首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Aphidicolin is a highly specific inhibitor of DNA polymerase α and has been most useful for assessing the role of this enzyme in various replication processes (J. A. Huberman, Cell 23:647-648, 1981). Both nuclear DNA replication and simian virus 40 DNA replication are highly sensitive to this drug (Krokan et al., Biochemistry 18:4431-4443, 1979), whereas mitochondrial DNA synthesis is completely insensitive (Zimmerman et al., J. Biol. Chem. 255:11847-11852, 1980). Adenovirus DNA replication is sensitive to aphidicolin, but only at much higher concentrations. These patterns of sensitivity are seen both in vivo and in vitro (Krokan et al., Biochemistry 18:4431-4443, 1979). A temperature-sensitive mutant of adenovirus type 5 known as H5ts125 is able to complete but not initiate new rounds of replication at nonpermissive temperatures (P. C. van der Vliet and J. S. Sussenbach, Virology 67:415-426, 1975). When cells infected with H5ts125 were shifted from permissive (33°C) to nonpermissive (41°C) conditions, the residual DNA synthesis (elongation) showed a striking increase in sensitivity to aphidicolin. The temperature-sensitive mutation of H5ts125 is in the gene for the 72-kilodalton single-stranded DNA-binding protein. This demonstrated that the increased resistance to aphidicolin shown by adenovirus DNA replication was dependent on that protein. It also supports an elongation role for both DNA polymerase α and the 72-kilodalton single-stranded DNA-binding protein in adenovirus DNA replication. Further support for an elongation role of DNA polymerase α came from experiments with permissive temperature conditions and inhibiting levels of aphidicolin in which it was shown that newly initiated strands failed to elongate to completion.  相似文献   

2.
We have developed an immortalized oral epithelial cell line, ROE2, from fetal transgenic rats harboring temperature-sensitive simian virus 40 large T-antigen gene. The cells grew continuously at either a permissive temperature of 33°C or an intermediate temperature of 37°C. At the nonpermissive temperature of 39°C, on the other hand, growth decreased significantly, and the Sub-G1 phase of the cell cycle increased, indicating that the cells undergo apoptosis at a nonpermissive temperature. Histological and immunocytochemical analyses revealed that ROE2 cells at 37°C had a stratified epithelial-like morphology and expressed cytokeratins Krt4 and Krt13, marker proteins for oral nonkeratinized epithelial cells. Global-scale comprehensive microarray analysis, coupled with bioinformatics tools, demonstrated a significant gene network that was obtained from the upregulated genes. The gene network contained 16 genes, including Cdkn1a, Fos, Krt13, and Prdm1, and was associated mainly with the biological process of skin development in the category of biological functions, organ development. These four genes were validated by quantitative real-time polymerase chain reaction, and the results were nearly consistent with the microarray data. It is therefore anticipated that this cell line will be useful as an in vitro model for studies such as physiological functions, as well as for gene expression in oral epithelial cells.  相似文献   

3.
Temperature-sensitive (ts) mutants of the Ace gene, which codes for acetylcholinesterase (AChE) in Drosophila melanogaster, were analyzed for defects in viability, behavior and function of the enzyme. The use of heat-sensitive and cold-sensitive mutations permited the function of AChE in the nervous system to be analyzed temporally. All ts mutations were lethal, or nearly so, when animals expressing them were subjected to restrictive temperatures during late embryonic and very early larval stages. Heat treatments to Ace-ts mid- and late larvae had little effect on the behavior of these animals or on the viability or behavior of the eventual adults. Heat-sensitive mutants exposed to nonpermissive temperatures as pupae, by contrast, had severe defects in phototaxis and locomotor activity as adults. AChE extracted from adult ts mutants that had developed at a permissive temperature were abnormally heat labile, and they had reduced substrate affinity when assayed at restrictive temperatures. However, enzyme activity did not decline during exposure of heat-sensitive adults to high temperatures even though such treatments caused decrements in phototaxis (29°) and, eventually, cessation of movement (31°). The cold-sensitive mutant also produced readily detectable levels of AChE when exposed to a restrictive temperature during the early developmental stage when this mutation causes almost complete lethality. We suggest that the relationship among the genetic, biochemical and neurobiological defects in these mutants may involve more than merely temperature-sensitive catalytic functions.  相似文献   

