首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Increased cellular levels of reactive oxygen species are known to arise during exposure of organisms to elevated metal concentrations, but the consequences for cells in the context of metal toxicity are poorly characterized. Using two-dimensional gel electrophoresis, combined with immunodetection of protein carbonyls, we report here that exposure of the yeast Saccharomyces cerevisiae to copper causes a marked increase in cellular protein carbonyl levels, indicative of oxidative protein damage. The response was time dependent, with total-protein oxidation peaking approximately 15 min after the onset of copper treatment. Moreover, this oxidative damage was not evenly distributed among the expressed proteins of the cell. Rather, in a similar manner to peroxide-induced oxidative stress, copper-dependent protein carbonylation appeared to target glycolytic pathway and related enzymes, as well as heat shock proteins. Oxidative targeting of these and other enzymes was isoform-specific and, in most cases, was also associated with a decline in the proteins' relative abundance. Our results are consistent with a model in which copper-induced oxidative stress disables the flow of carbon through the preferred glycolytic pathway, and promotes the production of glucose-equivalents within the pentose phosphate pathway. Such re-routing of the metabolic flux may serve as a rapid-response mechanism to help cells counter the damaging effects of copper-induced oxidative stress.  相似文献   

2.
Oxidative stress and protein carbonylation is implicated in aging and various diseases such as neurodegenerative disorders, diabetes, and cancer. Therefore, the accurate identification and quantification of protein carbonylation may lead to the discovery of new biomarkers. We have developed a new method that combines avidin affinity selection of carbonylated proteins with iTRAQ labeling and LC fractionation of intact proteins. This simple LC-based workflow is an effective technique to reduce sample complexity, minimize technical variation, and enable simultaneous quantification of four samples. This method was used to determine protein oxidation in an iron accumulating mutant of Saccharomyces cerevisiae exposed to oxidative stress. Overall, 31 proteins were identified with 99% peptide confidence, and of those, 27 proteins were quantified. Most of the identified proteins were associated with energy metabolism (32.3%), and cellular defense, transport, and folding (38.7%), suggesting a drop in energy production and reducing power of the cells due to the damage of glycolytic enzymes and decrease in activity of enzymes involved in protein protection and regeneration. In addition, the oxidation sites of seven proteins were identified and their estimated position also indicated a potential impact on the enzymatic activities. Predicted 3D structures of peroxiredoxin (TSA1) and thioredoxin II (TRX2) revealed close proximity of all oxidized amino acid residues to the protein active sites.  相似文献   

3.
Signal transduction networks are crucial for inter- and intra-cellular signaling. Signals are often transmitted via covalent modification of protein structure, with phosphorylation/dephosphorylation as the primary example. In this paper, we apply a recently described method of computational algebra to the modeling of signaling networks, based on time-course protein modification data. Computational algebraic techniques are employed to construct next-state functions. A Monte Carlo method is used to approximate the Deegan-Packel Index of Power corresponding to the respective variables. The Deegan-Packel Index of Power is used to conjecture dependencies in the cellular signaling networks. We apply this method to two examples of protein modification time-course data available in the literature. These experiments identified protein carbonylation upon exposure of cells to sub-lethal concentrations of copper. We demonstrate that this method can identify protein dependencies that might correspond to regulatory mechanisms to shut down glycolysis in a reverse, step-wise fashion in response to copper-induced oxidative stress in yeast. These examples show that the computational algebra approach can identify dependencies that may outline signaling networks involved in the response of glycolytic enzymes to the oxidative stress caused by copper.  相似文献   

