首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A ring fluorinated heme, 13,17-bis(2-carboxylatoethyl)-3,8-diethyl-2-fluoro-7,12,18-trimethyl-porphyrinatoiron(III), has been incorporated into human adult hemoglobin (Hb A). The heme orientational disorder in the individual subunits of the protein has been readily characterized using (19)F NMR and the O(2) binding properties of the protein have been evaluated through the oxygen equilibrium analysis. The equilibrated orientations of hemes in alpha- and beta- subunits of the reconstituted protein were found to be almost completely opposite to each other, and hence were largely different from those of the native and the previously reported reconstituted proteins [T. Jue, G.N. La Mar, Heme orientational heterogeneity in deuterohemin-reconstituted horse and human hemoglobin characterized by proton nuclear magnetic resonance spectroscopy, Biochem. Biophys. Res. Commun. 119 (1984) 640-645]. Despite the large difference in the degree of the heme orientational disorder in the subunits of the proteins, the O(2) affinity and the cooperativity of the protein reconstituted with 2-MF were similar to those of the proteins reconstituted with a series of hemes chemically modified at the heme 3- and 8-positions [K. Kawabe, K. Imaizumi, Z. Yoshida, K. Imai, I. Tyuma, Studies on reconstituted myoglobins and hemoglobins II. Role of the heme side chains in the oxygenation of hemoglobin, J. Biochem. 92 (1982) 1713-1722], whose O(2) affinity and cooperativity were higher and lower, respectively, relative to those of native protein. These results indicated that the heme orientational disorder could exert little effect, if any, on the O(2) affinity properties of Hb A. This finding provides new insights into structure-function relationship of Hb A.  相似文献   

2.
 A novel C 2-symmetric ring-fluorinated hemin, 13,17-bis(2-carboxyethyl)-2,8,12,18-tetramethyl-3,7-difluoroporphyrinatoiron(III), has been synthesized and was incorporated into sperm whale apomyoglobin to investigate protein-induced rhombic perturbations on the electronic structure of the active site of myoglobin (Mb) using 19F NMR spectroscopy. NMR signals for 19F atoms introduced as substituents on the present heme in ferrous low-spin and high-spin and ferric low-spin complexes have been observed and their shifts sharply reflect not only the electronic nature of the heme iron, but also in-plane asymmetry of the heme electronic structure. The two-fold symmetric electronic structure of the ring-fluorinated hemin is clearly manifested in the 19F and 1H NMR spectra of its dicyano complex. The chemical equivalence of the two fluorine atoms of the heme is removed in the active site of myoglobin and the splitting of the two 19F NMR signals provides a quantitative probe for characterizing the rhombic perturbation of the heme electronic structure induced by the heme-protein interaction. The in-plane asymmetry of heme electronic structures in carbonmonoxy and deoxy Mbs have been analyzed for the first time on the basis of the shift difference between the two 19F NMR signals of the heme and is interpreted in terms of iron-ligand binding and/or the orbital ground state of the heme. A potential utility of 19F NMR, combined with the use of a symmetric fluorinated hemin, in characterizing the heme electronic structure of myoglobin in a variety of iron oxidation, spin, and ligation states, is presented. Received: 23 December 1999 / Accepted: 3 April 2000  相似文献   

3.
The low-lying electronic states of the ferrous high-spin heme in deoxy-myoglobin (deoxy-Mb) and deoxy-hemoglobin (deoxy-Hb) were probed by multi-frequency electron paramagnetic resonance (MFEPR) spectroscopy. An unexpected broad EPR signal was measured at the zero magnetic field using cavity resonators at 34-122 GHz that could not be simulated using any parameter sets for the S = 2 spin Hamiltonian assuming spin quintet states in the 5B2 ground state. Furthermore, we have observed novel, broad EPR signals measured at 70-220 GHz and 1.5 K using a single pass transmission probe. These signals are attributed to the ferrous high-spin heme in deoxy-Mb and deoxy-Hb. The resonant peaks shifted to a higher magnetic field with increasing frequency. The energy level separation between the ground singlet and the first excited state at the zero magnetic field was directly estimated to be 3.5 cm− 1 for deoxy-Hb. For deoxy-Mb, the first two excited singlet states are separated by 3.3 cm− 1 and 6.5 cm− 1, respectively, from the ground state. The energy gap at the zero magnetic field is directly derived from our MFEPR for deoxy-Mb and deoxy-Hb and strongly supports the theoretical analyses based on the Mössbauer and magnetic circular dichroism experiments.  相似文献   

