首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Concanavalin A delays aggregation of slime mold amoebae, apparently by interfering with the cells' response to the chemotactic agent, cyclic AMP. Concanavalin A also induces the premature appearance in non-aggregating cells of a membrane-bound cyclic AMP phosphodiesterase normally found only at the time of aggregation. The appearance of this enzyme is not due to activation of an inactive form of the enzyme.  相似文献   

2.
Chemotactic stimulation of vegetative or aggregative Dictyostelium discoideum cells induced a transient elevation of cyclic GMP levels. The addition of chemoattractants to postvegetative cells by pulsing induced phosphodiesterase activity. The following lines of evidence suggest a messenger function for cyclic GMP in the induction of phosphodiesterase: (i) Folic acid and cyclic AMP increased cyclic GMP levels and induced phosphodiesterase activity. (ii) Cyclic AMP induced both cyclic GMP accumulation and phosphodiesterase activity by binding to a rate receptor. (iii) The effects of chemical modification of cyclic AMP or folic acid on cyclic GMP accumulation and phosphodiesterase induction were closely correlated. (iv) A close correlation existed between the increase of cyclic GMP levels and the amount of phosphodiesterase induced, independent of the type of chemoattractant by which this cyclic GMP accumulation was produced. (v) Computer simulation of cyclic GMP binding to intracellular cyclic GMP-binding proteins indicates that half-maximal occupation by cyclic GMP required the same chemoattractant concentration as did half-maximal phosphodiesterase induction.  相似文献   

3.
A high-affinity form of cyclic AMP phosphodiesterase, purified to apparent homogeneity from dog kidney, was labeled with 125I using a solid-state lactoperoxidaseglucose oxidase system and its purity confirmed by acrylamide gel electrophoresis and isoelectric focusing. Sheep anti-cyclic AMP phosphodiesterase immunoglobulin fraction was analyzed for 125I-enzyme binding and covalently bound to agarose A 1.5m for isotopically labeled antigen displacement. Anti-phosphodiesterase antiserum was purified by Sepharose 4B-cAPDE affinity chromatography and used for a radioimmunoassay employing second-antibody precipitation. The specificity of the anti-cyclic AMP phosphodiesterase antibody was established by its use as a covalently bound affinity ligand for cyclic AMP phosphodiesterase purification and analysis of sodium dodecyl sulfate-gel extracts of partially purified and purified dog kidney supernatants. Radioimmunoassay using a monospecific antibody preparation demonstrated the similarity of high-affinity cyclic AMP phosphodiesterase forms of different tissues and species that had been separated by DEAE-cellulose chromatography. Various purified preparations of calmodulin, as well as brain calcineurin, did not cross-react in the high-affinity cyclic AMP phosphodiesterase radioimmunoassay. However, higher molecular weight cyclic GMP/lower affinity cyclic AMP phosphodiesterase enzyme forms, partially purified by anion-exchange chromatography, gel filtration, and Cibacron blue adsorption, were shown to cross-react in the high-affinity cAMP phosphodiesterase radioimmunoassay. These studies suggest immunological similarities between the major forms of this enzyme system and the possibility of higher molecular weight complexes containing both cyclic GMP and cyclic AMP hydrolytic sites.  相似文献   

