首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Electrophoretic patterns of acetylcholinesterase (acetylcholine hydrolase, EC 3.1.1.7) from rat erythrocyte were studied. The enzyme was solubilized by the following treatments: a) Triton X-100, b) sodium deoxycholate, or c) ultrasonic irradiation. When the erythrocyte membrane was solubilized by Triton X-100 at concentrations higher than 0.3%, by 10 mM sodium deoxycholate, or by ultrasonic irradiation for more than 5 min, a single band of acetylcholinesterase activity appeared in the gel. Two bands of activity were stained in the gel when the membrane was solubilized by Triton X-100 at concentrations between 0.1--0.2%, or by ultrasound for 5 min. Electrophoretic patterns of acetylcholinesterase from rats fed a fat-sufficient diet were similar to those for the enzyme from animals fed a fat-free diet. The recombination of lipids with the enzyme eluted from the gels confirmed the "phenotypic allosteric desensitization phenomenon".  相似文献   

2.
1. Human erythrocyte acetylcholinesterase was solubilized by Triton X-100 and purified by affinity chromatography to a specific activity of 3800 IU/mg of protein. The yield of the purified enzyme was 25--45%. 2. Gel filtration on Sepharose 4-B in the presence of Triton X-100 revealed one peak of enzyme activity with a Stokes' radius of 8.7 nm. Density gradient centrifugation in 0.1% Triton X-100 showed one peak of enzyme activity with an S4 value of 6.3S. 3. Isoelectric focusing in Triton X-100 resolved the enzyme into five molecular forms with isoelectric points of 4.55, 4.68, 4.81, 4.98 and 5.18. Upon incubation with neuraminidase the enzyme activity in the first four forms was decreased with a concommitant increase in activity in the form with the higher isoelectric point. 4. After removal of excess Triton X-100 on Bio-Gel HTP, polyacrylamide gel electrophoresis showed seven bands of protein and corresponding bands of enzyme activity. Density gradient centrifugation of the detergent-depleted enzyme at high ionic strength revealed five multiple molecular forms with S4 values of 6.3 S, 10.2 S, 12.2 S, 14.2 S and 16.3 S. At low ionic strength, higher aggregates were observed in addition to the other forms. Dodecylsulfate-polyacrylamide gel electrophoresis gave one subunit only with an apparent molecular weight of 80 000. 5. These results suggest that human erythrocyte acetylcholinesterase, solubilized by Triton X-100, exists in various forms differing in net charge but of apparently similar molecular dimensions. After removal of the detergent, forms with different molecular sizes are observed.  相似文献   

3.
The effects of the local anaesthetics procaine, tetracaine and lidocaine and of the antidepressant imipramine on human erythrocyte acetylcholinesterase were investigated. All four amphiphilic drugs inhibited enzymic activity, the IC50 (the concentration causing 50% inhibition) being about 0.40 mM for procaine, 0.05 mM for tetracaine, 0.70 mM for imipramine and 7.0 mM for lidocaine. Procaine and tetracaine inhibited acetylcholinesterase activity competitively at concentrations at which they did not perturb the physical state of the membrane lipid environment, as assessed by steady-state fluorescence polarization, whereas lidocaine and imipramine displayed mixed inhibition kinetics at concentrations at which they induced an enhancement of membrane fluidity. The question was addressed as to whether membrane integrity is a prerequisite for imipramine and lidocaine action. Membrane solubilization by 1% Triton X-100 and a decrease, by dilution, in the detergent concentration to 0.05% [which is above the Triton X-100 critical micelle concentration (c.m.c.)] did not substantially affect the inhibitory potency of the two amphiphilic drugs at their IC50; in the presence of increasing detergent concentrations the inhibitory potency of imipramine was gradually decreased, but not abolished, whereas the inhibitory effect of lidocaine was only slightly diminished, even at 1% Triton X-100. It is suggested that neither competitive nor mixed inhibition kinetics arise from conformational changes of the protein driven by a modification of the physical state of the lipid environment, but from a direct interaction of the amphiphilic drugs with acetylcholinesterase. In particular, the partial loss of the inhibitory potency of imipramine and lidocaine that is observed upon increasing Triton X-100 concentration well above its c.m.c. could be explained in terms of amphiphile partition in detergent micelles and, in turn, of a decreased effective concentration of the two inhibitors in the aqueous phase.  相似文献   

