首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We consider a dynamic model of biofilm disinfection in two dimensions. The biofilm is treated as a viscous fluid immersed in a fluid of less viscosity. The bulk fluid moves due to an imposed external parabolic flow. The motion of the fluid is coupled to the biofilm inducing motion of the biofilm. Both the biofilm and the bulk fluid are dominated by viscous forces, hence the Reynolds number is negligible and the appropriate equations are Stokes equations. The governing partial differential equations are recast as boundary integral equations using a version of the Lorenz reciprocal relationship. This allows for robust treatment of the simplified fluid/biofilm motion. The transport of nutrients and antimicrobials, which depends directly on the velocities of the fluid and biofilm, is also included. Disinfection of the bacteria is considered under the assumption that the biofilm growth is overwhelmed by disinfection. Supported by NSF award DMS-0612467.  相似文献   

2.
The key to effective cleaning and disinfection of food plants is the understanding of the type of the soil to be removed from the surfaces. An efficient cleaning and disinfection procedure consists of a sequence of rinses using good quality water with application of detergents and disinfectants. Disinfection is required in food plant operations, where wet surfaces provide favourable conditions for the growth of microbes. The efficacy of disinfectants is usually determined in suspensions, which do not mimic the growth conditions on surfaces where the agents are required to inactivate the microbes. Therefore, the suspension tests do not give adequate information and reliable carrier tests, which mimic surface growth, are needed. In developing a proposal for the testing of disinfectants on surfaces to an analytical standard, it is important to identify the major sources of variation in the procedure. In response to the need for a relatively realistic, simple and reliable test for disinfectant efficacy a method for culturing laboratory model biofilms has developed. The use of artificial biofilms i.e. biofilm-constructs inoculated with process contaminants in disinfectant testing can also be used for screening the activity of various disinfectants on biofilm cells. Both biofilm carrier tests showed clearly that the biofilm protects the microbes against the disinfectants. The chemical cleanliness is also essential in food plants. The total cleanliness of the process lines is mainly based on measuring the microbial load using culturing techniques. These results can give an incorrect picture of the total cleanliness, because the viable microbes do not grow when disinfectants are left on the surface. The luminescent bacteria light inhibition method offers a useful alternative for testing chemical residue left on surfaces after cleaning and disinfection operations.  相似文献   

3.
A. Bridier  R. Briandet  V. Thomas 《Biofouling》2013,29(9):1017-1032
A biofilm can be defined as a community of microorganisms adhering to a surface and surrounded by a complex matrix of extrapolymeric substances. It is now generally accepted that the biofilm growth mode induces microbial resistance to disinfection that can lead to substantial economic and health concerns. Although the precise origin of such resistance remains unclear, different studies have shown that it is a multifactorial process involving the spatial organization of the biofilm. This review will discuss the mechanisms identified as playing a role in biofilm resistance to disinfectants, as well as novel anti-biofilm strategies that have recently been explored.  相似文献   

4.
Resistance of bacterial biofilms to disinfectants: a review   总被引:1,自引:0,他引:1  
A biofilm can be defined as a community of microorganisms adhering to a surface and surrounded by a complex matrix of extrapolymeric substances. It is now generally accepted that the biofilm growth mode induces microbial resistance to disinfection that can lead to substantial economic and health concerns. Although the precise origin of such resistance remains unclear, different studies have shown that it is a multifactorial process involving the spatial organization of the biofilm. This review will discuss the mechanisms identified as playing a role in biofilm resistance to disinfectants, as well as novel anti-biofilm strategies that have recently been explored.  相似文献   

5.
This modeling study evaluates the influence of biofilm geometrical characteristics on substrate mass transfer and conversion rates. A spatially two-dimensional model was used to compute laminar fluid flow, substrate mass transport, and conversion in irregularly shaped biofilms. The flow velocity above the biofilm surface was varied over 3 orders of magnitude. Numerical results show that increased biofilm roughness does not necessarily lead to an enhancement of either conversion rates or external mass transfer. The average mass transfer coefficient and Sherwood numbers were found to decrease almost linearly with biofilm area enlargement in the flow regime tested. The influence of flow, biofilm geometry and biofilm activity on external mass transfer could be quantified by Sh-Re correlations. The effect of biofilm surface roughness was incorporated in this correlation via area enlargement. Conversion rates could be best correlated to biofilm compactness. The more compact the biofilm, the higher the global conversion rate of substrate. Although an increase of bulk fluid velocity showed a large effect on mass transfer coefficients, the global substrate conversion rate per carrier area was less affected. If only diffusion occurs in pores and channels, then rough biofilms behave as if they were compact but having less biomass activity. In spite of the fact that the real biofilm area is increased due to roughness, the effective mass transfer area is actually decreased because only biofilm peaks receive substrate. This can be explained by the fact that in the absence of normal convection in the biofilm valleys, the substrate gradients are still largely perpendicular to the carrier. Even in the cases where convective transport dominates the external mass transfer process, roughness could lead to decreased conversion rates. The results of this study clearly indicate that only evaluation of overall conversion rates or mass fluxes can describe the correct biofilm conversion, whereas interpretation of local concentration or flow measurements as such might easily lead to erroneous conclusions.  相似文献   