4.
The production of ROS is an inevitable consequence of metabolism. However, high levels of ROS within a cell can be lethal and so the cell has a number of defences against oxidative cell stress. Occasionally the cell's antioxidant mechanisms fail and oxidative stress occurs. High levels of ROS within a cell have a number of direct and indirect consequences on cell signalling pathways and may result in apoptosis or necrosis. Although some of the indirect effects of ROS are well known, limitations in technology mean that the direct effects of the cell's redox environment upon proteins are less understood. Recent work by a number of groups has demonstrated that ROS can directly modify signalling proteins through different modifications, for example by nitrosylation, carbonylation, di-sulphide bond formation and glutathionylation. These modifications modulate a protein's activity and several recent papers have demonstrated their importance in cell signalling events, especially those involved in cell death/survival. Redox modification of proteins allows for further regulation of cell signalling pathways in response to the cellular environment. Understanding them may be critical for us to modulate cell pathways for our own means, such as in cytotoxic drug treatments of cancer cells. Protein modifications mediated by oxidative stress can modulate apoptosis, either through specific protein modifications resulting in regulation of signalling pathways, or through a general increase in oxidised proteins resulting in reduced cellular function. This review discusses direct oxidative protein modifications and their effects on apoptosis.  相似文献   

5.
Protein glycation by methylglyoxal is a nonenzymatic post-translational modification whereby arginine and lysine side chains form a chemically heterogeneous group of advanced glycation end-products. Methylglyoxal-derived advanced glycation end-products are involved in pathologies such as diabetes and neurodegenerative diseases of the amyloid type. As methylglyoxal is produced nonenzymatically from dihydroxyacetone phosphate and d-glyceraldehyde 3-phosphate during glycolysis, its formation occurs in all living cells. Understanding methylglyoxal glycation in model systems will provide important clues regarding glycation prevention in higher organisms in the context of widespread human diseases. Using Saccharomyces cerevisiae cells with different glycation phenotypes and MALDI-TOF peptide mass fingerprints, we identified enolase 2 as the primary methylglyoxal glycation target in yeast. Two other glycolytic enzymes are also glycated, aldolase and phosphoglycerate mutase. Despite enolase's activity loss, in a glycation-dependent way, glycolytic flux and glycerol production remained unchanged. None of these enzymes has any effect on glycolytic flux, as evaluated by sensitivity analysis, showing that yeast glycolysis is a very robust metabolic pathway. Three heat shock proteins are also glycated, Hsp71/72 and Hsp26. For all glycated proteins, the nature and molecular location of some advanced glycation end-products were determined by MALDI-TOF. Yeast cells experienced selective pressure towards efficient use of d-glucose, with high methylglyoxal formation as a side effect. Glycation is a fact of life for these cells, and some glycolytic enzymes could be deployed to contain methylglyoxal that evades its enzymatic catabolism. Heat shock proteins may be involved in proteolytic processing (Hsp71/72) or protein salvaging (Hsp26).  相似文献   

6.
Abstract

The production of ROS is an inevitable consequence of metabolism. However, high levels of ROS within a cell can be lethal and so the cell has a number of defences against oxidative cell stress. Occasionally the cell's antioxidant mechanisms fail and oxidative stress occurs. High levels of ROS within a cell have a number of direct and indirect consequences on cell signalling pathways and may result in apoptosis or necrosis. Although some of the indirect effects of ROS are well known, limitations in technology mean that the direct effects of the cell's redox environment upon proteins are less understood. Recent work by a number of groups has demonstrated that ROS can directly modify signalling proteins through different modifications, for example by nitrosylation, carbonylation, di-sulphide bond formation and glutathionylation. These modifications modulate a protein's activity and several recent papers have demonstrated their importance in cell signalling events, especially those involved in cell death/survival. Redox modification of proteins allows for further regulation of cell signalling pathways in response to the cellular environment. Understanding them may be critical for us to modulate cell pathways for our own means, such as in cytotoxic drug treatments of cancer cells. Protein modifications mediated by oxidative stress can modulate apoptosis, either through specific protein modifications resulting in regulation of signalling pathways, or through a general increase in oxidised proteins resulting in reduced cellular function. This review discusses direct oxidative protein modifications and their effects on apoptosis.  相似文献   

