary phase in chemically defined medium.  相似文献   

19.
D-3-Phosphoglycerate dehydrogenase (Phgdh; EC 1.1.1.95) is the first committed enzyme of L-serine biosynthesis in the phosphorylated pathway. To determine the physiological importance of Phgdh-dependent L-serine biosynthesis in vivo, we generated Phgdh-deficient mice using targeted gene disruption in embryonic stem cells. The absence of Phgdh led to a drastic reduction of L-serine metabolites such as phosphatidyl-L-serine and sphingolipids. Phgdh null embryos have small bodies with abnormalities in selected tissues and died after days post-coitum 13.5. Striking abnormalities were evident in the central nervous system in which the Phgdh null mutation culminated in hypoplasia of the telencephalon, diencephalon, and mesencephalon; in particular, the olfactory bulbs, ganglionic eminence, and cerebellum appeared as indistinct structures. These observations demonstrate that the Phgdh-dependent phosphorylated pathway is essential for normal embryonic development, especially for brain morphogenesis.  相似文献   

20.
The biological activity of avermectin B components is superior to that of avermectin A components, which are derived from avermectin B by avermectin B 5-O-methyltransferase. Gene disruption, targeting avermectin B 5-O-methyltransferase gene in Streptomyces avermitilis, was carried out to obtain a strain of avermectin B producer. Phenotype analysis of the mutant with the disrupted O-methyltransferase gene showed that only avermectin B components were produced with a significant increase in production  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号