首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In vivo administration to rats of the mixed-function oxidase modifiers 3-methylcholanthrene (MC), pregnenolone-16 alpha-carbonitrile (PCN) or beta-naphthoflavnoe (beta-f) inhibits the hepatic microsome-catalyzed in vitro binding of dimethylnitrosamine (DMN) to DNA. This parallels their effect on DMN-demethylase I, regarded to be the sole activating step in DMN carcinogenesis and fails to account for the previously observed anomaly that MC and PCN inhibit, while beta-NF enhances, the hepatocarcinogenic activity of DMN. The in vitro binding of DMN is clearly dependent on microsomes and NADPH, and is strongly enhanced by soluble cytoplasmic proteins; the presence of the latter has no effect. however, on the relative response to pretreatment by the modifiers. In mice beta-NF enhances and PCN inhibits DMN-demethylase I; beta-NF has no effect on either the cytochrome P-450 level or on the LD50, while PCN strongly increases the cytochrome P-450 level but without influencing the LD50. Neither of the two modifiers has any effect in mice on the host-mediated mutagenicity of DMN in a dose-response study, except for the highest dose of DMN (200 mg/kg) where PCN pretreatment significantly enhanced mutagenicity. To account for the anomalous observations, other potential pathways of DMN metabolism have been explored. Whole rat liver nuclei or isolated nuclear membrane fractions contain no DMN-demethylase or diethylnitrosamine-deethylase activity. In a microsomal mixed-function amine-oxidase assay system neither purified enzyme preparations nor whole microsomes catalyze NADPH oxidation in the presence of DMN as substrate. In addition, the purified enzyme does not catalyze formaldehyde production in the DMN-demethylase assay system. Benzylamine, a typical inhibitor of mitochondrial monoamine oxidase (MAO), is a potent inhibitor of DMN-demethylase activity, but microsomes are devoid of MAO activity. Furthermore, purified MAO has no DMN-demethylase activity. The differential effect of modifiers on the carcinogenicity of DMN probably involves pathways other than DMN metabolism.  相似文献   

2.
(1) The effect of feeding a relatively low-protein diet containing 0.06% DAB for 29 weeks on the activity of DAB-azoreductase, nitroreductase (p-nitrobenzoic acid), N-oxidase (N,N-dimethylaniline), N-demethylase (DAB), cytochrome P-450, NADPH-cytochrome c reductase, beta-glucuronidase and arylsulphatase A were studied. Rapid decreases occurred in the activities of the first six enzymes, reaching minimal values at between 4 and 8 weeks. Activities then increased in all cases to control or nearly control levels. This rate of increase was least for cytochrome P-450. At 4 weeks azoreductase activity with the chemotherapeutic agent CB10-252 (I) as substrate was significantly higher than in control rats. Early increases occurred in the activities of beta-glucuronidase and arylsulphatase A and the activity of the latter never dropped below the control level. (2) An investigation was made of the differential effects of dye feeding on some of the enzyme activities in the two major liver lobes and differences were found. (3) The effect of phenobarbital (PB) pretreatment on the DAB-fed rats was studied at 4-week intervals. The activities of DAB-azoreductase and of nitroreductase increased throughout the whole period, while the activities of the lysosomal enzymes were decreased. (4) After feeding DAB for 4 weeks the effect of PB and 3-methylcholanthrene (MC) on the activities of DAB-azoreductase, CB10-252-azoreductase and components of the azoreductases-cytochrome P-450, NADPH-cytochrome c reductase, the CO-CB10-252-azoreductase was not induced by PB or MC, and CO did not inhibit its reduction. Its reduction depended only slightly on NADH. CO caused a greater relative decrease in the activity of DAB-azoreductase in dye-fed animals and also in animals following PB and MC pretreatment, implying a greater role of cytochrome P-450 in dye-fed animals.  相似文献   

3.
The oxidative demethylation of the model substrate ethylmorphine has been characterized for the first time in the liver of a fish (Poecilia reticulata). The enzyme showed maximal activity at 35 degrees C and pH values higher than 8. The values of Km and Vmax for the reaction were 0.83 +/- 0.11 mM and 4.64 +/- 0.81 nmol HCHO/(mg microsomal protein) per min. The activity is attributed to the cytochrome P-450-dependent monoxygenase system, since it is inhibited by CO and requires NADPH; moreover it is inhibited competitively by alpha-naphthoflavone and non-competitively by metyrapone. The enzyme activity is induced by a two-week treatment of fish with phenobarbital and may be associated with a protein band of Mr 54,000.  相似文献   

