首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The energy flow of the anaerobic metabolism of glodfish at 20°C during hypoxia and anoxia was studied by simultaneous direct and indirect calorimetry. During anoxia the heat production as determined by direct calorimetry (180 J · h–1 · kg–0.85) is reduced to 30% of the normoxic level (570 J · h–1 · kg–0.85), which is the same reduction as found previously. The patterns of substrate utilization are compared with previous results, where the anoxic pattern was established by simultaneous calorimetry without carbon dioxide measurements. The present results, which do include carbon dioxide measurements, show the same pattern: carbohydrate and protein as substrates and carbon dioxide, ethanol and fat as end products. The pattern of substrate utilization at low oxygen levels is a combination of the anoxic pattern with an aerobic component. During anoxia only 5% of the metabolizable energy is used for energy metabolism. Of the remaining part (metabolizable energy for production) 60% is converted into ethanol and 40% into fat. At two hypoxia levels the distribution of the metabolizable energy for production into ethanol and fat is the same.  相似文献   

2.
3.
Rapid changes in heat production rate by Ischadium demissum demissum (=Modiolus demissus demissus, Geukensia demissa), largely though not exclusively effected by opening and closing of shell valves, signify changing metabolic states, physical activity level, and body processes with time and experimental condition. It is theorized that the relative rates of anaerobic metabolism and oxygen uptake, as influenced by temperature, and the presence or absence of unfavorable external stimuli all interact, in feedback mode, to regulate the opening and closing of shell valves. Knowledge of the pattern of instantaneous changes in metabolic rates of organisms is essential in analysis of, and interpreting and comparing data on, average metabolic rates. Direct calorimetry should be particularly useful in understanding the evolutionary ecology of facultatively anaerobic organisms.  相似文献   

4.
The close relation between metabolic activity and heat release means that calorimetry can be successfully applied for on-line monitoring of biological processes. Since the use of available calorimeters in biotechnology is difficult because of technical limitations, a new sensitive heat-flux calorimeter working as a laboratory fermenter was developed and tested for different aerobic and anaerobic fermentations with Saccharomyces cerevisiae and Zymommonas mobilis. The aim of the experiments was to demonstrate the abilities of the method for biotechnological purposes. Fermentations as well as the corresponding heat, substrate and product analyses were reproducible. During experiments the heat signal was used as a sensitive and fast indicator for the response of the organisms to changing conditions. One topic was the monitoring of diauxic growth phenomena during batch fermentations, which may affect process productivity. S. cerevisiae was used as the test organism and a protease-excreting Bacillus licheniformis strain as an industrial production system. Other experiments focused on heat measurements in continuous culture under substrate-limiting conditions in order to analyse bacterial nutrient requirements. Again, Z. mobilis was used as the test organism. Ammonium, phosphate, magnesium, biotin and panthothenate, as important substrate compounds, were varied. The results indicate that these nutrients are required in lower amounts for growth than formerly suggested. Thus, a combination of heat measurements and other methods may rapidly improve our knowledge of nutrient requirements even for a well-known microorganism like Z. mobilis. *** DIRECT SUPPORT *** AG903062 00004  相似文献   

5.
Aquatic oligochaetes are well known for their ability to resist prolonged periods of anoxia. In fact, the observed mortality is more likely to result from laboratory stress (unnatural sediment, starvation, accumulation of toxic substances) than from lack of oxygen per se. Lumbriculus variegatus feeds under anoxia at 6°C at a low rate and survives more than 40 days. A sudden transfer into anoxic water, however, results in a cessation of defaecation before the gut is half emptied, whereas the gut is completely emptied under aerobic conditions within 8–10 hours (11°C).Anoxic heat dissipation as measured by direct calorimetry is reduced by up to 80% relative to aerobic rates. The basal rate of oxygen uptake is independent of PO2 above 3 kPa (15% air saturation), but the active rate shows a high degree of oxygen conformity. Whereas the theoretical oxycaloric equivalent yields an accurate estimation of aerobic heat dissipation in Lumbriculus, anoxic catabolism of glycogen explains only up to 60% of the directly measured rates of anoxic heat dissipation in Lumbriculus and Tubifex. Since unknown bioenergetic processes may be important under anoxia, direct calorimetry is required to assess total rates of energy expenditure in anoxic oligochaetes.  相似文献   