7.
The imbalance between the reactive oxygen (ROS) and nitrogen (RNS) species production and their handling by the antioxidant machinery (low molecular weight antioxidant molecules and antioxidant enzymes), also known as oxidative stress, is a condition caused by physiological and pathological processes. Moreover, oxidative stress may be due to an overproduction of free radicals during physical exercise. Excess of radical species leads to the modification of molecules, such as proteins – the most susceptible to oxidative modification – lipids and DNA. With regard to the oxidation of proteins, carbonylation is an oxidative modification that has been widely described. Several studies have detected changes in the total amount of protein carbonyls following different types of physical exercise, but only few of these identified the specific amino acidic residues targets of such oxidation. In this respect, proteomic approaches allow to identify the proteins susceptible to carbonylation and in many cases, it is also possible to identify the specific protein carbonylation sites. This review focuses on the role of protein oxidation, and specifically carbonyl formation, for plasma and skeletal muscle proteins, following different types of physical exercise performed at different intensities. Furthermore, we focused on the proteomic strategies used to identify the specific protein targets of carbonylation. Overall, our analysis suggests that regular physical activity promotes a protection against protein carbonylation, due to the activation of the antioxidant defence or of the turnover of protein carbonyls. However, we can conclude that from the comprehensive bibliography analysed, there is no clearly defined specific physiological role about this post-translational modification of proteins.  相似文献   

8.
9.
We previously reported that photodynamic therapy (PDT) using Purpurin-18 (Pu-18) induces apoptosis in HL60 cells. Using flow cytometry, two-dimensional electrophoresis coupled with immunodetection of carbonylated proteins and mass spectrometry, we now show that PDT-induced apoptosis is associated with increased reactive oxygen species generation, glutathione depletion, changes in mitochondrial transmembrane potential, simultaneous downregulation of mitofilin and carbonylation of specific proteins: glucose-regulated protein-78, heat-shock protein 60, heat-shock protein cognate 71, phosphate disulphide isomerase, calreticulin, beta-actin, tubulin-alpha-1-chain and enolase-alpha. Interestingly, all carbonylated proteins except calreticulin and enolase-alpha showed a pI shift in the proteome maps. Our results suggest that PDT with Pu-18 perturbs the normal redox balance and shifts HL60 cells into a state of oxidative stress, which systematically induces the carbonylation of specific chaperones. As these proteins normally produce a prosurvival signal during oxidative stress, we hypothesize that their carbonylation represents a signalling mechanism for apoptosis induced by PDT.  相似文献   

10.
Hydroxynonenal,toxic carbonyls,and Alzheimer disease   总被引:5,自引:0,他引:5  
Cytoskeletal disruption is one of the distinguishing characteristics of the vulnerable neurons in Alzheimer disease (AD). It has been suggested that these cytoskeletal changes occur secondarily to covalent modifications of the protein components. Despite the abundance and probable importance of these changes, there has been very little data regarding the identity of the modified proteins or the precise chemistry of the modifications. Here we review a specific type of modification, namely carbonylation of proteins, which has been shown to be a common result of cellular oxidative stress. Hopefully, the following discussion will help elucidate the relationship between oxidative stress, protein modification and the pathogenesis of AD.  相似文献   

11.
Penicillium expansum, a widespread filamentous fungus, is a major causative agent of fruit decay and may lead to the production of mycotoxin that causes harmful effects on human health. In this study, we compared the cellular and extracellular proteomes of P. expansum in the absence and presence of borate, which affects the virulence of the fungal pathogen. The differentially expressed proteins were identified using ESI-Q-TOF-MS/MS. Several proteins related to stress response (glutathione S-transferase, catalase, and heat shock protein 60) and basic metabolism (glyceraldehyde-3-phosphate dehydrogenase, dihydroxy-acid dehydratase, and arginase) were identified in the cellular proteome. Catalase and glutathione S-transferase, the two antioxidant enzymes, exhibited reduced levels of expression upon exposure to borate. Because catalase and glutathione S-transferase are related to oxidative stress response, we further investigated the reactive oxygen species (ROS) levels and oxidative protein carbonylation (damaged proteins) in P. expansum. Higher amounts of ROS and carbonylated proteins were observed after borate treatment, indicating that catalase and glutathione S-transferase are important in scavenging ROS and protecting cellular proteins from oxidative damage. Additionally to find secretory proteins that contribute to the virulence, we studied the extracellular proteome of P. expansum under stress condition with reduced virulence. The expression of three protein spots were repressed in the presence of borate and identified as the same hydrolytic enzyme, polygalacturonase.  相似文献   

