首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In multicellular organisms, cells cooperate within a well-defined developmental program. Cancer is a breakdown of such cooperation: cells mutate to phenotypes of uncoordinated proliferation. We study basic principles of the architecture of solid tissues that influence the rate of cancer initiation. In particular, we explore how somatic selection acts to prevent or to promote cancer. Cells with mutations in oncogenes or tumor suppressor genes often have increased proliferation rates. Somatic selection increases their abundance and thus enhances the risk of cancer. Many potentially harmful mutations, however, increase the probability of triggering apoptosis and, hence, initially lead to cells with reduced net proliferation rates. Such cells are eliminated by somatic selection, which therefore also works to reduce the risk of cancer. We show that a tissue organization into small compartments avoids the rapid spread of mutations in oncogenes and tumor suppressor genes, but promotes genetic instability. In small compartments, genetic instability, which confers a selective disadvantage for the cell, can spread by random drift. If both deleterious and advantageous mutations participate in tumor initiation, then we find an intermediate optimum for the compartment size.  相似文献   

2.
Competition among cells has long been recognized as an important part of carcinogenesis. However, the role of cellular cooperation in cancer has been largely ignored. In this work, we investigated the role of cooperation in early tumor progression using a mathematical and agent-based modeling approach. We hoped to learn how the introduction of cooperative cells into a cell population would affect the dynamics of the system. We modeled the stem cell compartment of tissue using a spatial structure organized into cell patches, with stem cells able to replicate or leave the stem cell compartment through apoptosis or differentiation. The cells could also acquire mutations in three oncogenes and two tumor suppressor genes. Cooperative cells in our model provided a cooperative signal that increased the fitness of their immediate neighbors, but did not affect their own fitness. Running simulations of the model, we found that if cooperative cells are introduced into a cell population, they steadily proliferate and confer a growth advantage to the entire population. This leads us to conclude that providing a cooperative signal is likely to be under positive selective pressure. When cooperative ability and mutation are concurrently present in the same cells, the overall cell population experiences a significant growth advantage, much greater than with cooperation or mutation alone. This growth advantage is diminished if cells with only oncogene/tumor suppressor mutations are also present in the population, suggesting that the optimal scenario for tumor growth would be for cooperative cells to take over a cell population, and then for mutations in oncogenes and tumor suppressors to arise on a background of cooperation. We predict that cooperation is particularly important in the very early stages of carcinogenesis, when tissue is morphologically and histologically normal. Our results have implications for the screening and early diagnosis of cancer.  相似文献   

3.
The existence of cancer stem cells (CSCs) or stem-like cancer cells (SLCCs) is regarded as the cause of tumor formation and recurrence. However, the origin of such cells remains controversial with two competing hypotheses: CSCs are either transformed from tissue adult stem cells or dedifferentiated from transformed progenitor cells. Compelling evidence has determined the chromosomal aneuploidy to be one of the hallmarks of cancer cells, indicating genome instability plays an important role in tumorigenesis, for which CSCs are believed to be the initiator. To gain direct evidence that genomic instability is involved in the induction of SLCCs, we utilized multiple approaches to enhance genomic instability and monitored the percentage of SLCC in cultured cancer cells. Using side population (SP) cells as a marker for SLCC in human nasopharyngeal carcinoma (NPC) and CD133 for human neuroblastoma cells, we found that DNA damage inducers, UV and mitomycin C were capable of increasing SP cells in NPC CNE-2 and neuroblastoma SKN-SH cells. Likewise, either overexpression of a key regulator of cell cycle, Mad2, or knock down of Aurora B, an important kinase in mitosis, or Cdh1, a key E3 ligase in cell cycle, resulted in a significant increase of SP cells in CNE-2. More interestingly, enrichment of SP cells was observed in recurrent tumor tissues as compared with the primary tumor in the same NPC patients. Our study thus suggested that, beside transformation of tissue stem cells leading to CSC generation, genomic instability could be another potential mechanism resulting in SLCC formation, especially at tumor recurrence stage.  相似文献   