6.
Direct animal calorimetry, the gold standard method for quantifying animal heat production (HP), has been largely supplanted by respirometric indirect calorimetry owing to the relative ease and ready commercial availability of the latter technique. Direct calorimetry, however, can accurately quantify HP and thus metabolic rate (MR) in both metabolically normal and abnormal states, whereas respirometric indirect calorimetry relies on important assumptions that apparently have never been tested in animals with genetic or pharmacologically-induced alterations that dysregulate metabolic fuel partitioning and storage so as to promote obesity and/or diabetes. Contemporary obesity and diabetes research relies heavily on metabolically abnormal animals. Recent data implicating individual and group variation in the gut microbiome in obesity and diabetes raise important questions about transforming aerobic gas exchange into HP because 99% of gut bacteria are anaerobic and they outnumber eukaryotic cells in the body by ~ 10-fold. Recent credible work in non-standard laboratory animals documents substantial errors in respirometry-based estimates of HP. Accordingly, it seems obvious that new research employing simultaneous direct and indirect calorimetry (total calorimetry) will be essential to validate respirometric MR phenotyping in existing and future pharmacological and genetic models of obesity and diabetes. We also detail the use of total calorimetry with simultaneous core temperature assessment as a model for studying homeostatic control in a variety of experimental situations, including acute and chronic drug administration. Finally, we offer some tips on performing direct calorimetry, both singly and in combination with indirect calorimetry and core temperature assessment.  相似文献   

7.
Body temperature and metabolic rate during natural hypothermia in endotherms   总被引:12,自引:6,他引:6  
During daily torpor and hibernation metabolic rate is reduced to a fraction of the euthermic metabolic rate. This reduction is commonly explained by temperature effects on biochemical reactions, as described by Q 10 effects or Arrhenius plots. This study shows that the degree of metabolic suppression during hypothermia can alternatively be explained by active downregulation of metabolic rate and thermoregulatory control of heat production. Heat regulation is fully adequate to predict changes in metabolic rate, and Q 10 effects are not required to explain the reduction of energy requirements during hibernation and torpor.Abbreviations BMR basal metabolic rate - BW body weight - C thermal conductance - CHL thermal conductance as derived from HL - CHP thermal conductance as derived from HP - HL heat loss - HP heat production - MR metabolic rate - RQ respiratory quotient - Ta ambient temperature - Tb body temperature  相似文献   

8.
Summary The metabolic effect of hypoxia and anoxia on the larvae ofChironomus thummi andCulex pipiens was investigated. InC. thummi anoxia resulted in a characteristic decrease of ATP and P-arginine concentrations and in an accumulation of alanine and lactate within 60 minutes. These changes continued during prolonged incubation but at lower rates. Ethanol, the major product during long-term anoxia, was largely excreted into the ambient water.A significant accumulation of these metabolites occurred only at a of 7 Torr. However, the proportion of anaerobic energy production even at this low amounted to less than 5% of the total energy consumption measured during experimental anoxia. Thus the chironomid larvae exhibited a remarkable capacity for utilizing very low levels of oxygen to maintain an aerobic metabolism. Complete anaerobiosis was observed only under anoxic conditions.Recovery from prior anoxia began with the reestablishment of normal ATP, P-arginine and succinate concentrations, whereas removal of the accumulated alanine and lactate and replenishment of the normally high level of malate required several hours. Culex larvae were shown to have a very low anaerobic capacity and a high rate of lactate accumulation.The significance of the results is discussed with particular emphasis on comparative aspects.  相似文献   