12.
Due to its vital importance in the supply of cellular pathways with energy and precursors, glycolysis has been studied for several decades regarding its capacity and regulation. For a systems-level understanding of the Madin-Darby canine kidney (MDCK) cell metabolism, we couple a segregated cell growth model published earlier with a structured model of glycolysis, which is based on relatively simple kinetics for enzymatic reactions of glycolysis, to explain the pathway dynamics under various cultivation conditions. The structured model takes into account in vitro enzyme activities, and links glycolysis with pentose phosphate pathway and glycogenesis. Using a single parameterization, metabolite pool dynamics during cell cultivation, glucose limitation and glucose pulse experiments can be consistently reproduced by considering the cultivation history of the cells. Growth phase-dependent glucose uptake together with cell-specific volume changes generate high intracellular metabolite pools and flux rates to satisfy the cellular demand during growth. Under glucose limitation, the coordinated control of glycolytic enzymes re-adjusts the glycolytic flux to prevent the depletion of glycolytic intermediates. Finally, the model''s predictive power supports the design of more efficient bioprocesses.  相似文献   

13.
Saccharomyces cerevisiae expresses two forms of superoxide dismutase (SOD): MnSOD, encoded by SOD2, which is located within the mitochondrial matrix, and CuZnSOD, encoded by SOD1, which is located in both the cytosol and the mitochondrial intermembrane space. Because two different SOD enzymes are located in the mitochondrion, we examined the relative roles of each in protecting mitochondria against oxidative stress. Using protein carbonylation as a measure of oxidative stress, we have found no correlation between overall levels of respiration and the level of oxidative mitochondrial protein damage in either wild type or sod mutant strains. Moreover, mitochondrial protein carbonylation levels in sod1, sod2, and sod1sod2 mutants are not elevated in cells harvested from mid-logarithmic and early stationary phases, suggesting that neither MnSOD nor CuZnSOD is required for protecting the majority of mitochondrial proteins from oxidative damage during these early phases of growth. During late stationary phase, mitochondrial protein carbonylation increases in all strains, particularly in sod1 and sod1sod2 mutants. By using matrix-assisted laser desorption ionization time-of-flight mass spectrometry, we have found that specific proteins become carbonylated in sod1 and sod2 mutants. We identified six mitochondrial protein spots representing five unique proteins that become carbonylated in a sod1 mutant and 19 mitochondrial protein spots representing 11 unique proteins that become carbonylated in a sod2 mutant. Although some of the same proteins are carbonylated in both mutants, other proteins are not. These findings indicate that MnSOD and CuZnSOD have both unique and overlapping functions in the mitochondrion.  相似文献   

14.
Phosphoglucose isomerase/autocrine motility factor (PGI/AMF) is a housekeeping gene product present in all cells, is an essential enzyme of catabolic glycolysis and anabolic gluconeogenesis, and regulates tumor cell growth and metastasis. Because glycolytic enzyme up-regulation of expression contributes to glycolytic flux, leading to increased of cell growth and a resistance to cellular stress of normal fibroblasts whereas down-regulation of PGI/AMF leads to mesenchymal-to-epithelial transition in tumor cells, we examined the involvement of PGI/AMF in overcoming cellular senescence in cancer cells. PGI/AMF cellular expression in HT1080 human fibrosarcoma was down-regulated by small interfering RNA methodology, which resulted in an increased sensitivity to oxidative stress and oxidative stress-induced cellular senescence. Signaling analysis revealed that the senescence pathway involving p21 cyclin-dependent kinase inhibitor was up-regulated in PGI/AMF knockdown cells and that superoxide dismutase is the upstream regulator protein of p21-mediated cellular senescence. A specific inhibitor of PGI/AMF induced cellular senescence and p21 expression in tumor cells exposed to an oxidative stress environment. Taken together, the results presented here suggest that PGI/AMF is involved in oxidative stress-induced cellular senescence and should bring novel insights into the control of cellular growth leading to a new methodology for cancer treatment.  相似文献   