4.
Tumors are appreciated to be an intrinsically heterogeneous population of cells with varying proliferation capacities and tumorigenic potentials. As a central tenet of the so-called cancer stem cell hypothesis, most cancer cells have only a limited lifespan, and thus cannot initiate or reinitiate tumors. Longevity and clonogenicity are properties unique to the subpopulation of cancer stem cells. To understand the implications of the population structure suggested by this hypothesis—a hierarchy consisting of cancer stem cells and progeny non-stem cancer cells which experience a reduction in their remaining proliferation capacity per division—we set out to develop a mathematical model for the development of the aggregate population. We show that overall tumor progression rate during the exponential growth phase is identical to the growth rate of the cancer stem cell compartment. Tumors with identical stem cell proportions, however, can have different growth rates, dependent on the proliferation kinetics of all participating cell populations. Analysis of the model revealed that the proliferation potential of non-stem cancer cells is likely to be small to reproduce biologic observations. Furthermore, a single compartment of non-stem cancer cell population may adequately represent population growth dynamics only when the compartment proliferation rate is scaled with the generational hierarchy depth.  相似文献   

5.
Cancer is caused by successive gene mutations that amount to confer malignant phenotype. Genomic instability (GIN) is considered a key endogenous mechanism for accumulation of mutations, and therefore, has been proposed as an engine of tumorigenesis. Recently, cancer stem cells, or tumor initiating cells, have been identified in a variety of human cancers. These cancer stem cells (CSCs) are believed to be responsible for the initiation of malignant growth and metastasis of some, and perhaps all cancer types. How are these two engines of tumorigenesis related to each other? Is GIN a driving force in the genesis of cancer stem cells? Is the genome in CSCs inherently unstable? Could GIN in CSC be the cause of the observed cancer cell heterogeneity? In this article, we will discuss some early clues indicating that these two driving forces of tumorigenesis appear to be intimately connected.  相似文献   

6.
Inactivation of tumor suppressor genes can lead to clonal expansion. We study the evolutionary dynamics of this process and calculate the probability that inactivation of a tumor suppressor gene is preceded by mutations in genes that confer genetic instability. Unstable cells might have a slower rate of clonal expansion than stable cells because of an increased probability of generating lethal mutations or inducing apoptosis. We show that the different growth rates of genetically stable and unstable cells during clonal expansion represent, in general, only a small disadvantage for genetic instability. The intuitive reason for this conclusion is that robust clonal expansion, where cellular birth rates are significantly greater than death rates, occurs on a much faster time scale than waiting for those mutations that allow clonal expansion. Moreover, in special cases where clonal expansion is very slow, genetically unstable cells have a higher probability to accumulate additional mutations during clonal expansion that confer a selective advantage. Clonal expansion represents a major disadvantage for genetic instability only when inactivation of the tumor suppressor gene leads to a very small increase of the cellular reproductive rate that is cancelled by the increased mortality of unstable cells.  相似文献   

7.
In this paper, we derive analytic solutions of stochastic mutation-selection networks that describe early events of cancer formation. A main assumption is that cancer is initiated in tissue compartments, where only a relatively small number of cells are at risk of mutating into cells that escape from homeostatic regulation. In this case, the evolutionary dynamics can be approximated by a low-dimensional stochastic process with a linear Kolmogorov forward equation that can be solved analytically. Most of the time, the cell population is homogeneous with respect to relevant mutations. Occasionally, such homogeneous states are connected by 'stochastic tunnels'. We give a precise analysis of the existence of tunnels and calculate the rate of tunneling. Finally, we calculate the conditions for chromosomal instability (CIN) to precede inactivation of the first tumor suppressor gene. In this case, CIN is an early event and a driving force of cancer progression. The techniques developed in this paper can be used to study arbitrarily complex mutation-selection networks of the somatic evolution of cancer.  相似文献   

8.
除了依赖于肿瘤细胞自身的恶性增殖以外,肿瘤的发生和发展还依赖于肿瘤细胞与肿瘤间质微环境的相互作用。肿瘤间质中存在的肿瘤相关成纤维细胞(tumor-associatedfibroblasts,TAF)能够诱导免疫抑制,是肿瘤免疫治疗中的一大障碍。在TAF上存在一种成纤维细胞激活蛋白(fibroblast activationprotein,FAP),它在细胞表面发挥作用,是一种膜丝氨酸肽酶,是Ⅱ型丝氨酸蛋白酶家族成员之一,具有二肽肽酶及胶原酶活性,在肿瘤微环境中表达FAP的肿瘤相关成纤维细胞是最早被鉴定的一种肿瘤间质细胞类型。它由肿瘤问质中的成纤维细胞与癌细胞相互作用而活化,是肿瘤微环境中最主要的宿主细胞,具有促进肿瘤细胞生长、侵袭及免疫抑制的作用,而且基因组稳定不易耐药,有望成为肿瘤免疫治疗的新靶标。就靶向TAF和FAP在肿瘤免疫治疗中的研究做一综述,为基于肿瘤间质微环境的免疫治疗提供参考。  相似文献   