9.
Medicinal leeches (Hirudo medicinalis L.) responded to self-induced hypoxia (72 h) with typical anaerobic metabolism characterized by a decrease in adenylate energy charge, utilization of the substrates glycogen and malate, and accumulation of the main anaerobic endproducts succinate and propionate. Propionate was also excreted into the medium. Ammonia excretion was suppressed. Aerobic recovery resulted in a profound O2 debt. Resynthesis of ATP was completed within 30 min. Disposal of succinate and restoring of malate required 2–3 h, and clearance of propionate and recharging of glycogen 6–12 h. Ammonia excretion did not exceed normoxic rates and excretion of propionate during recovery accounted for only 10% of total propionate accumulated during hypoxia. It is postulated that the clearance of succinate and propionate involves oxidation but also resynthesis of malate and glycogen. During hypoxia and recovery blood osmolality remained constant. The Na+ and Cl- ion concentrations in blood, the decrease of which was nearly equimolar during hypoxia, were re-established following different time-courses. Na+ concentration returned to normoxic levels after 2–3 h. The delayed increase in Cl- concentration, however, correlating with 6–12 h necessary to clear blood propionate, is interpretated as an anion regulating effect.Abbreviations AEC adenylate energy charge; fw, fresh weight - HPLC high-performance liquid chromatography - SCCA shortchain carboxylic acids  相似文献   

10.
The rate of metabolism of laboratory reared Chironomus riparius was monitored by direct calorimetry over the entire life cycle from egg to adult stage. The metabolic response of the fourth instar larva to decreasing oxygen concentrations and anoxia was also measured. Normoxic measurements were carried out at 20°C and the hypoxic-anoxic experiments at 10°C. In larvae with body sizes ranging from 0.0028 to 0.645 mg ash-free dry mass (afdm), the rate of heat dissipation was related to body mass by a power function, with a mass exponent of 0.71±0.02 corresponding to an exponent of -0.29 for the relationship between mass-specific metabolic rate and body mass. However, the allometric equations applicable to larvae would not predict the metabolic rates of eggs, pupae and adults. Single egg batches used in the experiments consisted of 354±90 eggs, the individual egg with a mass of 0.99±0.01 g (mean±SD). The mass-specific rate of heat dissipation of the egg (13.7±1.8 W mg-1 afdm) was considerably lower than that of the first and second instar larvae (44–53 W mg-1) but equal to that of fourth instar larvae (13.1±3.9 W mg-1). Heat dissipation by a pupa shortly before adult emergence was high (14.8±1.8 W mg-1), probably due to high metabolism during metamorphosis. Emergence of the adult in the calorimeter was indicated by a short but intense burst of heat. The newly emerged imago had a ca. 20–35% higher metabolic rate than the pupa. In response to reduced O2 partial pressure the fourth instar larva of C. riparius displayed metabolic regulation. In continuously declining oxygen partial pressure, the fourth instar larva maintained its aerobic energy metabolism (4.2 W mg-1) with only a small decrease down to 0.8 kPa, corresponding to an oxygen concentration of 0.42 mg O2l-1 H2O. Below this critical oxygen concentration (Pc), the rate of heat dissipation decreased rapidly down to the anoxic level which was only 14–17% of the normoxic level. The high relative reduction of metabolic rate under anoxia gives a wrong impression of short-term tolerance of C. riparius to anoxia. The absolute energetic costs of C. riparius associated with anaerobic energy metabolism (0.64±0.11 W mg-1) are almost 6 times higher than those of more anoxia tolerant invertebrates such as sphaeriid bivalves.  相似文献   

11.
To find out how the polychaete Marenzelleria cf. viridis could spread successfully into the habitat of the Darss-Zingst Bodden Chain, one important environmental factor for sediment dwelling animals was examined: hydrogen sulphide. To investigate the stress of this environmental factor, hydrogen sulphide was continuously examined in the pore water of the sediment and burrows of M. cf. viridis. Metabolic activity was recorded by direct and indirect calorimetry. Depending on water temperature, organic matter content of the sediment and salinity, the sulphide concentration in the pore water varied between 1.5 and 4.2 mmol l-1 being high during summer and in winter when the sediment and overlying water was ice covered. In microcosm experiments water of M. cf. viridis-burrows showed variations in sulphide between 145 and 210 µmol l-1 but pore water concentration was much higher (6.5 mmol l-1). In the presence of oxygen animals exhibited an accelerated metabolic rate which was met by a fully aerobic metabolism at Po2 of 20 to 7.5 kPa and sulphide concentration of 215–245 µmol l-1. When oxygen is absent the heat production was only slightly elevated (103%) when compared to the anoxic control. The elevated heat production of the animals during sulphide exposure and oxygen may be due to detoxification processes. In this case thiosulphate is formed probably via mitochondrial oxidation and therefore may account for additional ATP-gain.  相似文献   