6.
Biofilm growth in porous media is difficult to study non‐invasively due to the opaqueness and heterogeneity of the systems. Magnetic resonance is utilized to non‐invasively study water dynamics within porous media. Displacement‐relaxation correlation experiments were performed on fluid flow during biofilm growth in a model porous media of mono‐dispersed polystyrene beads. The spin–spin T2 magnetic relaxation distinguishes between the biofilm phase and bulk fluid phase due to water–biopolymer interactions present in the biofilm, and the flow dynamics are measured using PGSE NMR experiments. By correlating these two measurements, the effects of biofilm growth on the fluid dynamics can be separated into a detailed analysis of both the biofilm phase and the fluid phase simultaneously within the same experiment. Within the displacement resolution of these experiments, no convective flow was measured through the biomass. An increased amount of longitudinal hydrodynamic dispersion indicates increased hydrodynamic mixing due to fluid channeling caused by biofilm growth. The effect of different biofilm growth conditions was measured by varying the strength of the bacterial growth medium. Biotechnol. Bioeng. 2013; 110: 1366–1375. © 2012 Wiley Periodicals, Inc.  相似文献   

7.
Embryonic physiology is often viewed as merely those processes understood for the adult but conducted on a smaller physical scale. Yet striking examples of the inaccuracy of this perspective can be identified in the embryonic cardiovascular system. For example, dogma holds that the embryonic heart begins to beat to pump blood for convective transport, just like that of the adult. This is the major assumption inherent in the hypothesis we have called "convective synchronotropy"; that is, the embryonic heart starts to beat synchronously with the need for convective blood flow. However, there is compelling evidence on many fronts that the convective flow of blood generated by the early embryonic vertebrate heart is simply not required for transport of oxygen, nutrients, metabolic wastes, or hormones, all of which can be achieved entirely by diffusion. In fact, fish, amphibian, and bird embryos lacking a functional heart (either through surgical intervention or mutation) or whose oxygen-hemoglobin transport has been chemically eliminated nonetheless continue to function and grow in size for extended periods up to the point at which diffusion alone can no longer serve oxygen transport needs. We advocate the alternative hypothesis of "prosynchronotropy" (i.e., the heart starts to beat well before convective blood flow is needed for bulk transport). So, what is the purpose of the early embryonic heart beat? Evidence is presented herein in support of a morphogenic rationale for prosynchronotropy. Specifically, it appears that the initial rationale for the beat of the vertebrate embryonic heart may be two-fold: to aid in subtle but significant aspects of cardiac growth, shaping, and maturation, and to facilitate cardiac maturation angiogenesis--the formation of new vessels by sprouting from vessel tips. Ultimately, the embryonic cardiovascular system provides a graphic demonstration of how adult physiological functions should not, without verification, be interpolated back to the embryo of that species.  相似文献   

8.
In this work, the uronic acids assay was evaluated for its potential to function as a bioassay to screen for antagonistic activity against the production of microbial biofilm exopolysaccharide (EPS). The assay was first applied to biofilms produced in the presence of two universal disinfectants (sodium hypochlorite and sodium dodecyl sulfate) known to inhibit microbial growth and biofilm formation. The performance of the assay was then characterized through statistical assessment of threshold concentrations for disinfection efficiency and consistency relative to values reported in the literature. The assay was then evaluated for its utility in screening for enzymatic or chemical inhibitors of biofilm formation (eg glycosidases, halogenated furanones, and semi-crude fractions extracted from minimally fouled marine plants) and its ability to distinguish between true anti-biofilm activity and simple disinfection. Activity was characterized as (i) no effect, (ii) a true positive effect (ie increased biofilm EPS), (iii) anti-bacterial activity (ie decreased biofilm EPS and analogous decrease in planktonic growth), and (iv) anti-biofilm EPS activity (ie decreased biofilm EPS, without analogous decrease in planktonic growth). Results demonstrate that the uronic acids assay can augment existing biofilm characterization methods by providing a quantitative measure of biofilm EPS.  相似文献   