4.
The cyclic nucleotide phosphodiesterase (EC 3.4.16) activities of a rat liver particulate fraction were analyzed after solubilization by detergent or by freeze-thawing. Analysis of the two extracts by DEAE-cellulose chromatography revealed that they contain different complements of phosphodiesterase activities. The detergent-solubilized extract contained a cyclic GMP phosphodiesterase, a low affinity cyclic nucleotide phosphodiesterase whose hydrolysis of cyclic AMP was activated by cyclic GMP and a high affinity cyclic AMP phosphodiesterase. The freeze-thaw extract contained a cyclic GMP phosphodiesterase and two high affinity cyclic AMP phosphodiesterase, but no low affinity cyclic nucleotide phosphodiesterase. The cyclic AMP phosphodiesterase activities from the freeze-thaw extract and from the detergent extract all had negatively cooperative kinetics. One of the cyclic AMP phosphodiesterases from the freeze-thaw extract (form A) was insensitive to inhibition by cyclic GMP; the other freeze-thaw solubilized cyclic AMP phosphodiesterase (form B) and the detergent-solubilized cyclic AMP phosphodiesterase were strongly inhibited by cyclic GMP. The B enzyme appeared to be converted into the A enzyme when the particulate fraction was stored for prolonged periods at -20 degrees C. The B form was purified extensively, using DEAE-cellulose, a guanine-Sepharose column and gel filtration. The enzyme retained its negatively cooperative kinetics and high affinity for both cyclic AMP and cyclic GMP throughout the purification, although catalytic activity was always much greater for cyclic AMP. Rabbit antiserum was raised against the purified B enzyme and tested via a precipitin reaction against other forms of phosphodiesterase. The antiserum cross-reacted with the A enzyme and the detergent-solubilized cyclic AMP phosphodiesterase from rat liver. It did not react with the calmodulin-activated cyclic GMP phosphodiesterase of rat brain, the soluble low affinity cyclic nucleotide phosphodiesterase of rat liver or a commercial phosphodiesterase preparation from bovine heart. These results suggest a possible interrelationship between the high affinity cyclic nucleotide phosphodiesterase of rat liver.  相似文献   

5.
In the cellular slime mould Dictyostelium, a membrane-bound cyclic AMP phosphodiesterase undergoes a tenfold increase in activity when amoebae reach the aggregation stage of development. Our previous studies had shown that when non-aggregating cells, which produce extracellular and intracellular forms of the enzyme, are treated with the lectin Concanavalin A (Con A), they exhibit prematurely high levels of the membrane bound enzyme. The present results indicate that this effect may be largely due not to the induction of the enzyme by Con A but rather to the binding of the intracellular form of the enzyme to membranes by Con A. This conclusion is based on the findings that: a) the enzyme activity associated with membranes from Con A treated cells can be decreased by treatment with the haptenic sugar alpha-methyl mannoside: b) mambranes from untreated cells having only low membrane-bound phosphodiesterase activity can acquire increased activity after incubation with Con A and intracellular phosphodiesterase; c) the intracellular phosphodiesterase binds to Sepharose-Con A and is eluted with alpha-methyl mannoside. These results raise the possibility that some of the effects attributed to Con A in the literature may not be due directly to Con A but to glycoproteins attached to membranes by Con A.  相似文献   

6.
Cyclic nucleotide phosphodiesterase activity of human peripheral blood mononuclear cells was significantly increased following a short (30 min) incubation with the mitogenic lectin Concanavalin A. Con A stimulated phosphodiesterase activity to the same extent whatever the subcellular compartment (homogenate, cytosol or pellet). Further separation of the Con A-activated mononuclear cells into lymphocyte-enriched and monocyte-enriched populations showed that the Con A-induced increase of phosphodiesterase activity exclusively affected the lymphocyte-enriched population. In lymphocytes, cyclic GMP phosphodiesterase activity was more importantly enhanced by Con A (+275%) than cyclic AMP phosphodiesterase activity (+75%). The increase of both activities occurred as early as from 10 min of Con A incubation and proved to be maximal with Con A doses of 2.5 and 5 micrograms per 10(6) cells, lower and higher doses being less effective. Inhibition experiments with reference inhibitors suggested that, among the high affinity phosphodiesterase isoforms, the cyclic GMP-inhibited enzyme might be more selectively enhanced by Con A than the cyclic AMP-specific, Rolipram-sensitive one. The non-mitogenic lectin Helix pomatia hemagglutinin, was not able to enhance cyclic nucleotide phosphodiesterase activity of human mononuclear cells whereas anti-CD3 monoclonal antibody, although being less effective than Con A, exhibited a significant stimulatory effect. Putting together these results suggest that the early increase in phosphodiesterase activity might be a normal step involved in the mitogenic activation of human lymphocyte.  相似文献   

