首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The curve of the specific activity of rat epididymal nuclear delta 4-5 alpha-reductase is bell shaped as a function of age, whereas that of cytoplasmic 3 alpha-hydroxysteroid dehydrogenase does not change significantly with age. The present study examines the subcellular distribution of delta 4-5 alpha-reductase and 3 alpha-hydroxysteroid dehydrogenase in the caput-corpus and cauda epididymidis during development. A 5-step discontinuous sucrose gradient was developed for fractionation of epididymal homogenates. By using enzyme markers specific for different subcellular organelles, the five different subcellular fractions obtained were shown to be of cytoplasmic, microsomal, mitochondrial, nuclear and spermatozoal origin. 3 alpha-Hydroxysteroid dehydrogenase activity was associated only with the cytoplasmic fraction. The activity of the enzyme did not change significantly with age in either the caput-corpus or cauda epididymidis. delta 4-5 alpha-Reductase activity was found in fractions containing microsomal and nuclear markers. delta 4-5 alpha-Reductase activity in the nuclear fraction of the caput-corpus epididymidis was evident in the youngest age group (Day 25), increased 4-fold and peaked in the next age group (Day 35), and declined with each successive age group: Day 45 (60% of maximum), Day 60 (20% of maximum), Day 75 (15% of maximum) and Day 105 (10% of maximum). In contrast, microsomal delta 4-5 alpha-reductase activity increased successively from Day 25 to Day 105; enzyme activity doubled between these two ages. The ratio of nuclear to microsomal delta 4-5 alpha-reductase activity from the caput-corpus epididymidis thus changed markedly with age: Day 25:1.32; Day 35:3.76; Day 45:2.44; Day 60:1.03; Day 75:0.41; and Day 105:0.21. In the cauda epididymidis nuclear delta 4-5 alpha-reductase activity was only evident at Day 35 and Day 45; in microsomal fractions, activity was first found at Day 35 and did not subsequently change with age. These results demonstrate that: 1) epididymal 3 alpha-hydroxysteroid dehydrogenase activity is found only in the cytoplasmic fraction; 2) delta 4-5 alpha-reductase activity is found in nuclear and microsomal fractions; and 3) the subcellular distribution of delta 4-5 alpha-reductase activity changes markedly with age and epididymal section, suggesting differential regulation of nuclear and microsomal delta 4-5 alpha-reductase activities.  相似文献   

2.
Epididymal delta 4-steroid 5 alpha-reductase (cholestenone 5 alpha-reductase), the enzyme that catalyses the conversion of testosterone into the biologically active metabolite dihydrotestosterone (17 beta-hydroxy-5 alpha-androstan-3-one), is a membrane-bound enzyme found in both nuclear and microsomal subcellular fractions. In order to characterize epididymal delta 4-steroid 5 alpha-reductase, it was first necessary to solubilize the enzymic activity. Of the various treatments tested, a combination of 0.5% (w/v) Lubrol WX, 0.1 M-sodium citrate and 0.1 M-KCl maintained enzymic activity at control values and solubilized 66% of total epididymal delta 4-steroid 5 alpha-reductase activity in an active and stable form. The sedimentation coefficient of solubilized delta 4-steroid 5 alpha-reductase, as determined in continuous sucrose density gradients, was greater for the microsomal than for the nuclear enzyme (11.6S compared with 10.1S). Although the apparent Km values of the enzyme for testosterone were similar in nuclear and microsomal subcellular fractions (range 1.75 x 10(-7) - 4.52 x 10(-7)M), the apparent Km of the enzyme for NADPH was about 30-fold greater for the microsomal enzyme than for the nuclear enzyme. The apparent Km of the enzyme for either substrate was not significantly altered after solubilization. The relative capacity of steroids to inhibit the enzymic activity, the pH optima and the effects of Ca2+ and Mg2+ were similar for membrane-bound and solubilized delta 4-steroid 5 alpha-reductase in both the nuclear and the microsomal fractions. The results reported demonstrate that epididymal delta 4-steroid 5 alpha-reductase can be solubilized in an active and stable form with no significant changes in the kinetic characteristics of the enzyme after solubilization; furthermore, kinetic and molecular-size differences observed for the nuclear and the microsomal forms of the enzyme suggest that there may exist at least two forms of epididymal delta 4-steroid 5 alpha-reductase.  相似文献   