9.
A comparison between the evolution of cancer cell populations and RNA viruses reveals a number of remarkable similarities. Both display high levels of plasticity and adaptability as a consequence of high degrees of genetic variation. It has been suggested that, as it occurs with RNA viruses, there is a threshold in the levels of genetic instability affordable by cancer cells in order to be able to overcome selection barriers (Trends Genet. 15 (1999) M57). Here we explore this concept by means of a simple mathematical model. It is shown that an error threshold exists in this model, which investigates both competition between cancer cell populations and its impact on overall tumor growth dynamics. Once the threshold is reached, the highly unstable tumor cell populations, which were sustaining malignant growth, become unable to maintain their genetic information, which in turn triggers a slowed down overall tumor growth regime.  相似文献   

10.
Tumorigenesis in humans is thought to be a multistep process where certain mutations confer a selective advantage, allowing lineages derived from the mutated cell to outcompete other cells. Although molecular cell biology has substantially advanced cancer research, our understanding of the evolutionary dynamics that govern tumorigenesis is limited. This paper analyzes the computational implications of cancer progression presented by Hanahan and Weinberg in The Hallmarks of Cancer. We model the complexities of tumor progression as a small set of underlying rules that govern the transformation of normal cells to tumor cells. The rules are implemented in a stochastic multistep model. The model predicts that (i) early-onset cancers proceed through a different sequence of mutation acquisition than late-onset cancers; (ii) tumor heterogeneity varies with acquisition of genetic instability, mutation pathway, and selective pressures during tumorigenesis; (iii) there exists an optimal initial telomere length which lowers cancer incidence and raises time of cancer onset; and (iv) the ability to initiate angiogenesis is an important stage-setting mutation, which is often exploited by other cells. The model offers insight into how the sequence of acquired mutations affects the timing and cellular makeup of the resulting tumor and how the cellular-level population dynamics drive neoplastic evolution.  相似文献   

11.
Initiation, progression and evasion are sequential steps in cancer formation, with autonomous cell proliferation as a final outcome. Genetic or epigenetic alterations of key regulatory genes of the cell cycle are frequently associated with these phenomena. Recently, chromosomal instability, a long-supposed driving force of tumorigenesis, was associated with dysregulation of mitotic genes, providing advantages to tumor cells. Numerous molecules thus provide a key link in the chain of relationships between chromosomal instability and cancer. Here, we discuss emerging evidence revealing that two p53 family members, p53 and p73, might be key regulatory genes at the heart of the relationship between chromosomal instability and cancer. We argue that the role of members of the p53 family as tumor suppressor proteins, their impact on the control of cellular ploidy, and their newly emerging connection with mitotic checkpoint regulatory genes support the suggestion that p73 and p53 could be two of the missing links among chromosomal instability, the mitotic checkpoint and cancer.  相似文献   

12.
Cancer metastasis: building a framework   总被引:47,自引:0,他引:47  
Gupta GP  Massagué J 《Cell》2006,127(4):679-695
Metastasis occurs when genetically unstable cancer cells adapt to a tissue microenvironment that is distant from the primary tumor. This process involves both the selection of traits that are advantageous to cancer cells and the concomitant recruitment of traits in the tumor stroma that accommodate invasion by metastatic cells. Recent conceptual and technological advances promote our understanding of the origins and nature of cancer metastasis.  相似文献   