9.
Modeling biocide action against biofilms   总被引:1,自引:0,他引:1  
A phenomenological model of biocide action against microbial biofilms was derived. Processes incorporated in the model include bulk flow in and out of a well-mixed reactor, transport of dissolved species into the biofilm, substrate consumption by bacterial metabolism, bacterial growth, advection of cell mass within the biofilm, cell detachment from the biofilm, cell death, and biocide concentration-dependent disinfection. Simulations were performed to analyze the general behavior of the model and to perform preliminary sensitivity analysis to identify key input parameters. The model captured several general features of antimicrobial agent action against biofilms that have been observed widely by experimenters and practitioners. These included (1) rapid disinfection followed by biofilm regrowth, (2) slower detachment than disinfection, and (3) reduced susceptibility of microorganisms in biofilms. The results support the plausibility of a mechanism of biofilm resistance in which the biocide is neutralized by reaction with biofilm constituents, leading to a reduction in the bulk biocide concentration and, more significantly, biocide concentration gradients within the biofilm. Sensitivity experiments and analyses identified which input parameters influence key response variables. Each of three response variables was sensitive to each of the five input parameters, but they were most sensitive to the initial biofilm thickness and next most sensitive to the biocide disinfection rate coefficient. Statistical regression modeling produced simple equations for approximating the response variables for situations within the range of conditions covered by the sensitivity experiment. The model should be useful as a tool for studying alternative biocide control strategies. For example, the simulations suggested that a good interval between pulses of biocide is the time to minimum thickness. (c) 1996 John Wiley & Sons, Inc.  相似文献   

10.
Inactivation of biofilm bacteria.   总被引:20,自引:14,他引:6       下载免费PDF全文
The current project was developed to examine inactivation of biofilm bacteria and to characterize the interaction of biocides with pipe surfaces. Unattached bacteria were quite susceptible to the variety of disinfectants tested. Viable bacterial counts were reduced 99% by exposure to 0.08 mg of hypochlorous acid (pH 7.0) per liter (1 to 2 degrees C) for 1 min. For monochloramine, 94 mg/liter was required to kill 99% of the bacteria within 1 min. These results were consistent with those found by other investigators. Biofilm bacteria grown on the surfaces of granular activated carbon particles, metal coupons, or glass microscope slides were 150 to more than 3,000 times more resistant to hypochlorous acid (free chlorine, pH 7.0) than were unattached cells. In contrast, resistance of biofilm bacteria to monochloramine disinfection ranged from 2- to 100-fold more than that of unattached cells. The results suggested that, relative to inactivation of unattached bacteria, monochloramine was better able to penetrate and kill biofilm bacteria than free chlorine. For free chlorine, the data indicated that transport of the disinfectant into the biofilm was a major rate-limiting factor. Because of this phenomenon, increasing the level of free chlorine did not increase disinfection efficiency. Experiments where equal weights of disinfectants were used suggested that the greater penetrating power of monochloramine compensated for its limited disinfection activity. These studies showed that monochloramine was as effective as free chlorine for inactivation of biofilm bacteria. The research provides important insights into strategies for control of biofilm bacteria.  相似文献   

11.
Inactivation of biofilm bacteria   总被引:18,自引:0,他引:18  
The current project was developed to examine inactivation of biofilm bacteria and to characterize the interaction of biocides with pipe surfaces. Unattached bacteria were quite susceptible to the variety of disinfectants tested. Viable bacterial counts were reduced 99% by exposure to 0.08 mg of hypochlorous acid (pH 7.0) per liter (1 to 2 degrees C) for 1 min. For monochloramine, 94 mg/liter was required to kill 99% of the bacteria within 1 min. These results were consistent with those found by other investigators. Biofilm bacteria grown on the surfaces of granular activated carbon particles, metal coupons, or glass microscope slides were 150 to more than 3,000 times more resistant to hypochlorous acid (free chlorine, pH 7.0) than were unattached cells. In contrast, resistance of biofilm bacteria to monochloramine disinfection ranged from 2- to 100-fold more than that of unattached cells. The results suggested that, relative to inactivation of unattached bacteria, monochloramine was better able to penetrate and kill biofilm bacteria than free chlorine. For free chlorine, the data indicated that transport of the disinfectant into the biofilm was a major rate-limiting factor. Because of this phenomenon, increasing the level of free chlorine did not increase disinfection efficiency. Experiments where equal weights of disinfectants were used suggested that the greater penetrating power of monochloramine compensated for its limited disinfection activity. These studies showed that monochloramine was as effective as free chlorine for inactivation of biofilm bacteria. The research provides important insights into strategies for control of biofilm bacteria.  相似文献   

