共查询到20条相似文献,搜索用时 145 毫秒
1.
在嗜盐菌长期的盐适应或短期的盐胁迫过程中,甘氨酸甜菜碱(又名三甲基甘氨酸,N,N,N-trimethylglycine)发挥着极为重要的作用。甘氨酸甜菜碱在嗜盐菌中的生物合成有2种途径:胆碱氧化途径和甘氨酸甲基化途径。前者以胆碱为底物,由胆碱脱氢酶(cholinedehydrogenase,BetA)和甜菜碱乙醛脱氢酶(betaine aldehyde dehydrogenase,BetB)经2次氧化生成甜菜碱;后者以甘氨酸作为底物,由甘氨酸肌醇甲基转移酶(glycine sarcosine N-methyltransferase,GSMT)和肌氨酸二甲基甘氨酸甲基转移酶(sarcosine dimethylglycine N-methyltransferase,SDMT)经3次N-甲基化生成甜菜碱。目前在JGI-IMG和EZBioCloud数据库中公布了134株嗜盐菌标准菌株的全基因组序列。其中,约56.0%的嗜盐细菌和约39.6%的嗜盐古菌拥有胆碱氧化途径所需的2个基因;约9.7%的嗜盐细菌和约0.7%的嗜盐古菌携带甲基化途径所需的2个基因。其中,8株嗜盐细菌同时拥有胆碱氧化途径和甘氨酸甲基化途径所需的全部基因。甘氨酸甜菜碱生物合成基因在典型微生物菌株或经济作物中的表达可以提高其耐盐抗逆能力,这种独特的优势已经引起科学家们强烈的兴趣,相信未来,嗜盐菌中甘氨酸甜菜碱生物合成领域内的科学理论和技术应用会有重大的突破。 相似文献
2.
Glycine betaine reverses the effects of osmotic stress on DNA replication and cellular division in Escherichia coli 总被引:8,自引:0,他引:8
J. Meury 《Archives of microbiology》1988,149(3):232-239
The accumulation of glycine betaine to a high internal concentration by Escherichia coli cells in high osmolarity medium restores, within 1 h, a subnormal growth rate. The experimental results support the view that cell adaptation to high osmolarity involves a decrease in the initiation frequency of DNA replication via a stringent response; in contrast, glycine betaine transport and accumulation could suppress the stringent response within 1–2 min and restore a higher initiation frequency. High osmolarity also triggers the cells to lengthen, perhaps via an inhibition of cellular division; glycine betaine also reverses this process. It is inferred that turgor could control DNA replication and cell division in two separate ways. Glycine betaine action is not mediated by K+ ions as the internal level of K+ ions is not modified significantly following glycine betaine accumulation. 相似文献
3.
4.
Erina Kitagawa Tatsuya Yamamoto Mayuko Fujishita Yuki Ota Kohei Yamamoto Tomoyuki Nakagawa 《Bioscience, biotechnology, and biochemistry》2017,81(2):316-322
We investigated the efficacy of supplementing the diet with choline or betaine in ameliorating lipid accumulation induced by vitamin B6 (B6) deficiency in rat liver. Male Wistar rats were fed a control, B6-deficient, choline-supplemented (2, 4, or 6 g choline bitartrate/kg diet) B6-deficient diet or betaine-supplemented (1, 2, or 4 g betaine anhydrous/kg diet) B6-deficient diet for 35 d; all diets contained 9 g L-methionine (Met)/kg diet. Choline or betaine supplementation attenuated liver lipid deposition and restored plasma lipid profiles to control levels. These treatments restored the disruptions in Met metabolism and the phosphatidylcholine (PC)/phosphatidylethanolamine (PE) ratio induced by B6 deficiency in liver microsomes. These results suggest that choline and betaine ameliorated liver lipid accumulation induced by B6 deficiency via recovery of Met metabolism and very low-density lipoprotein secretion by restoring the supply of PC derived from PE. 相似文献
5.