4.
Gerber CA  Lopez AB  Shook SJ  Doerder FP 《Genetics》2002,160(4):1469-1479
The SerH locus of Tetrahymena thermophila is one of several paralogous loci with genes encoding variants of the major cell surface protein known as the immobilization antigen (i-ag). The locus is highly polymorphic, raising questions concerning functional equivalency and selective forces acting on its multiple alleles. Here, we compare the sequences and expression of SerH1, SerH3, SerH4, SerH5, and SerH6. The precursor i-ags are highly similar. They are rich in alanine, serine, threonine, and cysteine and they share nearly identical ER translocation and GPI addition signals. The locations of the 39 cysteines are highly conserved, particularly in the 3.5 central, imperfect tandem repeats in which 8 periodic cysteines punctuate alternating short and long stretches of amino acids. Hydrophobicity patterns are also conserved. Nevertheless, amino acid sequence identity is low, ranging from 60.7 to 82.9%. At the nucleotide level, from 9.7 to 26.7% of nucleotide sites are polymorphic in pairwise comparisons. Expression of each allele is regulated by temperature-sensitive mRNA stability. H mRNAs are stable at <36 degrees but are unstable at >36 degrees. The H5 mRNA, which is less affected by temperature, has a different arrangement of the putative mRNA destabilization motif AUUUA. Statistical analysis of SerH genes indicates that the multiple alleles are neutral. Significantly low ratios of the rates of nonsynonymous to synonymous amino acid substitutions suggest that the multiple alleles are subject to purifying (negative) selection enforcing constraints on structure.  相似文献   

5.
J. H. McCusker  J. E. Haber 《Genetics》1988,119(2):303-315
We describe the isolation and preliminary characterization of a set of pleiotropic mutations resistant to the minimum inhibitory concentration of cycloheximide and screened for ts (temperature-sensitive) growth. These mutations fall into 22 complementation groups of cycloheximide resistant ts lethal mutations (crl). None of the crl mutations appears to be allelic with previously isolated mutations. Fifteen of the CRL loci have been mapped. At the nonpermissive temperature (37°), these mutants arrest late in the cell cycle after several cell divisions. Half of these mutants are also unable to grow at very low temperatures (5°). Although mutants from all of the 22 complementation groups exhibit similar temperature-sensitive phenotypes, an extragenic suppressor of the ts lethality of crl3 does not relieve the ts lethality of most other crl mutants. A second suppressor mutation allows crl10, crl12, and crl14 to grow at 37° but does not suppress the ts lethality of the remaining crl mutants. We also describe two new methods for the enrichment of auxotrophic mutations from a wild-type yeast strain.  相似文献   

6.
Oh M  Choi IS  Park SD 《Nucleic acids research》2002,30(18):4022-4031
The deletion of the top3+ gene leads to defective nuclear division and lethality in Schizosaccharo myces pombe. This lethality is suppressed by concomitant loss of rqh1+, the RecQ helicase. Despite extensive investigation, topoisomerase III function and its relationship with RecQ helicase remain poorly understood. We generated top3 temperature-sensitive (top3-ts) mutants and found these to be defective in nuclear division and cytokinesis and to be sensitive to DNA-damaging agents. A temperature shift of top3-ts cells to 37°C, or treatment with hydroxyurea at the permissive temperature, caused an increase in ‘cut’ (cell untimely torn) cells and elevated rates of minichromosome loss. The viability of top3-ts cells was decreased by a temperature shift during S-phase when compared with a similar treatment in other cell cycle stages. Furthermore, the top3-ts mutant was not sensitive to M-phase specific drugs. These results indicate that topoisomerase III may play an important role in DNA metabolism during DNA replication to ensure proper chromosome segregation. Our data are consistent with Top3 acting downstream of Rqh1 to process the toxic DNA structure produced by Rqh1.  相似文献   

7.
8.
The expression of Tetrahymena surface proteins serotype H3 (SerH3) and serotype T (SerT) is under environmental regulation. SerH3 is expressed when cells are incubated between the temperatures of 20 and 35 degrees C, while SerT is expressed when cells are grown at temperatures above 35 degrees C. Using a SerH3 cDNA clone as a hybridization probe, we determined that (i) the SerH3 gene is a member of a multigene family; (ii) most members of this multigene family are variably rearranged during macronuclear development; and (iii) the gene which produces the SerH3 mRNA is reproducibly rearranged during macronuclear development.  相似文献   

9.