13.
Multi-level heterogeneity is a fundamental but underappreciated feature of cancer. Most technical and analytical methods either completely ignore heterogeneity or do not fully account for it, as heterogeneity has been considered noise that needs to be eliminated. We have used single-cell and population-based assays to describe an instability-mediated mechanism where genome heterogeneity drastically affects cell growth and cannot be accurately measured using conventional averages. First, we show that most unstable cancer cell populations exhibit high levels of karyotype heterogeneity, where it is difficult, if not impossible, to karyotypically clone cells. Second, by comparing stable and unstable cell populations, we show that instability-mediated karyotype heterogeneity leads to growth heterogeneity, where outliers dominantly contribute to population growth and exhibit shorter cell cycles. Predictability of population growth is more difficult for heterogeneous cell populations than for homogenous cell populations. Since “outliers” play an important role in cancer evolution, where genome instability is the key feature, averaging methods used to characterize cell populations are misleading. Variances quantify heterogeneity; means (averages) smooth heterogeneity, invariably hiding it. Cell populations of pathological conditions with high genome instability, like cancer, behave differently than karyotypically homogeneous cell populations. Single-cell analysis is thus needed when cells are not genomically identical. Despite increased attention given to single-cell variation mediated heterogeneity of cancer cells, continued use of average-based methods is not only inaccurate but deceptive, as the “average” cancer cell clearly does not exist. Genome-level heterogeneity also may explain population heterogeneity, drug resistance, and cancer evolution.  相似文献   

14.
One of the key questions about genomic alterations in cancer is whether they are functional in the sense of contributing to the selective advantage of tumor cells. The frequency with which an alteration occurs might reflect its ability to increase cancer cell growth, or alternatively, enhanced instability of a locus may increase the frequency with which it is found to be aberrant in tumors, regardless of oncogenic impact. Here we’ve addressed this on a genome-wide scale for cancer-associated focal deletions, which are known to pinpoint both tumor suppressor genes (tumor suppressors) and unstable loci. Based on DNA copy number analysis of over one-thousand human cancers representing ten different tumor types, we observed five loci with focal deletion frequencies above 5%, including the A2BP1 gene at 16p13.3 and the MACROD2 gene at 20p12.1. However, neither RNA expression nor functional studies support a tumor suppressor role for either gene. Further analyses suggest instead that these are sites of increased genomic instability and that they resemble common fragile sites (CFS). Genome-wide analysis revealed properties of CFS-like recurrent deletions that distinguish them from deletions affecting tumor suppressor genes, including their isolation at specific loci away from other genomic deletion sites, a considerably smaller deletion size, and dispersal throughout the affected locus rather than assembly at a common site of overlap. Additionally, CFS-like deletions have less impact on gene expression and are enriched in cell lines compared to primary tumors. We show that loci affected by CFS-like deletions are often distinct from known common fragile sites. Indeed, we find that each tumor tissue type has its own spectrum of CFS-like deletions, and that colon cancers have many more CFS-like deletions than other tumor types. We present simple rules that can pinpoint focal deletions that are not CFS-like and more likely to affect functional tumor suppressors.  相似文献   

15.
16.
Stem cells of the small and large intestine are marked by expression of the Wnt target gene LGR5, a leucine-rich-repeat-containing G protein-coupled receptor. Previous studies reported increased expression of LGR5 in human colorectal cancer (CRC) compared to normal tissue either by immunohistochemistry or in situ hybridization (ISH). However, as these studies were semi-quantitative they did not provide a numerical estimate of the magnitude of this effect. While we confirm that LGR5+ cells are exclusively located at the base of normal human small and large intestinal crypts, representing approximately 6% of total crypt cells, we show this cell population is 10-fold expanded in all grades of CRC, representing as much as 70% of the cells of tumor crypt-like structures. This expansion of the LGR5 compartment coincides with maintenance of crypt-like glandular structure (adenomas, and well and moderately differentiated adenocarcinomas), and is reduced in poorly differentiated CRC, where crypt-like glandular architecture is lost, accompanied by reduced epithelial terminal differentiation. Altogether these results indicate that LGR5+ cell expansion is a hallmark of CRC tumorigenesis occurring during progression to adenoma, supporting CRC as a stem cell disease with implications for CRC therapy.  相似文献   

17.

Background

The genetic diversity of cancer and the dynamic interactions between heterogeneous tumor cells, the stroma and immune cells present daunting challenges to the development of effective cancer therapies. Although cancer biology is more understood than ever, this has not translated into therapies that overcome drug resistance, cancer recurrence and metastasis. The future development of effective therapies will require more understanding of the dynamics of homeostatic dysregulation that drives cancer growth and progression.