4.
Washed everted vesicles of the methanogenic bacterium strain Gö1 catalyzed an H2-dependent reduction of the heterodisulfide of HS-CoM (2-mercaptoethanesulfonate) and HS-HTP (7-mercaptoheptanoylthreonine phosphate) (CoM-S-S-HTP). This process was independent of coenzyme F420 and was coupled to proton translocation across the cytoplasmic membrane into the lumen of the everted vesicles. The maximal H+/CoM-S-S-HTP ratio was 2. The tranmembrane electrochemical gradient thereby generated was shown to induce ATP synthesis from ADP+Pi, exhibiting a stoichiometry of 1 ATP synthesized per 2 CoM-S-S-HTP reduced (H+/ATP=4). ATP formation was inhibited by the uncoupler 3,5-di-tert-butyl-4-hydroxy-benzylidene-malononitrile (SF 6847) and by the ATP synthase inhibitor N,N-dicyclohexylcarbodiimide (DCCD). This energy-conserving system showed a stringent coupling. The addition of HS-CoM and HS-HTP at 1 mM each decreased the heterodisulfide reductase activity to 50% of the control. Membranes from Methanolobus tindarius showed F420H2-dependent but no H2-dependent heterodisulfide oxidoreductase activity. Neither of these activities was detectable in membranes of Methanococcus thermolithotrophicus.Abbreviations H+ transmembrane electrochemical gradient of H+ - CoM-SH 2-mercaptoethanesulfonate - F420 (N-l-lactyl--l-glutamyl)-l-glutamic acid phosphodiester of 7,8-didemethyl-8-hydroxy-5-deazariboflavin-5-phosphate - F420H2 reduced F420 - HTP-SH 7-mercaptoheptanoylthreonine phosphate - DCCD N,N-dicyclohexylcarbodiimide - SF 6847 3,5-di-ert-butyl-4-hydroxybenzylidenemalononitrile - Mb. Methanobacterium - Ml. Methanolobus - Mc. Methanococcus - MV methylviologen - BV benzylviologen - MTZ metronidazole  相似文献   

5.
Dual control of cellular heme levels by extracellular scavenger proteins and degradation by heme oxygenases is essential in diseases associated with increased heme release. During severe hemolysis or rhabdomyolysis, uncontrolled heme exposure can cause acute kidney injury and endothelial cell damage. The toxicity of heme was primarily attributed to its pro-oxidant effects; however additional mechanisms of heme toxicity have not been studied systematically. In addition to redox reactivity, heme may adversely alter cellular functions by binding to essential proteins and impairing their function. We studied inducible heme oxygenase (Hmox1)-deficient mouse embryo fibroblast cell lines as a model to systematically explore adaptive and disruptive responses that were triggered by intracellular heme levels exceeding the homeostatic range. We extensively characterized the proteome phenotype of the cellular heme stress responses by quantitative mass spectrometry of stable isotope-labeled cells that covered more than 2000 individual proteins. The most significant signals specific to heme toxicity were consistent with oxidative stress and impaired protein degradation by the proteasome. This ultimately led to an activation of the response to unfolded proteins. These observations were explained mechanistically by demonstrating binding of heme to the proteasome that was linked to impaired proteasome function. Oxidative heme reactions and proteasome inhibition could be differentiated as synergistic activities of the porphyrin. Based on the present data a novel model of cellular heme toxicity is proposed, whereby proteasome inhibition by heme sustains a cycle of oxidative stress, protein modification, accumulation of damaged proteins and cell death.Free heme can accumulate in hemolytic conditions during rhabdomyolysis and locally in wounded or inflamed tissues.1 The concentration of free heme in the extracellular space and within cells must be controlled within a narrow homeostatic range to avoid cytotoxicity and tissue damage caused by heme stress.2Extracellular release from hemoproteins, cellular uptake, and intracellular metabolism determine the cumulative exposure of cells and tissues to heme.1 The hemoglobin (Hb) and heme scavenger proteins haptoglobin and hemopexin restrict the accumulation of free heme within the extracellular space and prevent uncontrolled translocation into susceptible cells.3,4 Within cells, heme is continuously degraded by heme oxygenases (Hmox).5, 6, 7, 8 The heme oxygenase system includes the constitutively expressed Hmox2 and inducible Hmox1 that is induced by acute increases in cellular heme such as during exogenous heme exposure.9 Cellular heme toxicity can result if excessive extracellular release exceeds the metabolic heme degradation capacity or if Hmox activity is inadequately low, such as that observed in rare conditions associated with loss-of-function mutations in the Hmox1 gene.10Several mechanisms of heme-triggered cell damage have been explored previously, with a focus on oxidative processes that can be catalyzed by free heme as well as on the activation of innate immunity receptors by the porphyrin.3,11, 12, 13, 14, 15, 16, 17 However, there is limited understanding of the ‘metabolic'' disruption that occurs in cells when intracellular free heme exceeds homeostatic levels and causes toxicity. To identify novel mechanisms of heme-triggered cell damage, we systematically explored heme-driven deviations of the cellular proteome phenotype and their underlying molecular mechanisms.The primary signals that consistently appeared throughout our studies suggested that secondary to oxidative processes, the dysfunction of cellular protein homeostasis was the most important component of heme toxicity. These effects could be traced mechanistically to an inhibitory function of the porphyrin in the principal cellular protein degradation machinery: the proteasome.  相似文献   