7.
Treatment of intact adipocytes with either or both insulin and adrenaline stimulated membrane cyclic AMP phosphodiesterase activity only in the endoplasmic reticulum subfraction. The cyclic GMP-inhibited cyclic AMP phosphodiesterase activity was also found in this fraction. Quantitative Western blotting using a specific polyclonal antibody, raised against the homogeneous 'dense-vesicle' cyclic AMP phosphodiesterase from rat liver, identified a single 63 kDa species which was localized in the adipocyte endoplasmic reticulum fraction. The ability of adrenaline to stimulate adipocyte membrane cyclic AMP phosphodiesterase was shown to be mediated via beta-adrenoceptors and not alpha 1-adrenoceptors. Membrane cyclic AMP phosphodiesterase was stimulated by glucagon but not by vasopressin, A23187 or 12-O-tetradecanoylphorbol 13-acetate (TPA). Treatment of adipocytes with either chloroquine or dansyl cadaverine failed to affect the ability of insulin to stimulate cyclic AMP phosphodiesterase activity. Treatment of an isolated adipocyte endoplasmic reticulum membrane fraction with purified protein kinase A increased its cyclic AMP phosphodiesterase activity some 2-fold. When this fraction was treated with purified protein kinase A and [32P]ATP, label was incorporated into a 63 kDa protein which was specifically immunoprecipitated with the antiserum against the liver 'dense-vesicle' cyclic AMP phosphodiesterase.  相似文献   

8.
In the cellular slime mould Dictyostelium discoideum , a membrane-bound cyclic AMP phosphodi-esterase undergoes a tenfold increase in activity when amoebae reach the aggregation stage of development. Our previous studies had shown that when non-aggregating cells, which produce extracellular and intracellular forms of the enzyme, are treated with the lectin Concanavalin A (Con A), they exhibit prematurely high levels of the membrane bound enzyme. The present results indicate that this effect may be largely due not to the induction of the enzyme by Con A but rather to the binding of the intracellular form of the enzyme to membranes by Con A. This conclusion is based on the findings that: a) the enzyme activity associated with membranes from Con A treated cells can be decreased by treatment with the haptenic sugar α-methyl mannoside; b) membranes from untreated cells having only low membrane-bound phosphodiesterase activity can acquire increased activity after incubation with Con A and intracellular phosphodiesterase; c) the intracellular phosphodiesterase binds to Sepharose-Con A and is eluted with α-methyl mannoside. These results raise the possibility that some of the effects attributed to Con A in the literature may not be due directly to Con A but to glycoproteins attached to membranes by Con A.  相似文献   

9.
N-6,O-2'-dibutyryl adenosine 3',5'-monophosphate kills cultured mouse lymphosarcoma cells, but not resistant mutants derived by a single-step clonal selection. Resistant clones lack the cyclic AMP binding proteins present in wild type, cyclic AMP sensitive clones. Both endogenous cyclic AMP, accumulated in response to isoproterenol or cholera toxin, and exogenous dibutyryl cyclic AMP induce cyclic AMP phosphodiesterase, slow growth, and eventually kill wild type cells. In the resistant mutants, however, the endogenous and exogenous cyclic nucleotides appear to be completely inactive. These results indicate that an intracellular receptor for cyclic AMP, previously shown to be associated with a cyclic AMP-dependent protein kinase, mediates cyclic AMP's regulation of growth and phosphodiesterase synthesis.  相似文献   

10.
Rabbits immunized against cyclic AMP or cyclic GMP produce antibodies which are fully saturated by their respective endogenous cyclic nucleotides. This was proved a) in comparing radioimmunological measurements of cyclic nucleotides in antiserum and the binding site concentration determined by equilibrium dialysis, b) in showing the ineffectiveness of serum phosphodiesterase to hydrolyze the cyclic AMP present in the anti-cyclic AMP antiserum. Immunological and radioimmunological implications of this phenomenon are discussed.  相似文献   