Yanli Gao Mingna Li Xiaxiang Zhang Qingchuan Yang Bingru Huang 《Plant, cell & environment》2020,43(1):159-173
Choline may affect salt tolerance by regulating lipid and glycine betaine (GB) metabolism. This study was conducted to determine whether alteration of lipid profiles and GB metabolism may contribute to choline regulation and genotypic variations in salt tolerance in a halophytic grass, seashore paspalum (Paspalum vaginatum). Plants of Adalayd and Sea Isle 2000 were subjected to salt stress (200-mM NaCl) with or without foliar application of choline chloride (1 mM). Genotypic variations in salt tolerance and promotive effects of choline application on salt tolerance were associated with both the up-regulation of lipid metabolism and GB synthesis. The genotypic variations in salt tolerance associated with lipid metabolism were reflected by the differential accumulation of phosphatidylcholine and phosphatidylethanolamine between Adalayd and Sea Isle 2000. Choline-induced salt tolerance was associated with of the increase in digalactosyl diacylglycerol (DGDG) content including DGDG (36:4 and 36:6) in both cultivars of seashore paspalum and enhanced synthesis of phosphatidylinositol (34:2, 36:5, and 36:2) and phosphatidic acid (34:2, 34:1, and 36:5), as well as increases in the ratio of digalactosyl diacylglycerol: monogalactosyl diacylglycerol (DGDG:MGDG) in salt-tolerant Sea Isle 2000. Choline regulation of salt tolerance may be due to the alteration in lipid metabolism in this halophytic grass species. 相似文献
6.
Translocation and metabolism of glycine betaine in nodulated alfalfa plants subjected to salt stress
The fate of radioactive glycine betaine was investigated in 31-day-old alfalfa ( Medicago sativa L. cv Europe) plants nodulated by Rhizobium meliloti 102 F 34. Radioactive [methyl-14 C]- or [1,2-14 C]glycine betaine was fed for 6 h to plants subjected or not to stress by 0.2 M NaCl. A 36% decrease in glycine betaine uptake was observed in salinized plants. No loss of radioactivity in the gas phase or the growth medium was ever observed from either stressed or unstressed plants, even after a 4-day chase period. Glycine betaine catabolism was negligible in shoots of both control and salinized plants, but it was important in roots and even more significant in nodules of unstressed plants. In unstressed nodules, 52% of the labelled betaine was metabolized after 4 days, and the half-life of glycine betaine was estimated at ca 4 days. On the contrary, catabolism was dramatically reduced in stressed roots and, particularly, nodules in which the half-life of glycine betaine increased to at least 16 days. Analysis of the redistribution of radioactivity among plant organs during the chase period shows that glycine betaine was translocated from the roots to the nodules of salinized plants, so that during this period salinization resulted in a 91% increase in nodule radioactivity, whereas a 34% decrease was observed in control plants. Altogether, reduced catabolism and increased translocation of glycine betaine to stressed nodules favored its accumulation in these organs. The high level of glycine betaine might contribute to maintain a better water status in the nodule and, thus, protect the nitrogen fixation activity against the deleterious effects of elevated osmolarity in the nutrient solution. 相似文献
7.
The interactive effects of NaCl concentration and growth temperature on the growth and lipid composition of the moderately halophilic eubacterium Vibrio costicola have been investigated. Vibrio costicola was shown to be capable of growth over the temperature range 4-37 degrees C. Maximum growth yields were obtained at 30 degrees C when the optimum NaCl concentration was 1.0 M NaCl. In contrast with some previous studies, at higher or lower growth temperatures both the optimum and lower limit of NaCl concentration were higher, but there was no change in the upper limit of NaCl concentration for growth. There were no differences between the lipid compositions of cultures grown in 1 M NaCl at 30 or 37 degrees C, but as the growth temperature was lowered from 30 to 10 or 4 degrees C, the ratio of phosphatidylethanolamine to phosphatidylglycerol increased significantly as a result of the conversion of phosphatidylglycerol to diphosphatidylglycerol; in addition, at the lower growth temperatures the phospholipid fatty acyl composition became more unsaturated and the mean acyl chain length was shorter. It is suggested that the altered salt dependence of V. costicola at temperatures below the optimum for growth is due to a modification in membrane lipid phase behavior and stability brought about by changes in lipid composition, whereas a different mechanism operates above the growth temperature optimum. 相似文献
8.
9.