6.
Summary (H,K)-ATPase containing membranes from hog stomach were attached to black lipid membranes. Currents induced by an ATP concentration jump were recorded and analyzed. A sum of three exponentials ( 1 -1 400 sec–1, 2 -1 100 sec–1, 3 -1 10 sec–1; T = 300 K, pH 6, MgCl2 3 mm, no K+) was fitted to the transient signal. The dependence of the resulting time constants and the peak current on electrolyte composition, ATP conversion rate, temperature, and membrane conductivity was recorded. The results are consistent with a reaction scheme similar to that proposed by Albers and Post for the NaK-ATPase. Based on this model the following assignments were made: 2 corresponds to ATP binding and exchange with caged ATP. 1 describes the phosphorylation reaction E1 · ATP E1P. The third, slowest time constant 3 is tentatively assigned to the E1P E2P transition. This is the first electrogenic step and is accelerated at high pH and by ATP via a low affinity binding site. The second electrogenic step is the transition from E2K to E1H. The E2K E1H equilibrium is influenced by potassium with an apparent K 0.5 of 3 mm and by the pH. Low pH and low potassium concentration stabilize the E1 conformation.The authors wish to thank Dr. E. Grell and Mr. G. Schimmack. MPI Frankfurt, for synthesizing caged ATP, Mrs. S. Meister, Hoechst AG Frankfurt, for valuable help to prepare the (H,K)-ATPase, and Dr. W. Haase, MPI Frankfurt, for electron microscope pictures. (H,K)-ATPase for preliminary experiments was provided by Dr. W. Beil, Medizinische Hochschule Hannover, Dr. H. Swarts, University of Nijmegen, and Dr. G. Metzger, Hoechst AG Frankfurt. The work was supported by the Deutsche Forschungsgemeinschaft (SFB 169).  相似文献   

7.
A simple, single-tube radiolsotopic method has been developed to assay the relative phosphorylation (inaetivation) activity of the bifunctional regulatory protein (RP) of C4-leaf pyruvate,orthophosphate dikinase (PPDK) in desalted leaf homogenates and partially purified preparations. RP catalyzes the inactivation of maize PPDK by phosphorylation of Thr-456, utilizing [-P]ADP as the specific phosphoryl donor. Existing spectrophotometric and radioisotopic assays for the detection of RP activity are either relatively insensitive or labor-intensive and timeconsuming. We describe a modified radioisotopic assay that couples the synthesis of [-32P]ADP by exogenous adenylate kinase with the subsequent RP-catalyzed [-32P]ADP-dependent phosphorylation of exogenous maize PPDK. The incorporation of [-32P] is dependent on the initial concentrations of ATP and PPDK, as well as the presence of active RP. Desalted leaf homogenates of C3 species fail to catalyze 32P incorporation into exogenous maize PPDK. Conversely, heterologous systems containing the maize target enzyme and leaf homogenats of other C4 species result in PPDK-specific 32P-incorporation. This simple radioisotopic assay is at least 40-times more sensitive than the routine spectrophotometric assay, and qualitatively exhibits comparable sensitivity and requires significantly less time than the currently available radioisotopic RP assay. The present assay reliably generates [-32P]ADP and as such may be useful for studies of other systems requiring -labeled ADP, which is not commercially available.Abbrevlations Ap5A P1, P5-di(adenosine-5)-pentaphosphate - Bicine N,N-bis[2-hydroxyethyl]glycine - DTT dithiothreitol - PEI poly(ethyleneimine) - PEP phosphoenolpyruvate - PEPC PEP carboxylase (E.C.4.1.1.31) - PPDK pyruvate,orthophosphate dikinase (E.C.2.7.9.1) - RP PPDK regulatory protein  相似文献   