4.
Comparative analysis of phospholipid quantitative composition of blood erythrocytes has been performed in white (laboratory mice and rats) and wild (tundra voles) mouse-like rodents. A non-characteristic of mammals low relative content of sphingomyelin is revealed in erythrocyte phospholipids in tundra voles. A hypothesis is put forward that the unique composition of erythrocyte lipids is a peculiar evolutionary developed strategy of adaptation aimed at survival under condition of constant circulation of agents of leptospirosis in populations of this species.  相似文献   

5.
The efficiency of several nonionic detergents and a homologous series of zwitterionic detergents for the extraction of acetylcholinesterase (EC 3.1.1.7) from bovine erythrocyte membranes was examined. Of the nonionic detergents examined, the polyoxyethylene-based Tweens were the least effective solubilizing agents. Within this series, increasing the length of the saturated fatty acid chain progressively decreased the efficiency of enzyme recovery, while unsaturation in the side chain reversed this trend. In the Lubrol detergents, where the chain length of the alcohol group is variable, an increase in the length of the polyoxyethylene glycol group decreased the recovery of acetylcholinesterase in the solubilized state, without affecting the efficiency of extraction of total erythrocyte protein. As with the other nonionic detergents examined, Triton X-100 and octyl beta-D-glucoside were maximally effective in solubilizing acetylcholinesterase activity at concentrations greater than their respective critical micelle concentrations. In the sulfobetaine (N-alkyldimethylaminopropane sulphonate) zwitterionic detergent series, the longer alkyl chain zwittergents Z 316 and Z 314 were more efficient than the shorter chain length members of the series (Z 310 and Z 312). In contrast to the higher chain length compounds, short chain analogs were maximally effective at or below their critical micelle concentrations. After purification by ion-exchange chromatography and affinity chromatography, the enzyme extracted with the various detergents gave sedimentation coefficients between 6.8S and 7.6S, consistent with a dimeric structure. Acetylcholinesterase could also be efficiently released by 0.2 mM EDTA or 0.5 M NaCl from bovine erythrocyte membranes previously depleted of 70-80% of the membrane lipids by butanol. Nonlinear Arrhenius plots of enzyme activity were found whether acetylcholinesterase was solubilized with Tween 20, Lubrol PX, or Triton X-100. The present work confirms that bovine erythrocyte acetylcholinesterase requires detergents to solubilize it from membranes and that its activity depends on the structure of the amphiphiles used to solubilize the enzyme.  相似文献   

6.
Human erythrocyte membrane-bound acetylcholinesterase was converted to a monomeric species by treatment of ghosts with 2-mercaptoethanol and iodoacetic acid. After solubilization with Triton X-100, the reduced and alkylated enzyme was partially purified by affinity chromatography and separated from residual dimeric enzyme by sucrose density gradient centrifugation in a zonal rotor. Monomeric and dimeric acetylcholinesterase showed full enzymatic activity in presence of Triton X-100 whereas in the absence of detergent, activity was decreased to approx. 20% and 15%, respectively. Preformed egg phosphatidylcholine vesicles fully sustained activity of the monomeric species whereas the dimer was only 80% active. The results suggest that a dimeric structure is not required for manifestation of amphiphile dependency of membrane-bound acetylcholinesterase from human erythrocytes. Furthermore, monomeric enzyme appears to be more easily inserted into phospholipid bilayers than the dimeric species.  相似文献   