3.
The location and some characteristics of rat adrenal C(19)-steroid 5alpha-reductase were investigated by using [7alpha-(3)H]androst-4-ene-3,17-dione and [7alpha-(3)H]testosterone as substrates. The enzymes system was shown to be NADPH-dependent and associated with the microsomal fraction. In addition, some evidence was also obtained for the existence of a separate NADH-dependent system in the soluble fraction. Further investigation of androst-4-ene-3,17-dione metabolism by subcellular fractions indicated the presence of NADH-dependent 3alpha- and 3beta-hydroxy steroid dehydrogenase systems in the microsomal pellet. This pellet also appeared to contain an NADH-dependent 17beta-hydroxy steroid dehydrogenase system, and a similar though separate system was detected in the cytosol. Malate (20mm) effectively inhibited the microsomal C(19)-steroid 5alpha-reductase, which showed similar values for K(m) and V(max.) when either androst-4-ene-3,17-dione or testosterone was used as substrate. Cytochrome c was added to all incubation mixtures used for the determination of these values to inhibit the formation of metabolites other than 5alpha-androstane-3,17-dione and 5alpha-dihydrotestosterone (17beta-hydroxy-5alpha-androstan-3-one) respectively. It was also found that corticosterone did not inhibit the 5alpha-reduction of androst-4-ene-3,17-dione under these conditions, indicating that separate enzymes exist for the 5alpha-reduction of C(19)- and C(21)-steroids in the rat adrenal.  相似文献   

4.
The localization and some characteristics of mouse adrenal C19-steroid 5 beta-reductase were determined by the incubation of subcellular fractions of mouse adrenal tissue with [7 alpha-3H]androst-4-ene-3,17-dione. This enzyme was present only in the soluble fraction and was NADPH-dependent, although a small activity in the presence of NADH was also detected. The soluble fraction also contained 3alpha-, 3beta- and a small amount of 17 beta-hydroxy steroid dehydrogenase. These and other steroid-metabolizing enzymes present in the remaining subcelluar fractions are also described briefly. To measure 5 beta-androstane-3,17-dione production by the mouse adrenal soluble fraction, all 5 beta products first had to be oxidized to 5 beta-androstane-3,17-dione, and the recovery of radio-activity between the substrate androst-4-ene-3,17-dione and product 5 beta-androstane-3,17-dione of 96.1 +/-3.2% validated this technique. C19-steroid 5 beta-reductase has a pH optimum of 6.5 and at low substrate concentrations the Km and Vmax. for 5 beta reduction of [7 alpha-3H]androst-4-ene-ene-3,17-dione was 2.22 times 10(-6) "/- 0.48 times 10(-6) M and 450+/- 53 pmol/min per mg of protein respectively. At high substrate concentration, inhibition of the reaction occurred, which was shown to be due to increasing product concentration.  相似文献   

5.
Epididymal 4-ene steroid 5 alpha-reductase converts testosterone to 5 alpha-dihydrotestosterone. The enzyme is localized to the nuclear and microsomal fractions, and the activity can be altered by modifying the phospholipids in the membrane environment. To investigate the membrane dependence of 4-ene steroid 5 alpha-reductase, we have treated nuclear and microsomal membranes with combinations of phospholipase A2 and phospholipase C, and examined the effects on 4-ene steroid 5 alpha-reductase activity. Sequential addition of phospholipase A2 and phospholipase C to the nuclear fraction, reduced the 4-ene steroid 5 alpha-reductase activity to approx 25% of the control level. Neither the nature of the phospholipase, nor the sequence of addition altered the inhibition. When both phospholipases were added simultaneously, nuclear 4-ene steroid 5 alpha-reductase activity was inhibited in a linear fashion, and in tests for cooperativity, the effects of phospholipase A2 and phospholipase C were clearly additive. The microsomal enzyme responded differently to sequential phospholipase treatments; if phospholipase A2 was followed by phospholipase C, or phospholipase C followed by phospholipase A2, the 4-ene steroid 5 alpha-reductase activity was, respectively, 13 and 27% of the control. In contrast, sequential addition of the same phospholipase reduced the activity of 4-ene steroid 5 alpha-reductase to approx 40% of the control level. Furthermore, simultaneous addition of phospholipase A2 and phospholipase C to the microsomal fraction, resulted in non-linearity of 4-ene steroid 5 alpha-reductase activity with time, whereas when added individually, linearity of 4-ene steroid 5 alpha-reductase was maintained. Consequently, it was not possible to test for cooperative effects of phospholipases on the microsomal 4-ene steroid 5 alpha-reductase. These findings suggest that for the nuclear 4-ene steroid 5 alpha-reductase, the polar and non-polar regions of the membrane environment have similar functions, which are most likely involved in the maintenance of the structural integrity of the enzyme. For the microsomal enzyme, the polar and non-polar regions of the membrane appear to have different functions, not only for the maintenance of enzyme integrity, but also in the mechanism at the active site.  相似文献   