12.
Summary Microcalorimetric measurements of brine shrimp embryos during 6 days of anoxia indicated that heat dissipation was rapidly suppressed to 2.7% of control (aerobic) values over the first 9 h. Energy flow continued to decline slowly to 31 W·g dry mass-1 (0.4% of control) during the subsequent 5.5 days. Within 2 h after returning anoxic embryos to aerobic conditions, heat dissipation rose to 77% of control rates. The calorimetric/respirometric (CR) ratio across this 2-h recovery period increased steadily from-226 to-346 kJ·mol O 2 -1 . Prior to the anoxic exposures, hydrated embryos were incubated aerobically for 10 h to insure full initiation of carbohydrate metabolism (CR ratio=-484 kJ·mol O 2 -1 ). During the 6-day asymptotic approach to a nearly ametabolic state, trehalose and glycogen levels declined 18% and 13%, respectively. The majority of this utilization occurred within the first three days. Thermochemical calculations showed that carbohydrate catabolism accounted for 84% of the total heat dissipation measured over the 6-day anoxic bout; only 3% of the heat could be explained by the catabolism of diguanosine tetraphosphate (Gp4G). Analyses of embryo extracts by high performance liquid chromatography indicated that multiple acid end products were accumulated. Lactate and propionate reached 4.5 mM and 1.0 mM, respectively, but these compounds did not account quantitatively for the amount of carbohydrate utilized. However, the largest chromatographic peak that accumulated under anoxia has not been successfully identified. Fumarate and pyruvate levels decreased as anoxia proceeded. Thus, a perceptible energy flow inArtemia franciscana embryos still remained after 6 days of anoxia. While an ametabolic state may be reached with time, the length of this prolonged transition into anaerobic dormancy has not been appreciated before.  相似文献   

13.
Objectives : The aims were to compare the temperature dependence of the metabolic rate in young ob/ob mice with that in mature ob/ob and db/db mice and to examine the effect on the metabolic substrate preference of leptin and etomoxir in ob/ob, C57BL/6J (wild‐type), and db/db mice. Research Methods and Procedures : In vivo oxygen consumption and carbon dioxide production were continuously measured by indirect calorimetry, and body temperature and total locomotor activity were measured by an implanted transponder. Leptin, etomoxir, or vehicle was administered intraperitoneally. Results : The temperature dependence of the metabolic rate of mature ob/ob and db/db mice were similar to that in wild‐type mice. In young 6‐week‐old ob/ob mice, the metabolic rate was almost doubled at 15 °C. Leptin (2 × 3 mg/kg) decreased the respiratory quotient (RQ) and carbon dioxide production but did not alter oxygen consumption, body temperature, or locomotor activity in ob/ob and C57BL/6J mice and had no effect in the db/db mice. Etomoxir (2 × 30 mg/kg) enhanced RQ and decreased oxygen consumption, carbon dioxide production, and body temperature in ob/ob, C57BL/6J, and db/db mice. Total locomotor activity was reduced in ob/ob and C57BL/6J mice. Discussion : In young ob/ob mice, the temperature sensitivity was enhanced compared with mature mice. Leptin and etomoxir had opposite effects on metabolic substrate preference. Leptin and lowered environmental temperature increased the relative fat oxidation as indicated by decreased RQ, possibly through activation of the sympathetic nervous system.  相似文献   

14.
Growth of Methanobacterium thermoautotrophicum, an anaerobic archaebacterium using methanogenesis as the catabolic pathway, is characterized by large heat production rates, up to 13 W g−1, and low biomass yields, in the order of 0.02 C‐mol mol−1 H2 consumed. These values, indicating a possibly “inefficient” growth mechanism, warrant a thermodynamic analysis to obtain a better understanding of the growth process. The growth‐associated heat production (ΔrH) and the growth‐associated Gibbs energy dissipation per mol biomass formed (ΔrG) were −3730 kJ C‐mol−1 and −802 kJ C‐mol−1, respectively. The Gibbs energy change found in this study is indeed unusually high as compared to aerobic methylotrophes, but not untypical for methanogens grown on CO2. It explains the low biomass yield. Based on the information available on the energetic metabolism and on an ATP balance, the biomass yield can be predicted to be approximately in the range of the experimentally determined value. The fact that the exothermicity exceeds vastly even the Gibbs energy change can be explained by a dramatic entropy decrease of the catabolic reaction. Microbial growth characterized by entropy reduction and correspondingly by unusually large heat production may be called entropy‐retarded growth. © 1999 John Wiley & Sons, Inc. Biotechnol Bioeng 64: 74–81, 1999.  相似文献   