4.
The effect of lead nitrate, an inhibitor of the hepatic drug-metabolizing enzyme system upon the acute hepatotoxicity of dimethylnitrosamine (DMN) was studied.Lead pretreatment significantly prevented polysomal disaggregation induced by the nitrosamine. Cell necrosis, evaluated morphologically and by the release of serum glutamic-pyruvic transaminase (GPT), was also diminised.The metabolism of DMN in rats pretreated with lead nitrate was investigated by following its clearance from blood and by determining, in vitro the demethylation of the nitrosamine. Lead increased, although not significantly, the clearance of DMN from blood, but it lowered the activity of DMN-demethylase 24 h after its administration.Finally, lead lowered the lethal effects of DMN. The mechanism by which lead influenced DMN toxicity is discussed.  相似文献   

5.
Oxidative demethylation of dimethylnitosamine was studied with both reconstituted and unresolved liver microsomal cytochrome P-450 enzyme systems from rats and hamsters. Proteinase treatment of liver microsomal preparations yielded cytochrome P-450 particulate fractions. Both cytochrome P-450 and NADPH- cytochrome c reductase fractions were required for optimum demethylation activity. Particulate cytochrome P-450 fractions were more effecient than either Triton X-100- or cholatesolubilized preparations of these particles in demethylation activity with rat and hamster liver preparations appear to be due to differences in specificity in their cytochrome P-450 fractions.  相似文献   

6.
Rat liver microsomal enzyme(s) that catalyze mutagenic activation of a carcinogenic aminoazo dye, 3-methoxy-4-aminoazobenzene (3-MeO-AAB), was studied by virtue of the Salmonella typhimurium TA98 assay using o-aminoazotoluene (OAT) as the control. Male Wistar rats were pretreated with phenobarbital (PB), 3-methylcholanthrene (MC) or polychlorinated biphenyl (PCB), and the liver microsomal activities for mutagenic activation of 3-MeO-AAB and OAT were examined. In agreement with the reported results on several carcinogenic aromatic amines, MC pretreatment resulted in greater activation of microsomal activity in the OAT mutagenesis (about a 4-fold increase as compared to the untreated control) than did PB (1.5-fold increase). By contrast, the mutagenic activation of 3-MeO-AAB is found to be more efficiently catalyzed by those enzyme(s) that are induced by PB pretreatment (4-fold increase) than by those that are induced by MC (1.8-fold increase). The induced enzymes that principally mediate the mutagenic activation of these azo dyes are indicated to be cytochrome P-450s, because the mutagenic activation was strongly inhibited by addition of cytochrome P-450 inhibitors such as 2-diethylaminoethyl-2,2-diphenylvalerate (SKF 525A) and 7,8-benzoflavone. These data suggest that 3-MeO-AAB is a unique carcinogenic aromatic amine as a substrate for mutagenic activation via catalysis of those cytochrome P-450s that are induced by PB pretreatment.  相似文献   

7.
The ability of phenobarbital and 3-methylcholanthrene (3MC) to induce liver microsomal and soluble enzymes was compared in Sprague-Dawley and Long-Evans rats. 3MC increased the V for the aniline hydroxylase and stimulated the formation of the hemoprotein P448 to a similar extent in the 2 strains of rats. On the other hand phenobarbital increased the V for the microsomal enzyme aniline hydroxylase and aminopyrine demethylase and enhanced the activity of the soluble enzyme aldehyde dehydrogenase only in Sprague-Dawley rats. It induced a more marked increase of cytochrome P450 in the Sprague-Dawley than in the Long-Evans strain.  相似文献   

8.
The basal level of hepatic cytochrome P-450 and its inducibility by phenobarbital pretreatment have been found to be enhanced by chronic hypoxemia. Pentobarbital sleeping times were decreased in parallel to changes in levels of cytochrome P-450. The increase in level of hepatic cytochrome P-450 in chronically hypoxemic rats occurred despite the increased levels of hepatic heme oxygenase which previously were associated with the chronic hemoglobinemia of the hypoxemic state. Chronically hypoxemic rats may provide a useful model for study of control of hepatic heme and hemoprotein metabolism.  相似文献   