7.
The activities of acetylcholinesterase and Ca2+ + Mg2+ ATPase were measured following treatment of human erythrocyte membranes with nonsolubilizing and solubilizing concentrations of Triton X-100. A concentration of 0.1% (v/v) Triton X-100 caused a significant inhibition of both enzymes. The inhibition appears to be caused by perturbations in the membrane induced by Triton X-100 incorporation. No acetylcholinesterase activity and little Ca2+ + Mg2+ ATPase activity were detected in the supernatant at 0.05% Triton X-100 although this same detergent concentration induced changes in the turbidity of the membrane suspension. Also, no inhibition of soluble acetylcholinesterase was observed over the entire detergent concentration range. The inhibition of these enzymes at 0.1% Triton X-100 was present over an eightfold range of membrane protein in the assay indicating an independence of the protein/detergent ratio. The losses in activities of these two enzymes could be prevented by either including phosphatidylserine in the Triton X-100 suspension or using Brij 96 which has the same polyoxyethylene polar head group but an oleyl hydrophobic tail instead of the p-tert-octylphenol group of Triton X-100. The results are discussed in regard to the differential recovery of enzyme activities over the entire detergent concentration range.  相似文献   

8.
Acetylcholinesterase has been isolated from bovine erythrocyte membranes by affinity chromatography using a m-trimethylammonium ligand. The purified enzyme had hydrophobic properties by the criterion of phase partitioning into Triton X-114. The activity of the hydrophobic enzyme was seen as a slow-moving band in nondenaturing polyacrylamide gels. After treatment with phosphatidylinositol-specific phospholipase C, another form of active enzyme was produced that migrated more rapidly toward the anode in these gels. This form of the enzyme partitioned into the aqueous phase in Triton X-114 phase separation experiments and was therefore hydrophilic. The hydrophobic form bound to concanavalin A in the absence of Triton X-100. As this binding was partially prevented by detergent, but not by alpha-methyl mannoside, D-glucose, or myo-inositol, it is in part hydrophobic. Erythrocyte cell membranes showed acetylcholinesterase activity present as a major form, which was hydrophobic by Triton X-114 phase separation and in nondenaturing gel electrophoresis moved at the same rate as the purified enzyme. In the membrane the enzyme was more thermostable than when purified in detergent. The hydrophobic enzyme isolated, therefore, represents a native form of the acetylcholinesterase present in the bovine erythrocyte cell membrane, but in isolation its stability becomes dependent on amphiphile concentration. Its hydrophobic properties and lectin binding are attributable to the association with the protein of a lipid with the characteristics of a phosphatidylinositol.  相似文献   

9.
The temperature-dependence of both the lipid order parameter (SDPH) and acetylcholinesterase (AChE) activity from native and cholesterol-enriched human erythrocyte membranes was investigated. Cholesterol enrichment abolishes an inflection observed around 30 degrees C in the temperature-dependence of native membrane lipid order parameter, whereas the Arrhenius plot of the enzymic activity is substantially unaffected. These results support the view that the breaks in the Arrhenius plot of the enzyme activity are not related to sudden changes of bulk membrane physical state, but arise from a direct effect of temperature on enzyme conformation.  相似文献   

10.
Plague antibody monoclonal erythrocyte diagnosticum was studied in serological tests simultaneously with commercial plague antibody erythrocyte diagnosticum prepared on the basis of hyperimmune horse serum and with commercial plague antigenic erythrocyte diagnosticum. In this investigation the suspensions of numerous strains of Yersinia pestis, other closely related and heterologous organisms, experimentally infected wild and laboratory animals, as well as samples of materials obtained from small rodents caught in several natural foci of plague, were studied. The monoclonal diagnosticum was, practically, not inferior to the similar commercial preparation with respect to the frequency of positive results and the activity of the materials under study in serological tests, but showed greater specificity, as it reacted strictly with Y. pestis capsular antigen.  相似文献   

11.
1. The enzymic removal of sialic acid residues from the glycoproteins of the human erythrocyte decreases the solubilization of membrane glycoprotein by Triton X-100. 2. The solubilization of asialoglycoprotein by Triton X-100 may be restored by the addition of borate. 3. Use of this non-ionic detergent in the presence of borate, as a general procedure for the mild solubilization of membrane glycoproteins deficient in sialic acid residues, is discussed.  相似文献   