In response to osmotic stress, the halophilic, Gram-positive bacterium Marinococcus halophilus accumulates compatible solutes either by de novo synthesis or by uptake from the medium. To characterize transport systems responsible for the uptake of compatible solutes, a plasmid-encoded gene bank of M. halophilus was transferred into the transport-deficient strain Escherichia coli MKH13, and two genes were cloned by functional complementation required for ectoine and glycine betaine transport. The ectoine transporter is encoded by an open reading frame of 1,578 bp named ectM. The gene ectM encodes a putative hydrophobic, 525-residue protein, which shares significant identity to betaine-carnetine-choline transporters (BCCTs). The transporter responsible for the uptake of glycine betaine in M. halophilus is encoded by an open reading frame of 1,482 bp called betM. The potential, hydrophobic BetM protein consists of 493 amino acid residues and belongs, like EctM, to the BCCT family. The affinity of whole cells of E. coli MKH13 for ectoine (Ks=1.6 M) and betaine (Ks=21.8 M) was determined, suggesting that EctM and BetM exhibit a high affinity for their substrates. An elevation of the salinity in the medium resulted in an increased uptake of ectoine via EctM and glycine betaine via BetM in E. coli MKH13 cells, demonstrating that both systems are osmoregulated.Communicated by W.D. Grant 相似文献
10.
Trotta A Redondo-Gómez S Pagliano C Clemente ME Rascio N Rocca NL Antonacci A Andreucci F Barbato R 《Journal of plant physiology》2012,169(2):111-116
The effect of different external salt concentrations, from 0 mM to 1030 mM NaCl, on photosynthetic complexes and chloroplast ultrastructure in the halophyte Arthrocnemum macrostachyum was studied. Photosystem II, but not Photosystem I or cytochrome b6/f, was affected by salt treatment. We found that the PsbQ protein was never expressed, whereas the amounts of PsbP and PsbO were influenced by salt in a complex way. Analyses of Photosystem II intrinsic proteins showed an uneven degradation of subunits with a loss of about 50% of centres in the 0 mM NaCl treated sample. Also the shape of chloroplasts, as well as the organization of thylakoid membranes were affected by NaCl concentration, with many grana containing few thylakoids at 1030 mM NaCl and thicker grana and numerous swollen thylakoids at 0 mM NaCl. The PsbQ protein was found to be depleted also in thylakoids from other halophytes. 相似文献
11.
Y. Kaneda Y. Tabei S. Nishimura K. Harada T. Akihama K. Kitamura 《Plant cell reports》1997,17(1):8-12
A successful, efficient system for multiple soybean shoot induction of soybean [Glycine max (L.) Merr.] is reported. Multiple shoots were induced from cotyledonary nodes and hypocotyl segments cultured on media supplemented
with 2 mg/l thidiazuron (TDZ) or 1.15 mg/l benzyladenine (BA). It was found that TDZ induced adventitious shoots more efficiently
than BA and that hypocotyl segments promoted more adventitious shoots than cotyledonary nodes. The optimal TDZ concentrations
for shoot organogenesis from hypocotyl segments were between 1 and 2 mg/l. Basal media also influenced the efficiency of shoot
organogenesis. The frequency of adventitious shoot formation tended to increase when the salt concentration in the basal media
supplemented with 2 mg/l TDZ was reduced. Two media (1/2B5 and 1/2L2) stimulated shoot organogenesis efficiently from hypocotyl
segments. This method can thus be advantageously applied in the production of transgenic soybean plants.
Received: 3 July 1996 / Accepted: 9 May 1997 相似文献
12.
Temperature is a key environmental factor inducing phenotypic plasticity in a wide range of behavioral, morphological, and life history traits in ectotherms. The strength of temperature-induced responses in fitness-related traits may be determined by plasticity of the underlying physiological or biochemical traits. Lipid composition may be an important trait underlying fitness response to temperature, because it affects membrane fluidity as well as availability of stored energy reserves. Here, we investigate the effect of temperature on lipid composition of the springtail Orchesella cincta by measuring thermal reaction norms across five different temperatures after four weeks of cold or warm acclimation. Fatty acid composition in storage and membrane lipids showed a highly plastic response to temperature, but the responses of single fatty acids revealed deviations from the expectations based on HVA theory. We found an accumulation of C18:2n6 and C18:3n3 at higher temperatures and the preservation of C20:4n6 across temperatures, which is contrary to the expectation of decreased unsaturation at higher temperatures. The thermal response of these fatty acids in O. cincta differed from the findings in other species, and therefore shows there is interspecific variation in how single fatty acids contribute to HVA. Future research should determine the consequences of such variation in terms of costs and benefits for the thermal performance of species. 相似文献
13.