9.
Metabolism of nitrosamines was studied in a reconstituted monooxygenase system composed of cytochrome P-450 isozymes purified from liver microsomes of ethanol- and phenobarbital-treated rats. The ethanol-induced isozyme (P-450et) was efficient in catalyzing the demethylation of N-nitrosodimethylamine (NDMA), with a Km of 2.4 mM and Vmax of 7.2 nmol min-1 nmol P-450(-1), but less active with N-nitrosomethylbenzylamine and N-nitrosomethylaniline. The phenobarbital-induced form (P-450b) was ineffective in NDMA metabolism but was active in catalyzing the demethylation of N-nitrosomethylaniline, with an estimated Km of 0.08 mM and a Vmax of 7.2 nmol min-1 nmol-1. P-450et also catalyzed the denitrosation of NDMA with a Km of 13.6 mM and a Vmax of 1.36 nmol min-1 nmol-1. With control liver microsomes, multiple Km values were observed for the demethylation and denitrosation of NDMA. Involvement of superoxide radicals in the metabolism of NDMA was suggested by the action of superoxide dismutase, which inhibited the denitrosation by 43 to 73% and the demethylation by 13 to 22% in different monooxygenase systems. The P-450et-dependent NDMA demethylation was strongly inhibited by 2-phenylethylamine and 3-amino-1,2,4-triazole; these compounds were previously believed not to be inhibitors of P-450-dependent reactions but were found to inhibit microsomal NDMA demethylase. The present results establish the role of P-450 in nitrosamine metabolism and help to clarify some of the previous confusion in this area of research.  相似文献   

10.
The tissue-specific expression of cytochrome P-450b and P-450e mRNAs was examined with synthetic 18-mer oligomer probes in the liver, lung, kidney, and testis of control and inducer pretreated adult rats. RNAs homologous to the P-450e probe were detected in trace amounts in control and 3-methylcholanthrene (MC) induced livers and at high levels in livers from phenobarbital (PB) induced animals. P-450e mRNA levels were below detection limits in the other tissues examined, regardless of pretreatment. In contrast, mRNAs homologous to the P-450b oligomer were detected at low levels in control and inducer pretreated lung and testis, and at high levels in PB induced liver. No P-450b mRNAs were detected in these assays in RNA isolates from the kidney or from control or MC pretreated liver. Solution hybridization data indicated that the rat lung contained 9-12%, and the testis, 6-9%, respectively, of the levels of P-450b mRNA measured in the PB induced liver. Results from oligo(dT)-cellulose and poly(U)-affinity experiments indicated that the hepatic mRNAs for P-450b and P-450e were present predominantly in the bound, polyadenylated fraction, whereas the homologous lung and testes P-450b mRNAs predominated in the flow-thru fractions.  相似文献   

11.
It is determined to what extent certain inhibitors of the xenobiotic metabolizing enzyme systems have an influence on the mutagenicity of various pro-mutagens in Drosophila. 1-Phenylimidazole (PhI) is used as an inhibitor of the cytochrome P-450 (P-450) mediated monooxygenase activities. Iproniazid (Ipr) is a typical monoamine oxidase (MAO) inhibitor which as well seems capable of inhibiting to a certain extent P-450 mediated metabolism. N, N-Dimethyl benzylamine (N, N-DMB) is used as a competitive substrate for the N-oxidizing flavin-containing dimethylaniline monooxygenase (FDMAM). The enzyme-inhibiting activities of PhI and Ipr were determined in vitro using microsomes obtained from Drosophila larvae and adults. Both compounds were capable of inhibiting benzo[a]pyrene (BP) hydroxylation and p-nitroanisole (p-NA) demethylation, although for Ipr 100-fold higher concentrations were required compared to PhI. As model-mutagens were used: the nitrosamines dimethylnitrosamine (DMN) and diethylnitrosamine (DEN), the triazenes 1-(2,4,6-trichlorophenyl)-3,3-dimethyltriazene (Cl3PDMT), 1-(3-pyridyl)-3,3-dimethyltriazene (PyDMT) and dacarbazine (DTIC), the hydrazines procarbazine (PCZ), 1,1-dimethylhydrazine (1,1-DMH) and 1,2-dimethylhydrazine (1,2-DMH) as well as the pyrrolizidine alkaloid seniciphylline (SPh). Simultaneous or pretreatment with Ipr results in a clear decrease of the mutagenicity of Cl3PDMT, while PhI pretreatment leads to an increased mutagenicity. This indicates that these two inhibitors do not inhibit the same enzyme or isozyme. For SPh too, Ipr pretreatment results in some decrease of the mutagenicity. This is in contrast to DEN, where the activation is clearly inhibited by PhI while Ipr has only a minor effect. For DMN, DTIC and PCZ both Ipr and PhI pretreatment caused considerable decreases of the mutagenicity. Inhibition of the FDMAM catalyzed activity by N,N-DMB resulted in an increase of mutagenicity with Cl3PDMT, in a moderate decrease of mutagenicity with DTIC, and a marked decrease with DMN, which was strongly inhibited. In contrast to the clear-cut mutagenicity of PCZ, 1,1-DMH and 1,2-DMH are not mutagenic in Drosophila. No change was observed upon inhibition of the various metabolizing activities. Apart from using strain differences in metabolizing activities and enzyme induction, enzyme inhibition can also be used to determine the influence of metabolism on the in vivo mutagenicity of promutagens in Drosophila.  相似文献   