6.
Evidence for Membrane-Associated Choline Kinase Activity in Rat Striatum   总被引:3,自引:3,他引:0  
The distribution of choline kinase (EC 2.7.1.32) activity was investigated in subcellular fractions of rat striatum. Enzyme activity in the crude mitochondrial fraction, determined after dissolution in Triton X-100, was 5.90 mumol/g initial wet weight/h. When a crude mitochondrial preparation was hypoosmotically shocked and fractionated, followed by the addition of Triton X-100, choline kinase activity in the soluble and particulate fractions was 4.58 and 1.40 mumol/g initial wet weight/h, respectively. Enzyme activity in the particulate fraction was not detected in the absence of Triton X-100 or in the presence of NaCl (up to 1.5 M). Subcellular enzyme markers indicated that the membrane-associated activity was not attributable to mitochondrial or microsomal contamination. Kinetic analysis of the activity of soluble and membrane-solubilized choline kinase indicated Km values of 0.74 mM and 0.68 mM, respectively. Results indicate that choline kinase activity may be measured in both the soluble and the particulate fractions of rat striatum, the latter most likely involving enzyme associated with membrane through hydrophobic or covalent interactions. The specific function of the membrane-associated enzyme has not yet been determined.  相似文献   

7.
Subcellular fractions isolated and purified from rat brain cerebral cortices were assayed for phosphatidylinositol (PI-), phosphatidylinositol-4-phosphate (PIP-), and diacylglycerol (DG-) kinase activities in the presence of endogenous or exogenously added lipid substrates and [γ-32P]ATP. Measurable amounts of all three kinase activities were observed in each subcellular fraction, including the cytosol. However, their subcellular profiles were uniquely distinct. In the absence of exogenous lipid substrates, PI-kinase specific activity was greatest in the microsomal and non-synaptic plasma membrane fractions (150–200 pmol/min per mg protein), whereas PIP-kinase was predominantly active in the synaptosomal fraction (136 pmol/min per mg protein). Based on percentage of total protein, total recovered PI-kinase activity was most abundant in the cytosolic, synaptosomal, microsomal and mitochondrial fractions (4–11 nmol/min). With the exception of the microsomal fraction, a similar profile was observed for PIP-kinase activity when assayed in the presence of exogenous PIP (4 nmol/20 mg protein in a final assay volume of 0.1 ml). Exogenous PIP (4 nmol/20 mg protein) inhibited PI-kinase activity in most fractions by 40–70%, while enhancing PIP-kinase activity. PI- and PIP-kinase activities were observed in the cytosolic fraction when assayed in the presence of exogenously added PI or PIP, respectively, but not in heat-inactivated membranes containing these substrates. When subcellular fractions were assayed for DG-kinase activity using heat-inactivated DG-enriched membranes as substrate, DG-kinase specific activity was predominantly present in the cytosol. However, incubation of subcellular fractions in the presence of deoxycholate resulted in a striking enhancement of DG-kinase activities in all membrane fractions. These findings demonstrate a bimodal distribution between particulate and soluble fractions of all three lipid kinases, with each exhibiting its own unique subcellular topography. The preferential expression of PIP-kinase specific activity in the synaptic membranes is suggestive of the involvement of PIP2 in synaptic function, while the expression of PI-kinase specific activity in the microsomal fraction suggests additional, yet unknown, functions for PIP in these membranes.  相似文献   