11.
D Green  G Guy  J B Moore 《Life sciences》1977,20(7):1157-1162
Human lung tissue contains phosphodiesterase enzymes capable of hydrolyzing both adenosine 3′,5′-monophosphate (cyclic AMP) and guanosine 3′,5′-monophosphate (cyclic GMP). The cyclic AMP enzyme exhibits three distinct binding affinities for its substrate (apparent Km = 0.4μM, 3μM, and 40μM) while the cyclic GMP enzyme reveals only two affinities (Km = 5μM and 40μM). The pH optima for the cyclic AMP and cyclic GMP phosphodiesterase are similar (pH 7.6–7.8). Both are inhibited by known inhibitors of phosphodiesterase activity (aminophylline, caffeine, and 3-isobutyl-1-methylxanthine). The divalent cations Mg2+ and Mn2+ stimulate cyclic AMP phosphodiesterase activity (in the absence of Mg2+) while Ca2+, Ni2+, and Cu2+ inhibit the enzyme. Histamine and imidazole slightly stimulate cyclic AMP hydrolytic activity. Thus, human lung tissue does contain multiple forms of both the cyclic AMP and cyclic GMP phosphodiesterase which are influenced by a variety of effectors.  相似文献   

12.
The rate of cyclic AMP hydrolysis by a cyclic 3′,5′-nucleotide phosphodiesterase was diminished by the presence of a cyclic AMP binding protein in the reaction mixture. The reduction was proportional to the concentration of the binding protein; and was more pronounced at 0° than at 30°, presumably because the affinity of cyclic AMP to the binding protein was greater at 0° (“apparent dissociation constant” = 3 × 10−8 M) than at 30° (“apparent dissociation constant” = 4 × 10−7 M). These experiments indicate that cyclic AMP bound to the binding protein is not susceptible to the action of phosphodiesterase. It is hydrolyzed only when dissociated from the protein, and the rate of dissociation appears to be the limiting factor. The possible physiological significance of these results is discussed.  相似文献   

13.
The cyclic nucleotide phosphodiesterase (3':5'-cyclic nucleotide 5'-nucleotidohydrolase, EC 3.1.4.17) systems of many tissues show multiple physical and kinetic forms. In contrast, the soluble rat uterine phosphodiesterase exists as a single enzyme form with non-linear Lineweaver-Burk kinetics for cyclic AMP (app. Km of approx. 3 and 20 microM) and linear kinetics for cyclic GMP (app. Km of approx. 3 microM) since the two hydrolytic activities are not separated by a variety of techniques. In uterine cytosolic fractions, cyclic AMP is a non-competitive inhibitor of cyclic GMP hydrolysis (Ki approx. 32 microM). Also, cyclic GMP is a non-competitive inhibitor of cyclic AMP hydrolysis (Ki approx 16 microM) at low cyclic GMP/cyclic AMP substrate ratios. However, cyclic GMP acts as a competitive inhibitor of cyclic AMP phosphodiesterase (Ki approx 34 microM) at high cyclic GMP/cyclic AMP substrate ratios. When a single hydrolytic form of uterine phosphodiesterase, separated initially by DEAE anion-exchange chromatography, is treated with trypsin (0.5 microgram/ml for 2 min) and rechromatographed on DEAE-Sephacel, two major forms of phosphodiesterase are revealed. One form elutes at 0.3 M NaOAc- and displays anomalous kinetics for cyclic AMP hydrolysis (app. Km of 2 and 20 microM) and linear kinetics for cyclic GMP (app. Km approx. 5 microM), kinetic profiles which are similar to those of the uterine cytosolic preparations. A second form of phosphodiesterase elutes at 0.6 M NaOAc- and displays a higher apparent affinity for cyclic AMP (app. Km approx. 1.5 mu) without appreciable cyclic GMP hydrolytic activity. These data provide kinetic and structural evidence that uterine phosphodiesterase contains distinct catalytic sites for cyclic AMP and cyclic GMP. Moreover, they provide further documentation that the multiple forms of cyclic nucleotide phosphodiesterase in mammalian tissues may be conversions from a single enzyme species.  相似文献   