Purpose

Storage of cultured human oral keratinocytes (HOK) allows for transportation of cultured transplants to eye clinics worldwide. In a previous study, one-week storage of cultured HOK was found to be superior with regard to viability and morphology at 12°C compared to 4°C and 37°C. To understand more of how storage temperature affects cell phenotype, gene expression of HOK before and after storage at 4°C, 12°C, and 37°C was assessed.

Materials and Methods

Cultured HOK were stored in HEPES- and sodium bicarbonate-buffered Minimum Essential Medium at 4°C, 12°C, and 37°C for one week. Total RNA was isolated and the gene expression profile was determined using DNA microarrays and analyzed with Partek Genomics Suite software and Ingenuity Pathway Analysis. Differentially expressed genes (fold change > 1.5 and P < 0.05) were identified by one-way ANOVA. Key genes were validated using qPCR.

Results

Gene expression of cultures stored at 4°C and 12°C clustered close to the unstored control cultures. Cultures stored at 37°C displayed substantial change in gene expression compared to the other groups. In comparison with 12°C, 2,981 genes were differentially expressed at 37°C. In contrast, only 67 genes were differentially expressed between the unstored control and the cells stored at 12°C. The 12°C and 37°C culture groups differed most significantly with regard to the expression of differentiation markers. The Hedgehog signaling pathway was significantly downregulated at 37°C compared to 12°C.

Conclusion

HOK cultures stored at 37°C showed considerably larger changes in gene expression compared to unstored cells than cultured HOK stored at 4°C and 12°C. The changes observed at 37°C consisted of differentiation of the cells towards a squamous epithelium-specific phenotype. Storing cultured ocular surface transplants at 37°C is therefore not recommended. This is particularly interesting as 37°C is the standard incubation temperature used for cell culture.  相似文献   

10.
Saccharomonospora viridis is a thermophilic actinomycete that may have biotechnological applications because of its dye decolorizing activity, though the enzymatic oxidative system responsible for this activity remains elusive. Bioinformatic analysis revealed a DyP-type peroxidase gene in the genome of S. viridis DSM 43017 with sequence similarity to peroxidase from dye-decolorizing microbes. This gene, svidyp, consists of 1,215 bp encoding a polypeptide of 404 amino acids. The gene encoding SviDyP was cloned, heterologously expressed in Escherichia coli, and then purified. The recombinant protein could efficiently decolorize several triarylmethane dyes, anthraquinonic and azo dyes under neutral to alkaline conditions. The optimum pH and temperature for SviDyP was pH 7.0 and 70°C, respectively. Compared with other DyP-type peroxidases, SviDyP was more active at high temperatures, retaining>63% of its maximum activity at 50–80°C. It also showed broad pH adaptability (>35% activity at pH 4.0–9.0) and alkali-tolerance (>80% activity after incubation at pH 5–10 for 1 h at 37°C), and was highly thermostable (>60% activity after incubation at 70°C for 2 h at pH 7.0). SviDyP had an accelerated action during the biobleaching of eucalyptus kraft pulp, resulting in a 21.8% reduction in kappa number and an increase of 2.98% (ISO) in brightness. These favorable properties make SviDyP peroxidase a promising enzyme for use in the pulp and paper industries.  相似文献   

11.
Summary Among temperature-sensitive mutants which were defective in septum formation and formed nonseptate filaments at nonpermissive temperatures three (ts31, ts341, ts526) were identified among 434 temperature-sensitive mutants isolated at random from a mutagenized population of Bacillus subtilis 168. The results of morphological observations and characterization of these mutants showed that ts31 and ts341 were septum-initiation mutants and that ts526 was a DNA elongation mutant. The above mutations, and other mutations affecting septum initiation (div355 and tms12) were mapped by PBS1-mediated transduction on the chromosome in three separate regions as follows: pur A16-ts526-div355-cysA14; metC3-(ts31, tms12)-pyrD1-recA1; ebr-2-ts341-uvrA1-hisA1-cysB3. Our results suggest that the initiation process of septum formation requires at least four kinds of gene product. In addition, the sesult obtained with ts526 suggests an intimate connection between septum initiation and DNA replication.  相似文献   