15.
The inoculation of active dry wine yeast (ADWY) is one of the most common practices in winemaking. This inoculation exposes the yeast cells to strong osmotic, acidic and thermal stresses, and adaptation to the new medium is crucial for successful fermentation. We have analysed the changes that occur in the ADWY protein profile in the first hours after inoculation under enological-like conditions at a low temperature. Protein changes mainly included enzymes of the nitrogen and carbon metabolism and proteins related to the cellular stress response. Most of the enzymes of the lower part of the glycolysis showed an increase in their concentration 4 and 24 h after inoculation, indicating an increase in glycolytic flux and in ATP production. However, the shift from respiration to fermentation was not immediate in the inoculation because some mitochondrial proteins involved in oxidative metabolism were induced in the first hours after inoculation. Inoculation in this fresh medium also reduced the cellular concentration of stress proteins produced during industrial production of the ADWY. The only exception was Cys3p, which might be involved in glutathione synthesis as a response to oxidative stress. A better understanding of the yeast stress response to rehydration and inoculation will lead to improvements in the handling efficiency of ADWY in winemaking and presumably to better control of fermentation startup.  相似文献   

16.
While the build-up of oxidized proteins within cells is believed to be toxic, there is currently no evidence linking protein carbonylation and cell death. In the present study, we show that incubation of nPC12 (neuron-like PC12) cells with 50 μM DEM (diethyl maleate) leads to a partial and transient depletion of glutathione (GSH). Concomitant with GSH disappearance there is increased accumulation of PCOs (protein carbonyls) and cell death (both by necrosis and apoptosis). Immunocytochemical studies also revealed a temporal/spatial relationship between carbonylation and cellular apoptosis. In addition, the extent of all three, PCO accumulation, protein aggregation and cell death, augments if oxidized proteins are not removed by proteasomal degradation. Furthermore, the effectiveness of the carbonyl scavengers hydralazine, histidine hydrazide and methoxylamine at preventing cell death identifies PCOs as the toxic species. Experiments using well-characterized apoptosis inhibitors place protein carbonylation downstream of the mitochondrial transition pore opening and upstream of caspase activation. While the study focused mostly on nPC12 cells, experiments in primary neuronal cultures yielded the same results. The findings are also not restricted to DEM-induced cell death, since a similar relationship between carbonylation and apoptosis was found in staurosporine- and buthionine sulfoximine-treated nPC12 cells. In sum, the above results show for the first time a causal relationship between carbonylation, protein aggregation and apoptosis of neurons undergoing oxidative damage. To the best of our knowledge, this is the first study to place direct (oxidative) protein carbonylation within the apoptotic pathway.  相似文献   

17.
During cardiac remodelling, the heart generates higher levels of reactive species; yet an intermediate 'compensatory' stage of hypertrophy is associated with a greater ability to withstand oxidative stress. The mechanisms underlying this protected myocardial phenotype are poorly understood. We examined how a cellular model of hypertrophy deals with electrophilic insults, such as would occur upon ischaemia or in the failing heart. For this, we measured energetics in control and PE (phenylephrine)-treated NRCMs (neonatal rat cardiomyocytes) under basal conditions and when stressed with HNE (4-hydroxynonenal). PE treatment caused hypertrophy as indicated by augmented atrial natriuretic peptide and increased cellular protein content. Hypertrophied myocytes demonstrated a 2.5-fold increase in ATP-linked oxygen consumption and a robust augmentation of oligomycin-stimulated glycolytic flux and lactate production. Hypertrophied myocytes displayed a protected phenotype that was resistant to HNE-induced cell death and a unique bioenergetic response characterized by a delayed and abrogated rate of oxygen consumption and a 2-fold increase in glycolysis upon HNE exposure. This augmentation of glycolytic flux was not due to increased glucose uptake, suggesting that electrophile stress results in utilization of intracellular glycogen stores to support the increased energy demand. Hypertrophied myocytes also had an increased propensity to oxidize HNE to 4-hydroxynonenoic acid and sustained less protein damage due to acute HNE insults. Inhibition of aldehyde dehydrogenase resulted in bioenergetic collapse when myocytes were challenged with HNE. The integration of electrophile metabolism with glycolytic and mitochondrial energy production appears to be important for maintaining myocyte homoeostasis under conditions of increased oxidative stress.  相似文献   