8.
Epididymal 5 alpha-reductase converts testosterone to 5 alpha-dihydrotestosterone. The enzyme is localized to the nuclear and microsomal membranes, and using two approaches, we investigated the relationship between 5 alpha-reductase activity and the membrane environment. In the first, nuclear and microsomal membrane fractions were treated with phospholipases to modify specifically the structure of the phospholipid component of the membranes, and the effects of these treatments on the kinetic parameters of 5 alpha-reductase were examined. The second approach was to observe the effects of phospholipids of known structure on solubilized 5 alpha-reductase activity. Treatment of the membrane fractions with phospholipase C increased the Km(app) of both the nuclear and microsomal 5 alpha-reductases for testosterone. Phospholipase A2 treatment also increased the Km(app) of the microsomal enzyme, but in contrast, the Km(app) of the nuclear 5 alpha-reductase for testosterone was unaffected. This demonstrated a fundamental difference in the role of the membrane environment in the expression of 5 alpha-reductase activity in these subcellular compartments. The ability of phospholipids to enhance the activity of solubilized 5 alpha-reductase was highly specific and structure related. Only phosphatidylcholines containing either unsaturated acyl chains or saturated acyl chains of 12 carbon atoms were found to activate 5 alpha-reductase. The most potent activator was dilauroyl phosphatidylcholine, which reduced the Km(app) values of both nuclear and microsomal 5 alpha-reductases for testosterone, without affecting the concentration of active 5 alpha-reductase (Vmax(app) ). This is the first time that an activator of 5 alpha-reductase has been found. These findings suggest that epididymal 5 alpha-reductase activity may be regulated by changes in the phospholipid environment.  相似文献   

9.
The subcellular distribution and functional characteristics of 5 alpha-reductase (3-oxo-5 alpha-steroid: NADP+ 4-ene-oxidoreductase, EC 1.3.1.22) from rat ventral prostate were studied and compared to the 5 alpha-reductase from female rat liver. Tissue fractionation retained main enzymic activity in the microsomal fraction of rat liver, while 5 alpha-reductase from rat prostate was localized in the nuclear membrane with a specific activity 160 times that of the initial homogenate. The purity of nuclear envelopes was checked by electron microscopy. Solubilization experiments indicated that the hepatic 5 alpha-reductase is attached to the endoplasmic reticulum as a peripheral protein, while the nuclear prostatic enzyme is an integral membrane protein. Incubation experiments with phospholipases suggested a decisive role of the surrounding phospholipids for the prostatic enzyme activity. To elucidate the characteristics of hydrogen transfer of the enzyme, the effect of flavins and different other cofactors on 5 alpha-reductase activity in isolated prostatic nuclei were studied. Our findings indicate that in rat ventral prostate the conversion of testosterone to 5 alpha-dihydrotestosterone proceeds by a direct hydrogen transfer from NADPH to testosterone. Concerning these parameters the behaviour of hepatic 5 alpha-reductase is absolutely different from the prostatic enzyme. The localization of 5 alpha-reductase within the nuclear envelope of rat ventral prostate as an integral membrane protein seems to be of physiological significance with regard to the action of androgens.  相似文献   

10.
When Eubacterium sp. 144 was grown in the presence of progesterone, extracts of these cells contained a 4-ene-3-ketosteroid-5 alpha-reductase (5 alpha-reductase). No evidence for the presence of a 5 beta-steroid-reductase or a 5 alpha to 5 beta-steroid-isomerase was found. 5 alpha-Reductase activity was dependent on reduced methyl viologen as the electron donor and this could be generated biologically by adding pyruvate or H2 to cell extracts or chemically by adding sodium dithionite. NADH or NADPH with or without flavin nucleotides were not electron donors for 5 alpha-reductase. Most of the 5 alpha-reductase activity (60-65%) of crude extracts was located in the membrane fraction and the enzyme was solubilized by treatment with 1% Triton X-100. Optimum 5 alpha-reductase activity occurred at pH 7.0-7.5 in potassium phosphate buffer but was stimulated by Tris-HCl buffer (pH 8.0-9.0). 5 alpha-Reductase activity was highest at 10% (v/v) methanol and was progressively inhibited by higher methanol concentrations. Sulfhydryl reagents strongly inhibited 5 alpha-reductase but the enzyme was not affected by other metabolic inhibitors. Extracts prepared from cells induced with 16-dehydroprogesterone and grown without hemin contained 5 alpha-reductase and 16-dehydroprogesterone-reductase activities equivalent to those found in extracts of induced cells grown with hemin. This indicates that hemin is not required for the synthesis of active steroid double bond-reductases in strain 144.  相似文献   