12.
A divE mutant, which has a temperature-sensitive mutation in the tRNA1Ser gene, exhibits differential loss of the synthesis of certain proteins, such as β-galactosidase and succinate dehydrogenase, at nonpermissive temperatures. In Escherichia coli, the UCA codon is recognized only by tRNA1Ser. Several genes containing UCA codons are normally expressed after a temperature shift to 42°C in the divE mutant. Therefore, it is unlikely that the defect in protein synthesis at 42°C is simply caused by a defect in the decoding function of the mutant tRNA1Ser. In this study, we sought to determine the cause of the defect in lacZ gene expression in the divE mutant. It has also been shown that the defect in lacZ gene expression is accompanied by a decrease in the amount of lacZ mRNA. To examine whether inactivation of mRNA degradation pathways restores the defect in lacZ gene expression, we constructed divE mutants containing rne-1, rnb-500, and pnp-7 mutations in various combinations. We found that the defect was almost completely restored by introducing an rne-1 pnp-7 double mutation into the divE mutant. Northern hybridization analysis showed that the rne-1 mutation stabilized lacZ mRNA, whereas the pnp-7 mutation stabilized mutant tRNA1Ser, at 44°C. We present a mechanism that may explain these results.  相似文献   

13.
14.
A potential may exist for survival of and resistance development by Escherichia coli O157:H7 in environmental niches of meat plants applying carcass decontamination interventions. This study evaluated (i) survival or growth of acid-adapted and nonadapted E. coli O157:H7 strain ATCC 43895 in acetic acid (pH 3.6 ± 0.1) or in water (pH 7.2 ± 0.2) fresh beef decontamination runoff fluids (washings) stored at 4, 10, 15, or 25°C and (ii) resistance of cells recovered from the washings after 2 or 7 days of storage to a subsequent lactic acid (pH 3.5) stress. Corresponding cultures in sterile saline or in heat-sterilized water washings were used as controls. In acetic acid washings, acid-adapted cultures survived better than nonadapted cultures, with survival being greatest at 4°C and lowest at 25°C. The pathogen survived without growth in water washings at 4 and 10°C, while it grew by 0.8 to 2.7 log cycles at 15 and 25°C, and more in the absence of natural flora. E. coli O157:H7 cells habituated without growth in water washings at 4 or 10°C were the most sensitive to pH 3.5, while cells grown in water washings at 15 or 25°C were relatively the most resistant, irrespective of previous acid adaptation. Resistance to pH 3.5 of E. coli O157:H7 cells habituated in acetic acid washings for 7 days increased in the order 15°C > 10°C > 4°C, while at 25°C cells died off. These results indicate that growth inhibition by storage at low temperatures may be more important than competition by natural flora in inducing acid sensitization of E. coli O157:H7 in fresh meat environments. At ambient temperatures in meat plants, E. coli O157:H7 may grow to restore acid resistance, unless acid interventions are applied to inhibit growth and minimize survival of the pathogen. Acid-habituated E. coli O157:H7 at 10 to 15°C may maintain a higher acid resistance than when acid habituated at 4°C. These responses should be evaluated with fresh meat and may be useful for the optimization of decontamination programs and postdecontamination conditions of meat handling.  相似文献   

15.
The core assumption driving the use of conditional loss-of-function reagents such as temperature-sensitive mutations is that the resulting phenotype(s) are solely due to depletion of the mutant protein under nonpermissive conditions. However, prior published data, combined with observations presented here, challenge the generality of this assumption at least for telomere biology: for both wild-type yeast and strains bearing null mutations in telomere protein complexes, there is an additional phenotypic consequence when cells are grown above 34°. We propose that this synthetic phenotype is due to a naturally thermolabile activity that confers a telomere-specific defect, which we call the Tmp(-) phenotype. This prompted a re-examination of commonly used cdc13-ts and stn1-ts mutations, which indicates that these alleles are instead hypomorphic mutations that behave as apparent temperature-sensitive mutations due to the additive effects of the Tmp(-) phenotype. We therefore generated new cdc13-ts reagents, which are nonpermissive below 34°, to allow examination of cdc13-depleted phenotypes in the absence of this temperature-dependent defect. A return-to-viability experiment following prolonged incubation at 32°, 34°, and 36° with one of these new cdc13-ts alleles argues that the accelerated inviability previously observed at 36° in cdc13-1 rad9-Δ mutant strains is a consequence of the Tmp(-) phenotype. Although this study focused on telomere biology, viable null mutations that confer inviability at 36° have been identified for multiple cellular pathways. Thus, phenotypic analysis of other aspects of yeast biology may similarly be compromised at high temperatures by pathway-specific versions of the Tmp(-) phenotype.  相似文献   