8.
Solid dipyridine hemes which are unreactive toward oxygen lose both pyridine ligands upon heating under vacuum to give a solid which takes up O2, reversibly, one O2 per heme. Replacement of 16O2 by 18O2 reduces only infrared bands near 1660 and 1590 cm?1, frequencies near the vibrational band for gaseous O2. No FeO bands are detected. EPR spectra reveal a free radical and ferric iron; Mössbauer, NMR and infrared spectra support an iron(III) oxidation state. Limited molecular weight data indicate a dimer. Possibly two dioxygen molecules are held sandwich fashion between two porphyrins via donor-acceptor interactions, which are facilitated by electron transfer from iron(II) into the porphyrin forming a π-anion. Such O2 bonding is not found in oxy Hb and Mb or in oxyhemerythrin but may occur with cytochrome c oxidase and other oxygen utilizing (or producing) heme and other proteins.  相似文献   

9.
The thermally induced difference spectra of myoglobin (Mb) and Glycera dibranchiata hemoglobin (Hbm) derivatives and of cytochrome-c were recorded between 4 degrees and 30 degrees C in the 390-750 nm range. Thermodynamic parameters were estimated and upper and lower temperature limiting spectra were deduced for the various heme protein derivatives' equilibria. The effective iron d-electron population divides the hemes broadly into two different groups of behavior type. In the first group, Hbm(III)N3, Hbm(III), Mb(III)(H2O), and Cytc(III) show equilibria between two spin states. The weakest coupling between the heme and the globin occurs among the second group, for Hbm(II)CO and Mb(II)CO, which in the higher temperature limit undergoes averaging of the carbonyl tilt, while an axially elongated geometry is probably accessed for Hbm(II)NO and Mb(II)NO. Examples of the less common situation of increased absorption intensity and/or low-spin states at higher temperature were found in both groups. In the case of the methyl thioglycolate low-spin adducts of Hbm(III), an acid/base equilibrium involving thioglycolate deprotonation occurs. Apparent enthalpy-entropy compensation is exhibited by all these heme derivatives, and it is suggested that the delta H degrees and delta S degrees values relate to the intimacy of coupling between the heme structure and the solvent-dependent microconformation of the globin.  相似文献   

10.
Peroxynitrite-mediated oxidation of ferrous nitrosylated myoglobin (Mb(II)-NO) involves the transient ferric nitrosylated species (Mb(III)-NO), followed by NO dissociation and formation of ferric myoglobin (Mb(III)). In contrast, peroxynitrite-mediated oxidation of ferrous oxygenated myoglobin (Mb(II)-O2) involves the transient ferrous deoxygenated and ferryl derivatives (Mb(II) and Mb(IV)O, respectively), followed by Mb(III) formation. Here, kinetics of peroxynitrite-mediated oxidation of ferrous carbonylated horse heart myoglobin (Mb(II)-CO) is reported. Values of the first-order rate constant for peroxynitrite-mediated oxidation of Mb(II)-CO (i.e., for Mb(III) formation) and of the first-order rate constant for CO dissociation from Mb(II)-CO (i.e., for Mb(II) formation) are h = (1.2 ± 0.2) × 10−2 s−1 and koff(CO) = (1.4 ± 0.2) × 10−2 s−1, respectively, at pH 7.2 and 20.0 °C. The coincidence of values of h and koff(CO) indicates that CO dissociation represents the rate limiting step of peroxynitrite-mediated oxidation of Mb(II)-CO.  相似文献   