11.
Intracellular localization of aldehyde dehydrogenase in rat liver   总被引:9,自引:9,他引:0       下载免费PDF全文
1. Distribution of aldehyde dehydrogenase activity in rat liver was studied by measuring the rate of disappearance of acetaldehyde in the presence of each of the subcellular fractions. These were obtained by rough separation of particulate fractions from the soluble portion of the cell, by differential centrifugation, and by isopycnic gradient centrifugation. 2. The maximal rate of acetaldehyde oxidation was 3.7 mumol/min per g, with an apparent K(m) value below 10(-5)m. The highest rate of activity was observed in phosphate buffers of high P(i) concentration (above 60mm). 3. The activity measured was completely dependent on NAD(+). 4. The microsomal fraction and the nuclei were inactive in the assay. Of the total activity 80% was found in the mitochondrial fraction and the remaining 20% in the cytoplasm. 5. The distribution pattern is important from the point of view of acetaldehyde oxidation during ethanol metabolism. The apparent discrepancy of the results obtained by different workers and the localization of acetaldehyde oxidation in vivo is discussed.  相似文献   

12.
We have investigated the effects of two 4-ene-steroid 5 alpha-reductase inhibitors, diethyl-4-methyl-3-oxo-4-aza-5 alpha-androstane-17 beta-carboxamide (4-MA) and (4R)-5,10-seco-19-norpregna-4, 5-diene-3,10,20-trione (SECO), on testicular and epididymal androgen biosynthesis. Kinetic analyses revealed that both compounds inhibited epididymal DHT biosynthesis. 4-MA was a competitive inhibitor of epididymal nuclear and microsomal 4-ene-steroid 5 alpha-reductases (3-oxo-5 alpha-steroid: NADP 4-ene-oxidoreductase EC 1.3.1.22) with Kiapp values of 12.8 and 15.1 nmol/l compared to the respective Kmapp values of 185 and 240 nmol/l. Values for the Vmaxapp were always within 70-130% of the control. SECO at 1.0 mumol/l, also inhibited epididymal nuclear and microsomal 4-ene-steroid-5 alpha-reductases, causing respectively 2.9 and 5.2-fold increases in Kmapp. The Vmaxapp values were unchanged. However, SECO concentrations of 5 and 25 mumol/l abolished 4-ene-steroid 5 alpha-reductase activity at all testosterone concentrations. To examine the specificity of these compounds, we investigated their effects on the enzymes that convert pregnenolone to testosterone. Rat testis microsomes converted pregnenolone to testosterone via the 4-ene-3-oxo pathway, with the major metabolites being progesterone, 17-hydroxyprogesterone, 4-androstenedione and testosterone; some 17-hydroxypregnenolone was also formed. Very small amounts of dehydroepiandrosterone (DHA) and 5-androstenediol were detected. SECO, at a concentration that completely inhibited epididymal 4-ene-steroid 5 alpha-reductase activity, did not alter the metabolic profile of pregnenolone metabolism. However, 4-MA prevented the appearance of 4-ene steroids, and large quantities of 17-hydroxypregnenolone and DHA accumulated, suggesting that inhibition of the 3 beta-hydroxysteroid: NAD(P)+ oxidoreductase (EC 1.1.1.51) and 3-oxosteroid 5-ene-4-ene-isomerase (EC 5.3.3.1) [3 beta-hydroxysteroid dehydrogenase-isomerase] was occurring. Optimal conditions for the microsomal conversion of DHA to 4-androstenedione were determined; kinetic analyses of the 3 beta-hydroxysteroid dehydrogenase-isomerase activity revealed that 4-MA inhibited this reaction non-competitively, reducing Vmaxapp values to 25% of the control. The Kiapp determined from the intercept replot, was 121 nmol/l, and the Kmapp was always between 90 and 130% of the control value. It is concluded that SECO is more specific than 4-MA in its effects on androgen biosynthesis in the testis and epididymis and that both these drugs should provide useful tools in assessments of the relative contributions of 5 alpha-reduced androgens to androgen dependent processes.  相似文献   