16.
Ca2+ entry during the action potential stimulates muscle contraction. During repetitive low frequency stimulation, skeletal muscle undergoes staircase potentiation (SP), a progressive increase in the peak twitch force induced by each successive stimulus. Multiple mechanisms, including myosin regulatory light chain phosphorylation, likely contribute to SP, a temperature-dependent process. Here, we used the Ca2+-sensitive fluorescence indicators acetoxymethyl (AM)-furaptra and AM-fura-2 to examine the intracellular Ca2+ transient (ICT) and the baseline Ca2+ level at the onset of each ICT during SP at 30 and 37°C in mouse lumbrical muscle. The stimulation protocol, 8 Hz for 8 s, resulted in a 27 ± 3% increase in twitch force at 37°C and a 7 ± 2% decrease in twitch force at 30°C (P < 0.05). Regardless of temperature, the peak rate of force production (+df/dt) was higher in all twitches relative to the first twitch (P < 0.05). Consistent with the differential effects of stimulation on twitch force at the two temperatures, raw ICT amplitude decreased during repetitive stimulation at 30°C (P < 0.05) but not at 37°C. Cytosolic Ca2+ accumulated during SP such that baseline Ca2+ at the onset of ICTs occurring late in the train was higher (P < 0.05) than that of those occurring early in the train. ICT duration increased progressively at both temperatures. This effect was not entirely proportional to the changes in twitch duration, as twitch duration characteristically decreased before increasing late in the protocol. This is the first study identifying a changing ICT as an important, and temperature-sensitive, modulator of muscle force during repetitive stimulation. Moreover, we extend previous observations by demonstrating that contraction-induced increases in baseline Ca2+ coincide with greater +df/dt but not necessarily with higher twitch force.  相似文献   

17.
A temperature-sensitive, fiber-minus mutant of type 5 adenovirus, H5ts142, was biochemically and genetically characterized. Genetic studies revealed that H5ts142 was a member of one of the three apparent fiber complementation groups which were detected owing to intracistronic complementation. Recombination analyses showed that it occupied a unique locus at the right end of the adenovirus genetic map. At the nonpermissive temperature, the mutant made stable polypeptides, but they were not glycosylated like wild-type fiber polypeptides. Sedimentation studies of extracts of H5ts142-infected cells cultured and labeled at 39.5°C indicated that a limited number of the fiber polypeptides made at the nonpermissive temperature could assemble into a form having a sedimentation value of 6S (i.e., similar to the trimeric wild-type fiber), but that this 6S structure was not immunologically reactive. When H5ts142-infected cells were shifted to the permissive temperature, 32°C, fiber polypeptides synthesized at 39.5°C were as capable of being assembled into virions as fibers synthesized in wild type-infected cells; de novo protein synthesis was not required to allow this virion assembly. In H5ts142-infected cells incubated at 39.5°C, viral proteins accumulated and aggregated into particles having physical characteristics of empty capsids. These particles did not contain DNA or its associated core proteins. However, when the infected culture was shifted to 32°C, DNA appeared to enter the empty particles and complete virions developed. The intermediate particles obtained had the morphology of adenoviruses, but they contained less than unit-length viral genomes as measured by their buoyant density in a CsCl density gradient and the size of their DNA as determined in both neutral and alkaline sucrose gradients. The reduced size of the intermediate particle DNA was demonstrated to be the result of incompletely packaged DNA molecules being fragmented during the preparative procedures. Hybridization of labeled DNA extracted from the intermediate particles to filters containing restriction fragments of the adenovirus genome indicated that the molecular left end of the viral genome preferentially entered these particles.  相似文献   