14.
A cyclic AMP binding protein has been purified to electrophoretic homogeneity from Jerusalem artichoke rhizome tissues. Its MW is ca. 240 000 and the apparent constant of cyclic AMP binding to the protein is 2.3 × 10?7 M. When tested using Millipore filter assay, cyclic AMP binding activity was enhanced by protamine and histone, but not by casein and phosvitin. Of several purine derivatives tested, only 5′-AMP and adenosine inhibited significantly the binding of cyclic AMP by the protein. The protein also binds adenosine and this binding is not affected by cyclic AMP or by other purine derivatives. The apparent binding constant for adenosine is 1.0 × 10?6 M. The binding protein did not show protein kinase activity. In addition, it did not affect the chromatin-bound DNA dependent RNA polymerase of homologous origin, either in the presence or absence of cyclic AMP. The binding protein is devoid of the following activities: cyclic AMP phosphodiesterase, 5′-nucleotidase, adenosine deaminase and ATPase.  相似文献   

15.
We have examined the activity of cyclic AMP phosphodiesterase, cyclic GMP phosphodiesterase and the protein activator of cyclic AMP phosphodiesterase in various anatomic and subcellular fractions of the bovine eye. Cyclic GMP hydrolysis was 1.6--12 times faster than hydrolysis of cyclic AMP in the subcellular fractions of the retina and in the precipitate of the rod outer segment. An opposite pattern was seen in the bovine lens, where the hyrolysis of cyclic AMP occurred 17 and 169 times faster than that of cyclic GMP in the supernatant and precipitate of lens, respectively. The activity of cyclic AMP phosphodiesterase was not affected by ethylene-glycol bis(beta-aminoethylether)-N,N'-tetraacetic acid in any fractions except in the retinal supernatant, suggesting that the phosphodiesterase exists primarily as a Ca2+-independent, activator-independent form. However, the protein activator of cyclic AMP phosphodiesterase existed in all fractions examine. A complex kinetic patternwas observed for both cyclic AMP and cyllic GMP hydrolysis by the 105000 times g lens supernatant. The Michaelis constants for both cyclic AMP (1.3-10(-6) and 9.I-10(-6) M) and cyclic GMP (1.04-10(6) AND 1.22 10(-5) M) appeared to be similar.  相似文献   

16.
M A Oleshansky 《Life sciences》1980,27(12):1089-1095
Cyclic AMP phosphodiesterase activity in a particulate fraction of rat striatum is stimulated two fold by cyclic GMP. An investigation of the effects of various purine compounds on basal and cyclic GMP-stimulated cyclic AMP phosphodiesterase activity as measured at a low substrate concentration (3 uM) was carried out. Adenosine inhibits cyclic GMP-stimulated cyclic AMP phosphodiesterase activity with an IC50 of 400 uM while inhibiting basal cyclic AMP phosphodiesterase activity with an IC50 of 2.4 mM. Adenosine blocks cyclic GMP stimulation of cyclic AMP hydrolysis with an IC50 of 80 uM. Inosine and hypoxanthine have a similar profile of action but are less effective with IC50's of 200 and 400 uM respectively on cyclic GMP stimulation of phosphodiesterase activity and only 20–40% inhibition of basal enzyme activity up to 2.4 mM. Adenine, guanosine and guanine block cyclic GMP stimulation of cyclic AMP phosphodiesterase activity with IC50's of 100–200 uM. Classical phosphodiesterase inhibitors of the alkylxanthine type are also selective for the stimulated enzyme with IC50's of 200 and 25 uM for theophylline and IBMX on cyclic GMP-stimulated cyclic AMP hydrolysis and IC50's of 500 and 50 uM respectively on basal phosphodiesterase activity. Theophylline and IBMX are potent inhibitors of cyclic GMP stimulation of cyclic AMP phosphodiesterase activity with IC50's of 50 and 5 uM. These findings suggest a role for physiologically available purine compounds and alkylxanthines in the regulation of cyclic nucleotide metabolism through interaction with cyclic GMP stimulation of cyclic AMP phosphodiesterase activity.  相似文献   