13.
The present study demonstrates unequivocally the existence of short-chain trans-2-enoyl coenzyme A (CoA) hydratase and beta-ketoacyl CoA reductase activities in the endoplasmic reticulum of rat liver. Subcellular fractionation indicated that all four fractions, namely, mitochondrial, peroxisomal, microsomal, and cytosolic contained significant hydratase activity when crotonyl CoA was employed as the substrate. In the untreated rat, based on marker enzymes and heat treatment, the hydratase activity, expressed as mumol/min/g liver, wet weight, in each fraction was: mitochondria, 684; peroxisomes, 108; microsomes, 36; and cytosol, 60. Following di-(2-ethylhexyl)phthalate (DEHP) treatment (2% (v/w) for 8 days), there was only a 20% increase in mitochondrial activity; in contrast, peroxisomal hydratase activity was stimulated 33-fold, while microsomal and cytosolic activities were enhanced 58- and 14-fold respectively. A portion of the cytosolic hydratase activity can be attributed to the component of the fatty acid synthase complex. Although more than 70% of the total hydratase activity was associated with the mitochondrial fraction in the untreated rat, DEHP treatment markedly altered this pattern; only 11% of the total hydratase activity was present in the mitochondrial fraction, while 49 and 29% resided in the peroxisomal and microsomal fractions, respectively. In addition, all four subcellular fractions contained the short-chain NADH-specific beta-ketoacyl CoA (acetoacetyl CoA) reductase activity. Again, in the untreated animal, reductase activity was predominant in the mitochondrial fraction; following DEHP treatment, there was marked stimulation in the peroxisomal, microsomal, and cytosolic fractions, while the activity in the mitochondrial fraction increased by only 39%. Hence, it can be concluded that both reductase and hydratase activities exist in the endoplasmic reticulum in addition to mitochondria, peroxisomes, and soluble cytoplasm.  相似文献   

14.
Activities of phosphatidate phosphohydrolase and palmitoyl-CoA hydrolase were determined in cardiac subcellular fractions prepared from rabbits which has received tri-iodothyronine and from hamsters with hereditary cardiomyopathy (strain BIO 14.6). 1. Both mitochondrial and microsomal fractions of hyperthyroid rabbit hearts produced 4-5 times as much diacylglycerol 3-phosphate from glycerol 3-phosphate and palmitate as did those of euthyroid hearts. 2. Phosphatidate phosphohydrolase, measured with phosphatidate emulsion, was activated by 1mm-Mg(2+) in all but the mitochondrial fraction of euthyroid rabbit hearts. The activation was more pronounced in subcellular fractions isolated from hyperthyroid hearts, so that the measured activities were significantly increased above those of the controls. The highest activity was found in the microsomal and lysosomal fractions. 3. In the absence of Mg(2+) during incubation, the difference in phosphohydrolase activities between eu- and hyper-thyroid states was not significant. 4. The phosphohydrolase of subcellular fractions of control hamsters did not respond to addition of 0.5-8.0mm-Mg(2+). The enzyme from cardiomyopathic hearts was slightly inhibited by this bivalent cation and therefore significant increases in activity were observed only in the absence of Mg(2+) from the assay system. 5. The rate of reaction by soluble phosphatidate phosphohydrolase was similar regardless of the nature of the substrate. Both when microsomal-bound phosphatidate was used as the substrate and when phosphatidate suspension was used, the activity of soluble enzyme was lower than that of the microsomal and lysosomal enzymes measured with phosphatidate suspension; this was especially so when the assay was carried out in the absence of Mg(2+). Neither tri-iodothyronine nor cardiomyopathy influenced the soluble phosphohydrolase activity in the two species. 6. Neither tri-iodothyronine nor cardiomyopathy significantly changed palmitoyl-CoA hydrolase activities in subcellular fractions. 7. Microsomal diacylglycerol acyltransferase and myocardial triacylglycerol content were also unchanged in the hyperthyroid state.  相似文献   