Kolluru Viswanatha Chaitanya Girish Kumar Rasineni Attipalli Ramachandra Reddy 《Acta Physiologiae Plantarum》2009,31(3):437-443
Five popularly grown mulberry cultivars (K-2, MR-2, TR-10, BC2-59 and S-13) were subjected to drought stress by withholding
irrigation, to obtain leaf water potentials (Ψw) ranging from −0.75, −1.50 and −2.25 MPa. Accumulation of proline, glycine betaine and abscisic acid (ABA) were quantified
in control and water stressed mulberry leaves. The activities of enzymes involved in proline accumulation including glutamate
dehydrogenase (EC1.4.1.2-4), pyrroline-5-carboxylate synthetase (EC 1.2.1.41), pyrroline-5-carboxylate reductase (EC1.5.1.2),
ornithine transaminase (EC 2.6.1.13) were significantly enhanced in the leaves of all the cultivars with decreasing leaf water
potentials, while the activities of proline dehydrogenase (EC 1.5.1.2) were reduced with progressive increase in water stress.
Accumulation of proline, glycine betaine and abscisic acid was relatively higher in S-13 and BC2-59 compared to K-2, MR-2
and TR-10 under water deficit conditions. Our results demonstrate that S-13 and BC2-59 have superior osmoprotectant mechanisms
under water-limited growth regimes. 相似文献
14.
15.
为了解耐盐水稻HD96-1幼苗期耐盐生理调控特性,该研究以籼型水稻HD96-1(耐盐性强)和93-11(耐盐性弱)为材料,采用营养液水培法,设置3种NaCl盐浓度(0、60、120 mmol·L-1),对3叶期幼苗进行了7 d盐处理,测定和分析了两个材料的生长参数和生理生化指标。结果表明:(1)在盐胁迫下,水稻幼苗均表现为株高和假茎宽减小,根冠比增加;与93-11比,HD96-1株高和茎宽减小幅度低,根冠比增加幅度高;地上部和根系干重,HD96-1增加,而93-11减少。(2)盐胁迫后,水稻幼苗的丙二醛(MDA)、超氧阴离子(O2-)和过氧化氢(H2O2)含量均上升,但HD96-1增幅较93-11低。(3)在盐胁迫下,水稻幼苗体内的超氧化物歧化酶(SOD)、过氧化物酶(POD)、过氧化氢酶(CAT)、抗坏血酸过氧化物酶(APX)的活性,以及抗坏血酸(AsA)、谷胱甘肽(GSH)、脯氨酸、可溶性糖和可溶性蛋白的含量均升高,HD96-1增幅高于93-11。综上表明,两个水稻材料幼苗... 相似文献
16.
17.
Romano I Nicolaus B Lama L Trabasso D Caracciolo G Gambacorta A 《Systematic and applied microbiology》2001,24(3):342-352
The effects of salinity, growth temperature, pH and composition of the medium on the accumulation of intracellular organic solutes, by nuclear magnetic resonance spectroscopy (NMR) in Halomonas pantelleriense were examined. The modulation of lipid pattern in different growth conditions was also reported. H. pantelleriense accumulated glycine betaine, ectoine, hydroxyectoine and glutamate. The type of osmoprotectant and the relative proportion depended on growth conditions. The main lipids identified by NMR studies were 1,2 diacylglycero-3-phosphorylethanolamine (PEA), 1,2 diacylglycero-3-phosphoryl-glycerol (PG) and cardiolipin, (DPG). The predominant fatty acids were C16:0 and C18:1, minor fatty acids were C16:1 and C18:0. The relative percentage of polar lipids and fatty acids were affected by growth conditions. 相似文献
18.