18.
Interaction of heat and salt shock in cultured tobacco cells   总被引:8,自引:2,他引:8       下载免费PDF全文
Cultured tobacco cells (Nicotiana tabacum L. var Wisconsin-38) developed tolerance to otherwise nonpermissive 54°C treatment when heat-shocked at 38°C (2 h) but not at 42°C. Heat-shocked cells (38°C) exhibited little normal growth when the 54°C stress came immediately after heat shock and normal growth when 54°C stress was administered 8 hours after heat shock. Heat shock extended the length of time that the cells tolerated 54°C. Tobacco cells developed tolerance to otherwise lethal 2% NaCl treatment when salt-shocked (1.2% NaCl for 3 hours). The time course for salt tolerance development was similar to that of thermotolerance. Heat-shocked cells (38°C) developed tolerance of nonpermissive salt stress 8 hours after heat shock. Alternatively, cells heat-shocked at 42°C exhibited immediate tolerance to lethal salt stress followed by a decline over 8 hours. Radioactive methionine incorporation studies demonstrated synthesis of heat shock proteins at 38°C. The apparent molecular weights range from 15 to 115 kilodaltons with a protein complex in the 15 to 20 kilodalton range. Synthesis of heat shock proteins appeared to persist at 42°C but with large decreases in incorporation into selected heat shock protein. During salt shock, the synthesis of normal control proteins was reduced and a group of salt shock proteins appeared 3 to 6 h after shock. Similarities between the physiology and salt shock proteins/heat shock proteins suggest that both forms of stress may share common elements.  相似文献   

19.
Streptococcus lactis ME2 is a dairy starter strain that is insensitive to a variety of phage, including 18. The efficiency of plating of 18 on ME2 and N1 could be increased from <1 × 10−9 to 5.0 × 10−2 and from 7.6 × 10−7 to 2.1 × 10−2, respectively, when the host strains were subcultured at 40°C before plating the phage and the phage assay plates were incubated at 40°C. Host-dependent replication was demonstrated in N1 at 30°C and in N1 and ME2 at 40°C, suggesting the operation of a temperature-sensitive restriction and modification system in ME2 and N1. The increased sensitivity of ME2 and N1 to 18 at 40°C was also demonstrated by lysis of broth cultures and increased plaque size. ME2 grown at 40°C showed an increased ability to adsorb 18, indicating a second target for temperature-dependent phage sensitivity in ME2. Challenge of N1 with a 18 preparation that had been previously modified for growth on N1 indicated that at 40°C phage development was characterized by a shorter latent period and larger burst size than at 30°C. The evidence presented suggests that the high degree of phage insensitivity expressed by ME2 consists of a variety of temperature-sensitive mechanisms, including (i) the prevention of phage adsorption, (ii) host-controlled restriction of phage, and (iii) suppression of phage development. At 30°C these factors appear to act cooperatively to prevent the successful emergence of lytic phage active against S. lactis ME2.  相似文献   

20.
In Caenorhabditis elegans, the cha-1 gene encodes choline acetyltransferase (ChAT), the enzyme that synthesizes the neurotransmitter acetylcholine. We have analyzed a large number of cha-1 hypomorphic mutants, most of which are missense alleles. Some homozygous cha-1 mutants have approximately normal ChAT immunoreactivity; many other alleles lead to consistent reductions in synaptic immunostaining, although the residual protein appears to be stable. Regardless of protein levels, neuromuscular function of almost all mutants is temperature-sensitive, i.e., neuromuscular function is worse at 25° than at 14°. We show that the temperature effects are not related to acetylcholine release, but specifically to alterations in acetylcholine synthesis. This is not a temperature-dependent developmental phenotype, because animals raised at 20° to young adulthood and then shifted for 2 h to either 14° or 25° had swimming and pharyngeal pumping rates similar to animals grown and assayed at either 14° or 25°, respectively. We also show that the temperature-sensitive phenotypes are not limited to missense alleles; rather, they are a property of most or all severe cha-1 hypomorphs. We suggest that our data are consistent with a model of ChAT protein physically, but not covalently, associated with synaptic vesicles; and there is a temperature-dependent equilibrium between vesicle-associated and cytoplasmic (i.e., soluble) ChAT. Presumably, in severe cha-1 hypomorphs, increasing the temperature would promote dissociation of some of the mutant ChAT protein from synaptic vesicles, thus removing the site of acetylcholine synthesis (ChAT) from the site of vesicular acetylcholine transport. This, in turn, would decrease the rate and extent of vesicle-filling, thus increasing the severity of the behavioral deficits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号