15.
The subcellular localization of guanylate cyclase was examined in rat liver. About 80% of the enzyme activity of homogenates was found in the soluble fraction. Particulate guanylate cyclase was localized in plasma membranes and microsomes. Crude nuclear and microsomal fractions were applied to discontinuous sucrose gradients, and the resulting fractions were examined for guanylate cyclase, various enzyme markers of cell components, and electron microscopy. Purified plasma membrane fractions obtained from either preparation had the highest specific activity of guanylate cyclase, 30 to 80 pmol/min/mg of protein, and the recovery and relative specific activity of guanylate cyclase paralleled that of 5'-nucleotidase and adenylate cyclase in these fractions. Significant amounts of guanylate cyclase, adenylate cyclase, 5'-nucleotidase, and glucose-6-phosphatase were recovered in purified preparation of microsomes. We cannot exclude the presence of guanylate cyclase in other cell components such as Golgi. The electron microscopic studies of fractions supported the biochemical studies with enzyme markers. Soluble guanylate cyclase had typical Michaelis-Menten kinetics with respect to GTP and had an apparent Km for GTP of 35 muM. Ca-2+ stimulated the soluble activity in the presence of low concentrations of Mn-2+. The properties of guanylate cyclase in plasma membranes and microsomes were similar except that Ca-2+ inhibited the activity associated with plasma membranes and had no effect on that of microsomes. Both particulate enzymes were allosteric in nature; double reciprocal plots of velocity versus GTP were not linear, and Hill coefficients for preparations of plasma membranes and microsomes were calculated to be 1.60 and 1.58, respectively. The soluble and particulate enzymes were inhibited by ATP, and inhibition of the soluble enzyme was slightly greater. While Mg-2+ was less effective than Mn-2+ as a sole cation, all enzyme fractions were markedly stimulated with Mg-2+ in the presence of a low concentration of Mn-2+. Triton X-100 increased the activity of particulate fractions about 3- to 10-fold and increased the soluble activity 50 to 100%.  相似文献   

16.
The metabolism of progesterone and 5α-pregnane-3,20-dione was studied in subcellular fractions of uterus from untreated and estradiol-17β treated immature rats. The reduction of progesterone to 5α-pregnane-3, 20-dione took place in all the particulate fractions of the uterus. The nuclear 5α-reductase accounted for the greatest fraction of enzymatic activity and was stimulated by estradiol treatment in vivo. The 5α-reductase activity in the mitochondrial and microsomal fractions was not increased after estradiol treatment. The reduction of 5α-pregnane-3,20-dione to 3α-hydroxy-5α-pregnan-20-one occurred mainly in the soluble fraction and was only slightly stimulated by estradiol. It proceeded much more rapidly than the reduction of progesterone to pregnanedione. Progesterone was also reduced to 20α-hydroxy-4-pregnen-3-one by a soluble enzyme whose activity was increased after estradiol-17β treatment.  相似文献   

17.
Protein kinase activity was determined in subcellular fractions of rat testis interstitial tissue after incubation of the intact tissue with LH (luteinizing hormone) in vitro. Various factors that might have changed the activity of this enzyme during preparation of the fractions before assay were also investigated. The following results were obtained. 1. LH and 3-isobutyl-1-methylxanthine (a phosphodiesterase inhibitor) added together during incubation of the interstitial tissue caused a twofold increase in the protein kinase activity in the total tissue homogenate and subcellular fractions (12000g X 5 min pellet and 105000g X 60 min supernatant and pellet). 2. A decrease of approx. 40% in the total amount of protein kinase recovered in the soluble fraction (105000g supernatant) occurred in tissue incubated with LH and 3-isobutyl-1-methylxanthine when compared with the controls. No change in total activity was found in the other fractions. 3. LH and 3-isobutyl-1-methylxanthine caused an increase in cyclic AMP concentration in the soluble fraction (from 30 +/- 6 to 450 +/- 40 pmol/mg of protein, means +/- S.E.M., n = 4), but there was little or no increase in the particulate fractions [from 9 +/- 1 to 13 +/- 3 pmol/mg of protein (n = 3) and from 6 +/- 2 to 23 +/- 11 pmol/mg of protein (n = 3) in the 12000g and 105000g pellets respectively]. 4 Addition of 3-isobutyl-1-methylxanthine alone had little effect on protein kinase activity or cyclic AMP concentrations. 5. Little or no protein kinase activity could be demonstrated in subcellular particulate fractions unless Triton X-100 was added; the effect of this detergent was shown to be at least partly due to the inhibition of adenosine triphosphatase activity. 6. In the presence of Triton X-100 approx. 57% of the total protein kinase activity in the homogenate was found in the 105000g supernatant compared with 11% in the 105000g pellet and 32% in the 12000g pellet. 7. In contrast with adipose-tissue protein kinase [Corbin et al. (1973) J. Biol. Chem. 248, 1813-1821] the relative amounts of cyclic AMP-dependent and -dependent enzyme were not affected by dilution of the interstitial-tissue fractions. NaCl (0.5 M) decreased the estimated total amount of protein kinase activity.  相似文献   