12.
Multiple forms of acetylcholinesterase from pig brain   总被引:10,自引:6,他引:4  
1. A number of methods of solubilization of pig brain acetylcholinesterase (EC 3.1.1.7) were studied. The multiple enzymic forms of the resultant preparations were examined by polyacrylamide-gel electrophoresis. 2. Butanol extraction, Nagarase treatment and ultrasonication proved unsuitable as preparatory methods, but detergent treatment (Triton X-100, Triton X-100-KCl and lysolecithin) gave good yields. 3. Separation of soluble enzyme in three systems of polyacrylamide-gel electrophoresis were compared and the relative advantages are discussed. 4. By using a 6% (w/v) gel and continuous buffer system two forms of acetylcholinesterase were detected in Triton X-100-solubilized enzyme, but the incorporation of a sample and spacer gel and a discontinuous buffer system resolved this into four components. The forms of the soluble enzyme extracted by different methods differed in mobility. 5. With gradient polyacrylamide-gel electrophoresis between two and six forms were detected, depending on the method used for extraction. The average molecular weights of the five forms most frequently found were 60000, 130000, 198000, 266000 and 350000. 6. Treatment of the Triton X-100-extracted enzyme with 2.5m-urea altered the pattern and evidence of dissociation was observed. 7. The results are discussed in the light of present theories on the molecular structure of acetylcholinesterase.  相似文献   

13.
Acetylcholinesterase is an enzyme whose best-known function is to hydrolyze the neurotransmitter acetylcholine. Acetylcholinesterase is expressed in several noncholinergic tissues. Accordingly, we report for the first time the identification of acetylcholinesterase in human umbilical cord vein endothelial cells. Here we further performed an electrophoretic and biochemical characterization of this enzyme, using protein extracts obtained by solubilization of human endothelial cell membranes with Triton X-100. These extracts were analyzed under polyacrylamide gel electrophoresis in the presence of Triton X-100 and under nondenaturing conditions, followed by specific staining for cholinesterase or acetylcholinesterase activity. The gels revealed one enzymatically active acetylcholinesterase band in the extracts that disappeared when staining was performed in the presence of eserine (an acetylcholinesterase inhibitor). Performing western blotting with the C-terminal anti-acetylcholinesterase IgG, we identified a single protein band of approximately 70 kDa, the molecular mass characteristic of the human monomeric form of acetylcholinesterase. The western blotting with the N-terminal anti-acetylcholinesterase IgG antibody revealed a double band around 66-70 kDa. Using the Ellman's method to measure the cholinesterase activity in human umbilical vein endothelial cells, regarding its substrate specificity, we confirmed the existence of an acetylcholinesterase enzyme. Our studies revealed a predominance of acetylcholinesterase over other cholinesterases in human endothelial cells. In conclusion, we have demonstrated the existence of a membrane-bound acetylcholinesterase in human endothelial cells. In future studies, we will investigate the role of this protein in the endothelial vascular system.  相似文献   

14.
Several molecular forms of human erythrocyte membrane acetylcholinesterase have been studied after crosslinking with bifunctional diimidates. The crosslinked products were analysed by centrifugation on linear sucrose density gradients containing Triton X-100. Molecular weights of covalently linked oligomers were estimated by sodium dodecylsulfate gel electrophoresis. It was shown that acetylcholinesterase crosslinked in absence of Triton X-100 consists of molecular forms built up by dimeric protomers. These dimers were identical with the enzymatically active species sedimenting with 6.5S in linear sucrose density gradients.  相似文献   

15.
Wild type and dystrophic (merosin-deficient) Lama2dy mice muscles were compared for their density of lipid rafts. The 5-fold higher level of caveolin-3 and the 2-3 times higher level of ecto-5’-nucleotidase activity in raft preparations (Triton X-100-resistant membranes) of dystrophic muscle supported expansion of caveolar and non-caveolar lipid rafts. The presence in rafts of glycosylphosphatidylinositol (GPI)-linked acetylcholinesterase (AChE) dimers, which did not arise from erythrocyte or nerve, not only revealed for the first time the capacity of the myofibre for translating the AChE-H mRNA but also an unrecognized pathway for targeting AChE-H to specialized membrane domains of the sarcolemma. Rafts of dystrophic muscle contained a 5-fold higher AChE activity/mg protein. RT-PCR for 3’-alternative mRNAs of AChE revealed AChE-T mRNA prevailing over AChE-R and AChE-H mRNAs in wild type mouse muscle. It also displayed principal 5’-alternative AChE mRNAs with exons E1c and E1e (the latter coding for N-terminally extended subunits) and fewer with E1d, E1a and E1b. The levels of AChE and butyrylcholinesterase mRNAs were unaffected by dystrophy. Finally, the decreased level of proline-rich membrane anchor (PRiMA) mRNA in Lama2dy muscle provided for a rational explanation to the loss of PRiMA-bearing AChE tetramers in dystrophic muscle.  相似文献   