18.
H(2)O(2) induces a specific protein oxidation in yeast cells, and the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (Tdh) is a major target. Using a 2D-gel system to study protein carbonylation, it is shown in this work that both Tdh2p and Tdh3p isozymes were oxidized during exposure to H(2)O(2). In addition, we identified two other proteins carbonylated and inactivated: Cu,Zn-superoxide dismutase and phosphoglycerate mutase. The oxidative inactivation of Cu,Zn-superoxide dismutase decreases the antioxidant capacity of yeast cells and probably contributes to H(2)O(2)-induced cell death. Cyclophilin 1 was also carbonylated, but CPH1 gene disruption did not affect peroxide stress sensitivity. The correlation between H(2)O(2) sensitivity and the accumulation of oxidized proteins was evaluated by assaying protein carbonyls in mutants deficient in the stress response regulators Yap1p and Skn7p. The results show that the high sensitivity of yap1delta and skn7delta mutants to H(2)O(2) was correlated with an increased induction of protein carbonylation. In wild-type cells, the acquisition of stress resistance by pre-exposure to a sublethal H(2)O(2) stress was associated with a lower accumulation of oxidized proteins. However, pre-exposure of yap1delta and skn7delta cells to 0.4 mM H(2)O(2) decreased protein carbonylation induced by 1.5 mM H(2)O(2), indicating that the adaptive mechanism involved in the protection of proteins from carbonylation is Yap1p- and Skn7p-independent.  相似文献   

19.
Although increased oxidative stress has been associated with the impairment of proliferation and function of adult human muscle stem cells, proteins either involved in the stress response or damaged by oxidation have not been identified. A parallel proteomics approach was performed for analyzing the protein expression profile as well as proteins preferentially oxidized upon hydrogen peroxide-induced oxidative stress. Fifteen proteins involved in the oxidative stress response were identified. Among them, protein spots identified as peroxiredoxins 1 and 6, glyceraldehyde-3-phosphate dehydrogenase, and α-enolase were shifted to a more acidic isoelectric point upon oxidative stress, indicating posttranslational modifications. Oxidized proteins were evidenced by immunodetection of derivatized carbonyl groups followed by identification by mass spectrometry. The carbonylated proteins identified are mainly cytosolic and involved in carbohydrate metabolism, cellular assembly, cellular homeostasis, and protein synthesis and degradation. Pathway analysis revealed skeletal and muscular disorders, cell death, and cancer-related as the main molecular networks altered. Interestingly, these pathways were focused on two distinct proteins: p53 for altered protein expression and huntingtin for increased protein carbonylation. This study emphasizes the importance of performing analysis addressing different aspects of the cellular proteome to have a more accurate view of their changes upon stress.  相似文献   

20.
Je JH  Lee TH  Kim DH  Cho YH  Lee JH  Kim SC  Lee SK  Lee J  Lee MG 《Proteomics》2008,8(12):2384-2393
ROS are produced in dendritic cells (DCs) during antigen presentation in contact hypersensitivity (CHS). As a result, ROS cause a number of nonenzymatic protein modifications, including carbonylation, which is the most widely used marker of oxidative stress. 2,4,6-Trinitrobenzene sulfonic acid (TNBS) is a well-characterized contact allergen that results in the formation of ROS. However, proteins that are carbonylated in DCs in response to TNBS have not been identified. To study ROS-dependent protein carbonylation in response to TNBS, we used the well-established mouse DC line, XS-106. We focused on the effects of TNBS on oxidation by examining selected oxidative markers. We identified TNBS-induced ROS and myeloperoxidase (MPO) proteins and demonstrated that the increase in ROS resulted in IL-12 production. The increase in oxidation was further confirmed by an oxidation-dependent increase in protein modifications, such as carbonylation. In fact, TNBS strongly induced carbonylation of mitochondrial adenosine triphosphate (ATP) synthase in XS-106 DCs, as determined by MALDI-TOF analysis and 2-D Western blotting. ROS production and protein carbonylation were confirmed in human monocyte-derived DCs (Mo-DCs). Furthermore, glutathione (GSH) decreased ROS and protein carbonylation in Mo-DCs. Carbonylation of ATP synthase in DCs may contribute to the pathophysiology of CHS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号