12.
The major phenobarbital-inducible form of cytochrome P-450 (cytochrome P-450 PB) was purified to homogeneity from rat liver microsomes and rabbit antibodies prepared against the purified enzyme. Using these antibodies, an enzyme-linked immunosorbent assay (ELISA) was developed for the detection of cytochrome P-450 PB in microsomes which was sensitive at the nanogram level. The content of cytochrome P-450 PB was determined in hepatic microsomes from rats treated with various xenobiotics. Phenobarbital and Aroclor 1254 pretreatments resulted in several-fold increases in immunoreactive cytochrome P-450 PB over control levels. ELISA measurements of cytochrome P-450 PB were also carried out over a 48-h time course of phenobarbital induction in liver microsomes. Significant increases over control levels were seen at 16 h and beyond. Measurements of ELISA-detectable cytochrome P-450 PB were made in microsomes following the administration of CCl4 to phenobarbital-pretreated rats. Immunoreactive cytochrome P-450 PB was observed to decrease less rapidly than the spectrally detectable enzyme in the microsomal membranes. Inhibition of heme synthesis was carried out by the administration of 3-amino-1,2,4-triazole (AT) to rats. Concomitant pretreatment with phenobarbital and AT resulted in levels of ELISA-detectable cytochrome P-450 PB which were significantly increased over control levels, while spectrally detectable levels of total holoenzyme remained unchanged. These results support the idea that this cytochrome P-450 may exist, at least partly, in the microsomal membrane in an inactive or apoprotein form.  相似文献   

13.
The activities of 7-ethoxyresorufin-O-deethylase (EROD), 7-pentoxyresorufin-O-deethylase (PROD), 7-ethoxycoumarin-O-deethylase (ECOD) and aromatic hydrocarbon hydroxylase (AHH) were measured in hepatic microsomes from male and female Wistar rats and Syrian golden hamsters in order to probe the basal activity and the inducibility by phenobarbital (PB) and 3-methylcholanthrene (MC) of different P-450 isoenzymes. The basal activities of EROD and ECOD, but not PROD and AHH, were higher in male hamsters than in male rats. No sex-related difference in enzyme activities was observed with hamsters, whereas male rats had a higher ECOD and AHH activity than female rats. Induction by PB led to a 450-fold and 250-fold increase in PROD activity in male and female rat liver microsomes, respectively, while MC had a more pronounced inductive effect on EROD activity in this species. In hamsters, EROD activity was induced by MC but not by PB. Unexpectedly PROD activity in male and female hamster liver microsomes was only moderately induced by PB, the extent being lower than on induction by MC. Therefore, the activity of PROD, which is useful as a specific enzymatic assay for P-450 IIB in the rat liver, cannot be used to probe PB-like inducers in the hamster liver.  相似文献   

14.
Limitations on the determination of the concentration of the major phenobarbital inducible form of cytochrome P-450 (P-450b) in hepatic microsomes by the metyrapone assay of Luu-The et al. (1) are reported. Compounds which bind to the Type I, II and IR binding sites, or convert cytochrome P-450 to P-420, decrease the apparent concentration of cytochrome P-450b by 20 to 100% in hepatic microsomes from untreated and pregnenolone-16α-carbonitrile or phenobarbital treated rats. It is calculated that errors of greater ca. 40% in the concentration of cytochrome P-450b can arise in the presence of appreciable quantities of the major pregnenolone-16α-carbonitrile or polycyclic hydrocarbon inducible forms of cytochrome P-450.  相似文献   