16.
Rats were exposed to propoxur-impregnated strips in a conventional laboratory animal room. The air in the room was monitored for the pesticide, and erythrocyte acetylcholinesterase activity was determined periodically. Air concentration of the pesticide never exceeded 0.8 microgram/m3, and no significant change in enzyme activity was observed.  相似文献   

17.
In this work we show the existence of cyclic AMP phosphodiesterase (EC 3.1.4.17) in human erythrocyte membranes and have clarified some properties of the enzyme. In human erythrocytes, about 23% of the total cyclic AMP phosphodiesterase activity is in a membrane-bound form. Although it could be solubilized with Triton X-100 in 5 mM Tris-HCl buffer (pH 8.0), it was not solubilized by a low or high concentration of salt. The enzyme seems to be localized in the cytoplasmic surface, since it is detected in sealed inside-out vesicles of human erythrocyte membranes, but not in intact human erythrocytes. The optimum pH was found to lie between 7.4 and 8.0, and Mg2+ was found to be necessary for its activity. Ca2+ and calmodulin could not stimulate the activity of this enzyme. Theophylline was a strong inhibitor, but cyclic GMP could not inhibit the enzymic hydrolysis of cyclic [32P]AMP and this membrane-bound enzyme therefore seems to be specific to cyclic AMP.  相似文献   

18.
以人红细胞膜为材料,研究了甲基毒死蜱与膜上乙酰胆碱酯酶(AChE)的相互作用及其与膜脂的关系。结果显示,甲基毒死蜱对人红细胞膜AChE有明显的抑制作用,与膜温育30min,其半数抑制浓度约为0.10 mmol/L。动力学分析表明,其抑制作用为非竞争性。0.2%Triton X-100并不改变AChE对甲基毒死蜱的敏感性,亦即AChE上甲基毒死蜱的作用部位与其所处的脂质微环境无关。  相似文献   

19.
In the culture supernatant of Cytophaga sp. we detected an enzyme that converted glycosylphosphatidyl-inositol-anchored acetylcholinesterase to the hydrophilic form. This enzyme had a cleavage specificity of a phospholipase C. It hydrolyzed phosphatidylinositol but did not act on phosphatidylcholine. On gel filtration the enzyme migrated with an apparent molecular mass of about 17 kDa. It displayed maximal activity between pH 6-6.5 and did not require cofactors for the expression of catalytic activity. Mercurials and zinc ions inhibited the enzyme and its activity also decreased with increasing ionic strength in the assay. With acetylcholinesterase as substrate optimal activity was obtained in pure micelles of Triton X-100, whereas in mixed micelles containing Triton X-100 and phosphatidylcholine the activity was reduced. The enzyme from Cytophaga sp. showed little activity towards acetylcholinesterase embedded in intact membranes where more than 1000-times higher concentrations of phosphatidylinositol-specific phospholipase C was necessary to solubilize acetylcholinesterase as compared to acetylcholinesterase in detergent micelles.  相似文献   

20.
The activity of gamma-glutamyl transferase (GGTF; EC 2.3.2.2) has been measured in the cerebral hemispheres, cerebellum, hippocamp and brain stem of mature wild and laboratory rodents (Oryctolagus cuniculus, Cavia porcellus, Rattus norvegicus, var. alb., Ochotona pusilla, Mesocricetus auratus, Clethrionimus glareolis, Mus musculus. var. alb.), as well as in homogenates of the whole brain of the tortoise Testudo horsfieldi, frog Rana temporaria and loach Misgurnus fossilis. In wild rodents the activity of GGTF was found to be higher than in laboratory ones. GGTF activity in the brain of warm-blooded animals is higher than that in the brain of the tortoise, frog and loach.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号