11.
Mary E. Rumpho  Fred D. Sack 《Planta》1989,179(2):137-147
The usefulness of 4,4-diisothiocyanatostilbene-2,2-disulfonic acid (DIDS) for in-situ studies of the chloroplast phosphate translocator was evaluated by fluorescence microscopy and radiolabeling of spinach (Spinacia oleracea L.) (C3 plant) and maize (Zea mays L.) (C4 plant) chloroplasts. In maize mesophyll and bundle-sheath chloroplasts and in spinach chloroplasts that were either intact, broken or swollen, DIDS fluorescence was only associated with the chloroplast envelope. Intact chloroplasts often had fluorescent patches corresponding to concave regions of the chloroplast which we assume to be regions enriched in DIDS-binding sites.Incubation of intact or broken spinach chloroplasts or maize mesophyll chloroplasts with [3H2]DIDS resulted in the labeling of a single polypeptide (relative molecular mass, Mr, 30 kDa) in the envelope fraction, in each case. Label in the stromal fraction was not detected when intact chloroplasts were incubated with [3H2]DIDS. However, when broken chloroplasts were incubated with [3H2]DIDS, several polypeptides of various molecular masses were labeled, but not the 30×31-kDa polypeptide. In thylakoid fractions from both broken and intact chloroplasts, a single 30×31-kDa polypeptide was labeled inconsistently. When a mixture of intact maize mesophyll and bundle-sheath chloroplasts was labeled with [3H2]DIDS, extracts of whole chloroplasts displayed radioactivity only in the 30×31-kDa band.We conclude that DIDS is a valuable probe for the in-situ identification and characterization of the 30-kDa protein — the presumptive phosphate translocator — in C3 and C4 chloroplasts since DIDS (1) does not penetrate the inner membrane of the envelope of intact chloroplasts and, therefore, (2) does not bind internal sites in intact chloroplasts, and (3) only binds the 30-kDa protein in the inner membrane of the envelope.Abbreviations CBB Coomassie brilliant blue - DIC differential interference contrast optics - DIDS 4,4-diisothiocyanatostilbene-2,2-disulfonic acid - [3H2]DIDS 1,2-ditritio-1,2-(2,2-disulfo-4,4-diisothiocyano)diphenylethane - kDa kilodalton - Mr relative molecular mass - PGA 3-phosphoglycerate - Pitranslocator phosphate translocator - SDS sodium dodecyl sulfate  相似文献   

12.
Bovine liver catalase (BLC), catalase-related allene oxide synthase (cAOS) from Plexaura homomalla, and a recently isolated protein from the cattle pathogen Mycobacterium avium ssp. paratuberculosis (MAP-2744c (MAP)) are all tyrosinate-ligated heme enzymes whose crystal structures have been reported. cAOS and MAP have low (< 20%) sequence similarity to, and significantly different catalytic functions from, BLC. cAOS transforms 8R-hydroperoxy-eicosatetraenoic acid to an allene epoxide, whereas the MAP protein is a putative organic peroxide-dependent peroxidase. To elucidate factors influencing the functions of these and related heme proteins, we have investigated the heme iron coordination properties of these tyrosinate-ligated heme enzymes in their ferric and ferrous states using magnetic circular dichroism and UV-visible absorption spectroscopy. The MAP protein shows remarkable spectral similarities to cAOS and BLC in its native Fe(III) state, but clear differences from ferric proximal heme ligand His93Tyr Mb (myoglobin) mutant, which may be attributed to the presence of an Arg+-Nω-H···¯O-Tyr (proximal heme axial ligand) hydrogen bond in the first three heme proteins. Furthermore, the spectra of Fe(III)-CN¯, Fe(III)-NO, Fe(II)-NO (except for five-coordinate MAP), Fe(II)-CO, and Fe(II)-O2 states of cAOS and MAP, but not H93Y Mb, are also similar to the corresponding six-coordinate complexes of BLC, suggesting that a tyrosinate (Tyr-O¯) is the heme axial ligand trans to the bound ligands in these complexes. The Arg+-Nω-H to ¯O-Tyr hydrogen bond would be expected to modulate the donor properties of the proximal tyrosinate oxyanion and, combined with the subtle differences in the catalytic site structures, affect the activities of cAOS, MAP and BLC.  相似文献   