15.
The roles of type I binding and NADPH-cytochrome P-450 reductase in ethylmorphine demethylation were investigated in two strains of mice, using sex differences in these activities as a tool. In the CPB-SE strain, females metabolize ethylmorphine faster than males. Sex differences in cytochrome P-450 content and endogenous NADPH-cytochrome P-450 reductase activity were too small to account for this. On the other hand, the differences in the magnitudes of type I spectra and ethylmorphine-induced enhancement of cytochrome P-450 reduction were considerable larger than those in the rates of demethylation. All parameters, except endogenous cytochrome P-450 reduction, were modified in a similar way by testosterone pretreatment: in females they were depressed to the male level, whereas in males they remained unchanged. Castration had no effect in females and enhanced the activities in males. The CPB-V strain exhibited little or no sex differences in ethylmorphine demethylation, cytochrome P-450 content and endogenous cytochrome P-450 reduction. Testosterone pretreatment had little or no influence on these activities. Type I binding and reductase stimulation, however, showed sex differences, comparable to those observed in the CPB-SE strain, which were also abolished by testosterone. A relationship between reductase stimulation and type I binding was observed, which was, apparently, independent of sex or strain. It is concluded that androgen primarily influences the amount of cytochrome P-450-substrate complex formed, but that the reduction of this complex is not rate-limiting in the demethylation of ethylmorphine.  相似文献   

16.
Hepatic microsomal cytochrome P-450 and P-448 have been purified from phenobarbital (PB)- and 3-methylcholanthrene (MC)-treated rats, by modifications of Imai and Sato's procedures )1974). The purified preparations of cytochrome P-450 and P-448 were homogeneous judging from their specific contents (17 and 16 nmol per mg protein, respectively) and the results of SDS-polyacrylamide gel electrophoresis and Ouchterlony immunodiffusion analyses. These two cytochromes are different in their physico-chemical and immunological properties, and their substrate specificities. In reconstituted systems containing the purified cytochrome and NADPH-cytochrome P-450 reductase, ethoxycoumarin deethylation and benzo(a)pyrene hydroxylation catalyzed by cytochrome P-450 and P-448 were completely inhibited by the homologous antibody, while essentially no effect was observed with heterologous conbinations of antigen and antibody. In contrast, the benzphetamine demethylation activities of cytochrome P-450 and P-448 were markedly inhibited by the heterologous antibody as well as by the homologous one. These results suggest that the two cytochromes are immunologically different but have some antigenic determinants in common. Drug metabolizing activities of microsomes from PB- and MC-treated rats were inhibited by the antibodies, essentially as expected from the results with the reconstituted systems. The remaining activities in the presence of excess concentrations of the antibody, however, were higher in MC-microsomes treated with anti P-448 antibody than in PB microsomes treated with anti P-450 antibody. These results suggest that cytochrome P-448 molecules may be so localized in the microsomal membrane that the membrane structure may hinder the access of the antibody to the antigenic determinant.  相似文献   

17.
The expression and activity of the phenobarbital (PB)-inducible P-450 isozymes, P-450b and P-450e, and the major 3-methylcholanthrene (MC)-inducible form, P-450c, were studied in primary cultures of adult rat hepatocytes in T1, Leibovitz L-15 (L-15), and a modification of Waymouth 752/1 (Way) media. P-450 isozymes in initially isolated hepatocytes and control and PB-treated cultures were quantitated by Western blot analysis, and activity was determined with 7,12-dimethylbenz[a]anthracene (DMBA) as substrate. Data from the Western blot analysis correlated well with the metabolic activity toward DMBA. P-450b was consistently induced by PB in hepatocytes in T1 and to a lesser extent in Way. P-450e protein was constitutive in initially isolated cells, expressed in control cultures at a reduced level, and increased or maintained by PB in all three media. DMBA metabolite formation associated with P-450b and P-450e activity was induced by PB in hepatocytes in T1 and Way and was inhibited by antibodies to P-450b. P-450c was only infrequently expressed in freshly prepared hepatocytes, but was detected in all control and PB-treated cultures although at a much higher level in T1. Thus, the amounts of P-450 isozymes, their inducibility by PB, and their activity toward DMBA were found to be dependent on the medium. We have demonstrated enzyme induction and increased activity of the major PB-inducible isozymes in hepatocytes in T1; these are also associated with a change in the control of P-450c expression leading to enhanced constitutive expression and inducibility by phenobarbital.  相似文献   