H. A. M. Bulder W. R. van der Leij E. J. Speek P. R. van Hasselt P. J. C. Kuiper 《Physiologia plantarum》1989,75(3):362-368
The effects of drought stress and/or low temperature stress on total lipid and phospholipid content and fatty acid composition of leaves of cucumber ( Cucumis sativus L.) genotypes differing in growth response at suboptimal temperature were studied. Both drought and low temperature resulted in reduced growth, especially in cv. Farbio, the genotype least tolerant to low temperature. Drought resulted in an increase in total lipid and phospholipid per g fresh weight. On a lipid basis no change in phospholipids or fatty acid content was observed. The fatty acid composition was changed by drought and low temperature, resulting in an increase in the degree of unsaturation. The genotype-specific reaction to treatment for total lipid content and the degree of unsaturation point to the possibility of a genetic origin for drought-induced lipid changes, which may be used in a breeding program for improved growth at suboptimal temperature. 相似文献
19.
To cope with life in hypersaline environments, halophilic archaeal proteins are enriched in acidic amino acids. This strategy does not, however, offer a response to transient changes in salinity, as would post-translational modifications. To test this hypothesis, N-glycosylation of the Haloferax volcanii S-layer glycoprotein was compared in cells grown in high (3.4 M NaCl) and low (1.75 M NaCl) salt, as was the glycan bound to dolichol phosphate, the lipid upon which the N-linked glycan is assembled. In high salt, S-layer glycoprotein Asn-13 and Asn-83 are modified by a pentasaccharide, while dolichol phosphate is modified by a tetrasaccharide comprising the first four pentasaccharide residues. When the same targets were considered from cells grown in low salt, substantially less pentasaccharide was detected. At the same time, cells grown at low salinity contain dolichol phosphate modified by a distinct tetrasaccharide absent in cells grown at high salinity. The same tetrasaccharide modified S-layer glycoprotein Asn-498 in cells grown in low salt, whereas no glycan decorated this residue in cells grown in the high-salt medium. Thus, in response to changes in environmental salinity, Hfx. volcanii not only modulates the N-linked glycans decorating the S-layer glycoprotein but also the sites of such post-translational modification. 相似文献
20.
Toxic levels of extractable soil Al limit production of important crops in many areas of the world. The nature of the limitation in soybeans is not completely understood. Our objectives were to investigate the cause of acid-soil-induced delays in seedling emergence, the effect of acidity on productivity in non-nodulated soybeans and further test the Al tolerance of PI 416,937 compared to a sensitive control, Essex. Growth characteristics of the two genotypes through the flowering stage were measured on a Corozal clay (Aquic Tropudult) in Puerto Rico which had been differentially limed to provide a wide range of soil Al. Early growth was also studied in the laboratory using soil from the field experiment. Highly acidic soil conditions, coupled with high Al levels, reduced growth in both Essex and PI 416,937. The principal factor responsible for delayed emergence in the high Al soil was not delayed radicle initiation, but delayed initiation of hypocotyl elongation. Hypocotyl initiation was highly associated with rate of tap root growth, with the former possibly determined by the latter, because a minimum tap root length of 60 mm was required in both high and low Al soils before hypocotyl initiation commenced. In seedlings, the high acidity reduced root more than shoot growth. By 44 days after planting (DAP), however, soil acidity had reduced shoot growth greatly. Although the soybean plants were not nodulated, foliar N levels and shoot growth were decreased by high Al levels, indicating that interference with N fixation may not be the sole mechanism by which nitrogen accumulation and plant growth is reduced in the field.Joint contribution from the USDA, ARS, Tropical Agriculture Research Station, Mayaguez, PR; USDA, ARS, Soybean and Nitrogen Fixation Research Unit, Raleigh, NC, and the Agricultural Experiment Station-University of Puerto Rico (AES-UPR), Rio Piedras, PR.Joint contribution from the USDA, ARS, Tropical Agriculture Research Station, Mayaguez, PR; USDA, ARS, Soybean and Nitrogen Fixation Research Unit, Raleigh, NC, and the Agricultural Experiment Station-University of Puerto Rico (AES-UPR), Rio Piedras, PR. 相似文献