15.
Cynthia Carey 《Oecologia》1979,39(2):213-228
Summary The relations of standard and active aerobic and anaerobic metabolism and heart rate to body temperature (T b) were measured in montane groups of Bufo b. boreas and Rana pipiens maintained under field conditions. These amphibians experience daily variation of T b over 30°C and 23°C, respectively (Carey, 1978). Standard and active aerobic and anaerobic metabolism, heart rate, aerobic and anaerobic scope are markedly temperature-dependent with no broad plateaus of thermal independence. Heart rate increments provide little augmentation of oxygen transport during activity; increased extraction of oxygen from the blood probably contributes importantly to oxygen supply during activity. Development of extensive aerobic capacities in Bufo may be related to aggressive behavior of males during breeding. Standard metabolic rates of both species are more thermally dependent than comparable values for lowland relatives. Thermal sensitivity of physiological functions may have distinct advantages over thermally compensated rates in the short growing season and daily thermal fluctuations of the montane environment.  相似文献   

16.
Summary The oxygen consumption rate of Scapharca inaequivalvis measured under normoxic conditions over 48 h showed a significant daily cycle with lowest values occurring shortly after the dark period; all hypoxia exposure experiments were carried out during the declining part of the cycle. Animals were exposed to a constant level of hypoxia for a 12-h period in a series of 14 experiments, each at a different oxygen tension. The oxygen consumption was measured continuously, and the extent of accumulation of end-products (succinate and propionate), and the inhibitory effect of adenosine triphosphate on phosphofructokinase were determined at the end of exposures. All three parameters (oxygen consumption, end-product accumulation, phosphofructokinase inhibition) showed a remarkable correlation with major changes occurring between 2.5 and 1.5 ppm (7 and 4 kPa) O2. The oxygen consumption rates showed a drop to 6% of the normoxic rate, but a consistent low consumption remained below 2 ppm (5.5 kPa) which partly recovered over the 12-h exposure period by about three-fold. Succinate and propionate accumulated progressively between 2.5 and 1.5 ppm (7 and 4 kPa); at [O2]<1.5 ppm (4kPa) the concentration did not increase further, indicating that anaerobic metabolism had reached a maximum. Over the same range, phosphofructokinase showed an increased sensitivity for adenosine triphosphate, the lower inhibitor concentration at 50% V max value pointing to depression of glycolytic rate. Despite the activation of anaerobic metabolism and the evident depression of aerobic metabolism, simple calculation demonstrates that Scapharca inaequivalvis relies mainly on aerobic metabolism even during severe hypoxia. It is assumed that the occurrence of haemoglobin in this species is essential for its capacity to survive long periods of hypoxia.Abbreviations ATP adenosine triphosphate - I50 inhibitor concentration at 50% V max - PFK phosphofructokinase - P c critical PO2 - SEM standard error of mean - VO2 oxygen consumption rate - ww wet weight  相似文献   

17.
  • 1.1. Results of investigations on direct calorimetry and simultaneous measurements of oxygen consumption and carbon dioxide and ammonia production of fish are summarized.
  • 2.2. By means of indirect calorimetric formulae, the heat production and the protein, carbohydrate and fat oxidation are calculated from the oxygen consumption and carbon dioxide and ammonia production.
  • 3.3. The lowest heat production values are obtained by long-term monitoring of groups of fish during darkness and under fasting conditions.
  • 4.4. It is concluded that the heat production of standard metabolism at 20°C is 700J/hr/MW (MW = metabolic weight, kg0.85).
  相似文献   