Results

Cancer dynamics are explored using a model involving genes mediating the regulatory interactions between the signaling and metabolic pathways. The exploration is informed by a proposed genetic dysregulation measure of cellular processes. The analysis of the interaction dynamics between cancer cells, cancer associated fibroblasts, and tumor associate macrophages suggests that the mutual dependence of these cells promotes cancer growth and proliferation. In particular, MTOR and AMPK are hypothesized to be concurrently activated in cancer cells by amino acids recycled from the stroma. This leads to a proliferative growth supported by an upregulated glycolysis and a tricarboxylic acid cycle driven by glutamine sourced from the stroma. In other words, while genetic aberrations ignite carcinogenesis and lead to the dysregulation of key cellular processes, it is postulated that the dysregulation of metabolism locks cancer cells in a state of mutual dependence with the tumor microenvironment and deepens the tumor’s inflammation and immunosuppressive state which perpetuates as a result the growth and proliferation dynamics of cancer.

Conclusions

Cancer therapies should aim for a progressive disruption of the dynamics of interactions between cancer cells and the tumor microenvironment by targeting metabolic dysregulation and inflammation to partially restore tissue homeostasis and turn on the immune cancer kill switch. One potentially effective cancer therapeutic strategy is to induce the reduction of lactate and steer the tumor microenvironment to a state of reduced inflammation so as to enable an effective intervention of the immune system. The translation of this therapeutic approach into treatment regimens would however require more understanding of the adaptive complexity of cancer resulting from the interactions of cancer cells with the tumor microenvironment and the immune system.
  相似文献   

18.
Evidence has accumulated that cancer develops from a population of quiescent tissue committed/pluripotent stem cells (TCSC/PSC) or cells developmentally closely related to them that are distributed in various organs. To support this notion, stem cells (SC) are long lived cells and thus may become the subject of accumulating mutations that are crucial for initiation/progression of cancer. More important, they may maintain these mutations and pass them to the daughter stem cells. Therefore, mutations that occur in normal SC, accumulate during the life of an organism at the clonal level in the stem cell compartment committed to a given tissue/organ. As a consequence, this may lead to the malignant transformation of SC and tumor initiation. Furthermore, many biological features of normal and cancer SC such as the physiological trafficking of normal and metastasis of cancer stem cells involve similar molecular mechanisms, and we discuss these similarities here. Therefore, looking both at the origin and behavioral aspects we can envision cancer SC being normal SC "Jedi" that went over to the "dark side".  相似文献   

19.
The genetic paradigm of cancer, focused largely on sequential molecular aberrations and associated biological impact in the neoplastic cell compartment of malignant tumors, has dominated our view of cancer pathogenesis. For the most part, this conceptualization has overlooked the dynamic and complex contributions of the surrounding microenvironment comprised of non-tumor cells (stroma) that may resist, react to, and/or foster tumor development. Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal disease in which a prominent tumor stroma compartment is a defining characteristic. Indeed, the bulk of PDAC tumor volume consists of non-neoplastic fibroblastic, vascular, and inflammatory cells surrounded by immense quantities of extracellular matrix, far exceeding that found in most other tumor types. Remarkably, little is known about the composition and physiology of the PDAC tumor microenvironment, in particular, the role of stroma in tumor initiation and progression. This review attempts to define key challenges, opportunities and state-of-knowledge relating to the PDAC microenvironment research with an emphasis on how inflammatory processes and key cancer pathways may shape the ontogeny of the tumor stroma. Such knowledge may be used to understand the evolution and biology of this lethal cancer and may convert these insights into new points of therapeutic intervention.  相似文献   

20.
Cellular studies have long been performed on the bench top, within Petri dishes and flasks that expose cells to surroundings that differ greatly from their native environment. The complexity of a human tissue is such that to truly replicate a cell’s physiologic microenvironment in vitro is currently impossible. It is nevertheless important to determine how various factors of the microenvironment interact to drive cell behavior, particularly with regard to disease states, such as cancer. Here we focus on two key elements of the cellular microenvironment, matrix stiffness and architecture, in the context of tumor cell behavior. We discuss recent work focusing on the effects of these individual properties on cancer cell migration and describe one technique developed by our lab that could be applied to dissect the effects of specific structural and mechanical cues, and which may lead to useful insights into the potentially synergistic effects of these properties on tumor cell behavior.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号