13.
A nuclear magnetic resonance (NMR) method was implemented to assess in vivo oxygenation levels by a quantitative determination of the 1H NMR myoglobin (Mb) resonances. The proximal His-F8 NδH at 70-90 ppm and Val-E11 γCH3 resonance at -2.8 ppm, reflecting deoxygenated (deoxy-Mb) and oxygenated (met-Mb) states, were alternately recorded. The method was developed in vitro choosing a couple of NMR sequences that could each maximize the signal-to-noise ratio (SNR) while avoiding baseline rolling and suppressing the water signal. Two quantitative calibration methods were implemented for deoxy- and met-Mb samples (0.1-1 mM), respectively. The respective limit of detection (LOD) and limit of quantification (LOQ) were 0.015 and 0.05 mM for met-Mb and 0.013 and 0.042 mM for deoxy-Mb. Sequences and calibration curves were employed in vivo in Arenicola marina to obtain, for the first time, an accurate measurement of oxy- and deoxy-Mb actual concentrations. In Arenicola, the peaks at approximately 87 and -2.7 ppm, reflecting the deoxy- and oxy-Mb states, respectively, were alternately recorded during increasing hypoxia. The deoxy-Mb concentrations were obtained from the calibration curve. The oxy-Mb concentrations were calculated from the calibration of met-Mb because it was proved that oxy- and met-Mb gave the same NMR molar response. From oxy- and deoxy-Mb concentrations, the intracellular oxygen partial pressure (PiO2) trend was determined.  相似文献   

14.
AfGcHK is a globin-coupled histidine kinase that is one component of a two-component signal transduction system. The catalytic activity of this heme-based oxygen sensor is due to its C-terminal kinase domain and is strongly stimulated by the binding of O2 or CO to the heme Fe(II) complex in the N-terminal oxygen sensing domain. Hydrogen sulfide (H2S) is an important gaseous signaling molecule and can serve as a heme axial ligand, but its interactions with heme-based oxygen sensors have not been studied as extensively as those of O2, CO, and NO. To address this knowledge gap, we investigated the effects of H2S binding on the heme coordination structure and catalytic activity of wild-type AfGcHK and mutants in which residues at the putative O2-binding site (Tyr45) or the heme distal side (Leu68) were substituted. Adding Na2S to the initial OH-bound 6-coordinate Fe(III) low-spin complexes transformed them into SH-bound 6-coordinate Fe(III) low-spin complexes. The Leu68 mutants also formed a small proportion of verdoheme under these conditions. Conversely, when the heme-based oxygen sensor EcDOS was treated with Na2S, the initially formed Fe(III)–SH heme complex was quickly converted into Fe(II) and Fe(II)–O2 complexes. Interestingly, the autophosphorylation activity of the heme Fe(III)–SH complex was not significantly different from the maximal enzyme activity of AfGcHK (containing the heme Fe(III)–OH complex), whereas in the case of EcDOS the changes in coordination caused by Na2S treatment led to remarkable increases in catalytic activity.  相似文献   

15.
A protocol is presented for the rapid induction of microtubers on micropropagated, layered potato shoots of Kennebec, Russet Burbank and Superior in medium devoid of growth regulators. Layered shoots microtuberized more rapidly and produced significantly larger microtubers compared with nodal cuttings. The addition of coumarin or (2-chloroethyl)-trimethylammonium chloride and benzyladenine to microtuberization medium, either had no effect or significantly reduced microtuber weight per shoots compared with medium containing only 80 g × 1-1 sucrose and minimally affected the number of microtubers per shoot. Increasing the incubation period from 28 to 56 days did not affect the number but significantly increased the weight of microtubers per shoot and substantially increased the proportion, up to 20%, of microtubers heavier than 1 gram.Abbreviations Ba benzyladenine - ccc (2-chloroethyl) trimethylammonium chloride - coumarin 2h-1-benzopyran-2-one - ga3 gibberellic acid  相似文献   