18.
The relationship between dimethylnitrosamine (DMN) demethylase activity and DMN-induced mutagenesis was investigated in Drosophila melanogaster. The activity of DMN-demethylase was at least 10-fold greater in the Hikone-R strain than in three other Drosophila strains. However, the sex-linked recessive lethal (SLRL) mutations induced by DMN in the four strains differed by less than 2-fold. Several possibilities to explain the lack of correlation between DMN-demethylase activity and DMN-induced mutations were tested and eliminated. They include: (i) the presence of inhibitors of DMN-demethylase in extracts of low-activity strains, (ii) a sex bias in the Hikone-R strain in which the enzyme activity is confined to the females, (iii) the possibility that DMN treatment induces DMN-demethylase activity in the low-activity strains and (iv) the possibility that Hikone-R has a much more efficient DNA repair system than the other strains. The results are discussed in terms of what is known about the role of DMN-demethylase in the metabolic activation of DMN in other systems.  相似文献   

19.
M M Iba 《Mutation research》1987,182(5):231-241
The metabolic basis of the differential activation of 4 benzidines--3,3'-dichlorobenzidine (DCB), benzidine (BZ), o-tolidine (TOL) and o-dianisidine (DIN)--to mutagens was examined in the Ames test, using Salmonella typhimurium TA98. For each benzidine congener, the comparative activation by 3 rat liver enzyme systems--(i) postmitochondrial supernatant (S9), (ii) S9 + acetylcoenzyme A (S9-Ac) and (iii) microsomes--and the effect thereon of animal pretreatment with 3 cytochrome P-450 inducers--DCB, 3-methylcholanthrene (MC) and phenobarbital (PB)--were examined. DCB was the most activated of the benzidines, with activation by the 3 systems being in the order: S9 = S9-Ac greater than microsomes, whereas dianisidine and tolidine were the least activated. Benzidine was activated only in the S9 systems but the S9-catalyzed activation of benzidine, unlike that of DCB, was enhanced by added acetylcoenzyme A. Pretreatment with either DCB, MC or PB enhanced the activation of DCB, decreased that of benzidine, and had no effect on that of tolidine or dianisidine. The enhanced DCB activation was most pronounced with DCB pretreatment and was 2.5-fold, 2-fold, and 3-fold, in S9-Ac, S9, and microsomes, respectively. The microsomal-catalyzed DCB activation was inhibited by the cytochrome P-450 inhibitors 2,4-dichloro-6-phenylphenoxyethylamine and alpha-naphthoflavone by 93% and 48%, respectively. DCB, but not its congeners, elicited NADPH-dependent metabolite complex formation with microsomal cytochrome P-450. The results show that DCB is the most mutagenic of the 4 benzidines under conditions of cytochrome-P-450-catalyzed activation and suggest that the DCB activation may be catalyzed most effectively by cytochrome P-450 species induced specifically by the compound itself.  相似文献   

20.
Male Wistar rats were fed diets of varying selenium content in order to obtain selenium-deficient and selenium-supplemented rats. After 5-6 weeks on the respective diet, the rats were used to investigate how selenium influences the effect of dimethylnitrosamine (DMN) on some liver enzymes and related reactions. The selenium-dependent glutathione peroxidase activity in postmicrosomal supernatant from liver was about 1% in selenium-deficient rats as compared to selenium-supplemented rats or rats fed a standard diet. The highest DMN-demethylase activity was observed in postmitochondrial supernatant from selenium-deficient rat liver, and the lowest in selenium-supplemented rats. No dietary effect was observed on hepatic microsomal cytochrome P450 levels. C-Oxygenation of N,N-dimethylaniline (DMA) was not affected by the selenium level. On the other hand, selenium deficiency seemed to reduce N-oxygenation of DMA. The mutagenicity of DMN in Chinese hamster V79 cells after metabolic activation by the isolated perfused rat liver, was approximately doubled when selenium-deficient livers were used as compared to selenium-supplemented livers and livers from rats fed a standard diet. A negative correlation between DMA-N-oxygenation and mutagenicity from DMN was observed, whereas no correlation between DMA-C-oxygenation and mutagenicity from DMN was found.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号