17.
The binding of cyclic AMP to the proximal tubule luminal (brush border) membrane isolated from the rabbit renal cortex was studied. The rate of binding was dependent on temperature; at 37 degrees equilibrium was attained in 45 min, whereas at 0 degrees 120 min was required. The final levels of binding were identical. The binding of 3H-cyclic AMP was reversed by dilution or addition of unlabeled cyclic nucleotide. Debinding was markedly temperature sensitive. Binding was only partially saturable with respect to cyclic AMP concentration, apparently with more than one binding site. The cyclic AMP bound to the membrane was recovered unchanged. When bound to the membrane cyclic AMP was resistant to hydrolysis by endogenous membrane or exogenously added phosphodiesterase. The binding to the membranes was relatively specific for cyclic AMP, although other cyclic purine nucleotides inhibited, cyclic IMP greater than dibutyryl cyclic AMP greater than cyclic GMP. The renal membranes did bind cyclic GMP, but this binding was relatively non-specific. Hormones and drugs, that mediate cyclic AMP generation or renal function, as well as other compounds common to the proximal tubule were without significant effect on cyclic AMP binding. Binding was inhibited by sulfhydryl reacting agents and this inhibition could be blocked and partially reversed by mercaptoethanol.  相似文献   

18.
19.
1. Kinetics of membrane-bound cyclic AMP phosphodiesterase of the cellular slime mold, Dictyostelium discoideum, were studied under two conditions: in the 27 000 times g sediment of cell homogenates (particle-bound phosphodiesterase) and in cell suspensions using external cyclic AMP as a substrate (cell-bound phosphodiesterase). Both methods revealed non-Michaelian kinetics with interaction coefficients less than 1. 2. The membrane-bound phosphodiesterase has a specificity different from that of the cyclic AMP receptor, also present at the cell surface. 3. The membrane-bound enzyme was solubilized by lithium 3, 5-diiodosalicylate and partially purified. In this state the non-linear kinetics were still retained; however, the enzyme was not inhibited by the D. discoideum inhibitor, unlike the cell-bound phosphodiesterase in vivo. This indicates that both enzymes share an inhibitor binding site and that this site is cryptic in the cell-bound state. 4. Production of periodic cyclic AMP pulses by centers, and their relay by other cells, is believed to occur during aggregation. It is suggested that the cell-bound enzyme determines a "time window" significantly smaller than the period of pulsing, and optimizes stimulation of the cyclic AMP receptors in chemotaxis and signal relaying.  相似文献   

20.
The effect of diamide (diazene dicarboxylic acid bis[N,N'-dimethylamide) on cyclic AMP levels and cyclic nucleotide phosphodiesterase in human peripheral blood lymphocytes was examined. In the absence of mitogenic lectins, 5 . 10(-3)-1 . 10(-4) M diamide markedly increased intracellular cyclic AMP with variable effects at higher levels. In the presence of phytohemagglutinin or concanavalin A, 5 . 10(-4) M or higher diamide concentrations consistently decreased cyclic AMP levels, usually to control levels or below, while 1 . 10(-4)-1 . 10(-5) M diamide augmented the lectin-induced rise in cyclic AMP. When intact lymphocytes were incubated with diamide, phosphodiesterase activity against both cyclic AMP and cyclic GMP, assayed in homogenates of these cells, was inhibited at concentrations as low as 1 . 10(-6) M. In contrast, when diamide was incubated with phosphodiesterase extracted from lymphocytes there was a dual effect. At low substrate concentrations and high diamide concentrations diamide was a non-competitive inhibitor of phosphodiesterase with a Ki of 1.3--2.5 mM for cyclic AMP and 3.3--10 mM for cyclic GMP. In contrast, at high substrate concentrations diamide was an 'uncompetitive' activator of phosphodiesterase activity for both cyclic AMP and cyclic GMP. The effects of diamide could be largely or completely blocked by glutathione or dithiothreitol, indicating that sulfhydryl reactivity was involved in diamide's action on lymphocyte phosphodiesterase activity and intracellular cyclic AMP levels. These data demonstrate that diamide is a phosphodiesterase inhibitor both on phosphodiesterase extracted from lymphocytes and when incubated with intact lymphocytes and that diamide may increase or decrease intracellular cyclic AMP levels depending on the concentration of diamide used.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号