18.
The catabolic and energy metabolism capacities during spotted wolffish (Anarhichas minor) embryogenesis were investigated. We assessed the embryo's ability to catabolize proteins (trypsin-like proteases) and lipids (triglyceride lipase) and examined the development of metabolic capacities using enzymatic assays: ability to use carbohydrates (pyruvate kinase), amino acids (aspartate aminotransferase) and fatty acids (hydroxyacyl-CoA dehydrogenase) for energy production, and aerobic (citrate synthase) and anaerobic (lactate dehydrogenase) energy production. Functional enzymatic systems were detected from the eyed stage (350 degree-days), except for fatty acids, which was detected from 540 degree-days. To compare the development of 1) aerobic and anaerobic pathways and 2) the capacity to mobilize the different energy substrates, enzymatic ratios were calculated. Anaerobic capacity appeared to increase at a significantly higher rate than the aerobic capacity. Ratios revealing the relative capacity to use specific energy substrates showed a significantly slower increase during development in the capacity to use carbohydrates than amino acids and fatty acids. The end of embryogenesis was characterized by a significant decrease in the use of carbohydrates for aerobic energy production but an increasing capacity to use amino acids. Egg survival as affected by the variability in metabolic parameters is discussed.  相似文献   

19.
The literature is very sparse regarding research on the thermal equilibrium in Guzerat cattle (Bos indicus) under field conditions. Some factors can modify the physiological response of Guzerat cattle, such as the reactivity of these animals to handling. Thus, the development of a methodology to condition and select Guzerat cattle to acclimate them to the routine collection of data without altering their physiological response was the objective of the preliminary experiment. Furthermore, the animals selected were used in the main experiment to determine their thermal equilibrium according to the thermal environment. For this proposal, the metabolic heat production and heat exchange between the animal and the environment were measured simultaneously in the field with an indirect calorimetry system coupled to a facial mask. The results of the preliminary experiment showed that the respiratory rate could demonstrate that conditioning efficiently reduced the reactivity of the animals to experimental handling. Furthermore, the respiratory rate can be used to select animals with less reactivity. The results of the main experiment demonstrate that the skin, hair-coat surface and expired air temperature depend on the air temperature, whereas the rectal temperature depends on the time of day; consequently, the sensible heat flow was substantially reduced from 70 to 20 W m−2 when the air temperature increased from 24 to 34 °C. However, the respiratory latent heat flow increased from 10 to 15 W m−2 with the same temperature increase. Furthermore, the metabolic heat production remained stable, independent of the variation of the air temperature; however, it was higher in males than in females (by approximately 25%). This fact can be explained by the variation of the ventilation rate, which had a mean value of 1.6 and 2.2 L s−1 for females and males, respectively.  相似文献   

20.
Objective: To determine the effects of a multidisciplinary weight reduction program on body composition and energy expenditure (EE) in severely obese adolescents. Research Methods and Procedures: Twenty‐six severely obese adolescents, 12 to 16 years old [mean BMI: 33.9 kg/m2; 41.5% fat mass (FM)] followed a 9‐month weight reduction program including moderate energy restriction and progressive endurance and resistance training. Body composition was assessed by DXA, basal metabolic rate by indirect calorimetry, and EE by whole‐body indirect calorimetry with the same activity program over 36‐hour periods before starting and 9 months after the weight reduction period. Results: Adolescents gained (least‐square mean ± SE) 2.9 ± 0.2 cm in height, lost 16.9 ± 1.3 kg body weight (BW), 15.2 ± 0.9 kg FM, and 1.8 ± 0.5 kg fat‐free mass (FFM) (p < 0.001). Basal metabolic rate, sleeping, sedentary, and daily EE were 8% to 14% lower 9 months after starting (p < 0.001) and still 6% to 12% lower after adjustment for FFM (p < 0.05). Energy cost of walking decreased by 22% (p < 0.001). The reduction in heart rate during sleep and sedentary activities (?10 to ?13 beats/min), and walking (?20 to ?25 beats/min) (p < 0.001) resulted from both the decrease in BW and physical training. Discussion: A weight reduction program combining moderate energy restriction and physical training in severely obese adolescents resulted in great BW and FM losses and improvement of cardiovascular fitness but did not prevent the decline in EE even after adjustment for FFM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号