16.
The reaction enthalpy and entropy for the one-electron reduction of the ferric heme in horse heart and sperm whale aquometmyoglobins (Mb) have been determined exploiting a spectroelectrochemical approach. Also investigated were the T67R, T67K, T67R/S92D and T67R/S92D Mb-H variants (the latter containing a protoheme-l-histidine methyl ester) of sperm whale Mb, which feature peroxidase-like activity. The reduction potential (E°′) in all species consists of an enthalpic term which disfavors Fe3+ reduction and a larger entropic contribution which instead selectively stabilizes the reduced form. This behavior differs from that of the heme redox enzymes and electron transport proteins investigated so far. The reduction thermodynamics in the series of sperm whale Mb variants show an almost perfect enthalpy–entropy compensation, indicating that the mutation-induced changes in are dominated by reduction-induced solvent reorganization effects. The modest changes in E°′ originate from the enthalpic effects of the electrostatic interactions of the heme with the engineered charged residues. The small influence that the mutations exert on the reduction potential of myoglobin suggests that the increased peroxidase activity of the variants is not related to changes in the redox reactivity of the heme iron, but are likely related to a more favored substrate orientation within the distal heme cavity.  相似文献   

17.
The determination of the redox properties of the cofactor in heme proteins provides fundamental insight into the chemical characteristics of this wide-spread class of metalloproteins. For the preparation of the ferroheme state, probably the most widely applied reductant is sodium dithionite, which at neutral pH has a reduction potential well below the reduction potential of most heme centers. In addition to the heme iron, some heme proteins, including the nitrophorins (NPs), contain cysteinecysteine disulfide bonds. In the present study, the effect of dithionite on the disulfides of NP4 and NP7 is addressed. To gain deeper understanding of the disulfide/dithionite reaction, oxidized glutathione (GSSG), as a model system, was incubated with dithionite and the products were characterized by 13C NMR spectroscopy and reverse phase chromatography in combination with mass spectrometry. This revealed the formation of one equivalent each of thiol (GSH) and glutathione-S-thiosulfate (GSSO3). With this background information, the effect of dithionite on the cystines of NP4 and NP7 was studied after trapping of the thiols with para-cloromercurybenzyl sulfonate (p-CMBS) and subsequent matrix assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) where the heterolytic cleavage of the SS bond appears with only 2 molar equivalents of the reductant. Furthermore, prolonged electrochemical reduction of NP4 and NP7 in the presence of electrochemical mediators also leads to disulfide breakage. However, due to sterical shielding of the disulfide bridges in NP4 and NP7, the cystine reduction can be largely prevented by the use of stoichiometric amounts of reductant or limited electrochemical reduction. The described disulfide breakage during routine iron reduction is of importance for other heme proteins containing cystine(s).  相似文献   

18.
The synthesis of d1-4,5,6-trinor-3,7-inter-m-phenylene-3-oxaprostaglandins oxaprostaglandins of the E1 and F1α series7 from 6-endo-(1-heptenyl)-bicyclo[3:1:0]hexan-3-one (III), is described. Preliminary biological screening data for gerbil colon smooth muscle stimulation, rat blood pressure and substrate specificity toward 15-hydroxyprostaglandin dehydrogenase is presented. Platelet function studies, both in vitro and in vivo of d1-4,5,6-trinor-3,7-inter-m-phenylene-3-oxa-PGE1, methyl ester (VIII) are presented.  相似文献   

19.
20.
A cationic class III peroxidase from Sorghum bicolor was purified to homogeneity. The enzyme contains a high-spin heme, as evidenced by UV–visible spectroscopy and EPR. Steady state oxidation of guaiacol was demonstrated and the enzyme was shown to have higher activity in the presence of calcium ions. A FeIII/FeII reduction potential of ?266 mV vs NHE was determined. Stopped-flow experiments with H2O2 showed formation of a typical peroxidase Compound I species, which converts to Compound II in the presence of calcium. A crystal structure of the enzyme is reported, the first for a sorghum peroxidase. The structure reveals an active site that is analogous to those for other class I heme peroxidase, and a substrate binding site (assigned as arising from binding of indole-3-acetic acid) at the γ-heme edge. Metal binding sites are observed in the structure on the distal (assigned as a Na+ ion) and proximal (assigned as a Ca2+) sides of the heme, which is consistent with the Ca2+-dependence of the steady state and pre-steady state kinetics. It is probably the case that the structural integrity (and, thus, the catalytic activity) of the sorghum enzyme is dependent on metal ion incorporation at these positions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号