18.
1. Hexokinase activities were estimated in primary subcellular fractions from guinea-pig cerebral cortex and in sucrose-density-gradient subfractions of the mitochondrial and microsomal fractions. 2. Appreciable activities were observed in mitochondrial, microsomal and soluble fractions. The activity in the mitochondrial fraction was associated with the mitochondria rather than with myelin or nerve endings and that in the microsomal fraction was associated with membrane fragments. 3. Most of the mitochondrial activity was extracted in soluble form by osmotic ;shock'. The activity of the mitochondrial extract differed from the soluble activity in kinetic properties and in electrophoretic behaviour. 4. No evidence was obtained for the presence of a high-K(m) glucokinase in the brain. 5. The results are discussed in terms of relevance to considerations of glucose utilization by the brain.  相似文献   

19.
CTP:cholinephosphate cytidylyltransferase activities were compared in saline homogenates of immature fetal (15-16 weeks gestation) and adult human lung. There were no differences in subcellular enzyme distribution, in Vmax activity, or in the phosphatidylglycerol-mediated stimulation of soluble enzyme activity. These results provide no support for a developmental translocation of cytidylyltransferase from a cytosolic to a microsomal location in human lung, such as that proposed to accompany the maturation of pulmonary surfactant phosphatidylcholine biosynthesis in rat. Soluble cytidylyltransferase activity from human but not rat lung was increased after manipulation in vitro. Resolution of human H form (greater than 10(3) kDa) and L form (200 kDa) enzyme by gel filtration led to an activity increase of 200%. Incubation at 37 degrees C for 2 h increased soluble enzyme recovery, although prior centrifugal removal of generated actin-rich aggregates was necessary in adult lung fractions. In contrast, 85% of soluble rat lung cytidylyltransferase was actin aggregate-associated after incubation. The apparent heteroassociation of rat and human lung enzyme with actin in the presence of poly(ethylene glycol) at 4 degrees C strongly suggested close in vitro and potential in vivo linkage. A partial co-purification of adult human lung cytidylyltransferase with actin was also consistent with this idea. We propose that some reported cytidylyltransferase translocation phenomena may be mediated by cytoskeletal interactions in vitro.  相似文献   

20.
The metabolism of pregnenolone in subcellular fractions of the testes of the macaque (Macaca fascicularis) has been studied using capillary gas chromatography to characterize and quantify the metabolites, after their conversion into the O-methyloxime and/or trimethylsilyl ether derivatives. The microsomal incubations yielded the greatest quantities of metabolites, with lesser amounts in the mitochondrial fraction. The cytosolic fraction contained no significant quantity of metabolites after incubation, except for 5alpha-androst-16-en-3 beta-ol. This, and other odorous androst-16-enes, found in the microsomal fraction, are of particular interest in the context of animal communication because of their possible pheromonal role. Pregnenolone was converted into androst-5-ene-3 beta,17 beta-diol, androst-4-ene-3,17-dione and testosterone, suggesting that both classical pathways for testosterone synthesis were operating. Testosterone was further converted into 5 alpha-reduced androstanediols, especially in the microsomal fraction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号