12.
Pseudomonas aeruginosa is a pathogenic bacterium widely investigated for its high incidence in clinical environments and its ability to form strong biofilms. During biofilm development, sessile cells acquire physiological characteristics differentiating them from planktonic cells. But after treatment with disinfectants, or to ensure survival of the species in hostile environments, biofilm cells can detach. This complicates disinfection procedures. This study aimed to physiologically characterize cells detached from a P. aeruginosa biofilm and to compare them with their sessile and planktonic counterparts. We first tested planktonic growth kinetics and capacities to form new biofilms. Then we investigated cell-surface properties. And finally, we tested in vitro susceptibility to antibiotics. The results first indicated that sessile and detached cells have similar planktonic growth kinetics and cell-surface properties, distinguishable from those of planktonic cells. Interestingly, the three populations exhibited different biofilm-forming capacities, suggesting that there is a transitional phenotype between sessile and planktonic states, at least during the first hours following cell detachment. It is important to consider this observation when developing treatments to optimize disinfection processes. Surprisingly, the three populations showed the same antibiotic susceptibility profile.  相似文献   

13.
This report reviews the development of a rapidin situ approach to study the physiological responses of bacteria within biofilms to disinfectants. One method utilized direct viable counts (DVC) to assess the disinfection efficacy when thin biofilms were exposed to chlorine or monochloramine. Results obtained using the DVC method were one log higher than plate count (PC) estimates of the surviving population after disinfection. Other methods incorporated the use of fluorogenic stains, a cryotomy technique to yield thin (5-m) sections of biofilm communities and examination by fluorescence microscopy. The fluorogenic stains used in this approach included 5-cyano-2,3-ditolyl tetrazolium chloride (CTC), which indicates cellular electron transport activity and Rhodamine 123, which responds specifically to proton motive force. The use of these stains allowed the microscopic discrimination of physiologically active bacteria as well as heterogeneities of active cells within thicker biofilms. The results of experiments using these techniques with pure culture and binary population biofilms on stainless steel coupons indicated biocidal activity of chlorine-based disinfectants occurred initially at the bulk-fluid interface of the communities and progressed toward the substratum. This approach provided a unique opportunity to describe the spatial response of bacteria within biofilms to antimicrobial agents and address mechanisms explaining their comparative resistance to disinfection in a way that has not been possible using traditional approaches. Results obtained using this alternative approach were also consistently higher than PC data following disinfection. These observations suggest that traditional methods involving biofilm removal and bacterial enumeration by colony formation overestimate biocide efficacy. Hence the alternative approach described here more accurately indicates the ability of bacteria surviving disinfection to recover and grow as well as demonstrate spatial heterogeneities in cellular physiological activities within biofilms.  相似文献   

14.
Previous models of biofilms growing in a microbial fuel cell (MFC) have primarily focused on modeling a single growth mechanism: growth via a conductive biofilm matrix, or growth utilizing diffusible electron shuttles or mediators. In this work, we implement both flavors of models in order to explore the competition for space and nutrients in a MFC biofilm populated by both species types. We find that the optimal growth conditions are for bacteria that utilize conductive EPS provided a minimal energy used to create the EPS matrix. Mediator-utilizing bacteria do have favorable niche regions, most notably close to the anode and where exposed to the bulk inflow, where oxidized mediator is readily available.  相似文献   

15.
Most water utilities use chlorine or chloramine to produce potable water. These disinfecting agents react with water to produce residual oxidants within a water distribution system (WDS) to control bacterial growth. While monochloramine is considered more stable than chlorine, little is known about the effect it has on WDS biofilms. Community structure of 10-week old WDS biofilms exposed to disinfectants was assessed after developing model biofilms from unamended distribution water. Four biofilm types were developed on polycarbonate slides within annular reactors while receiving chlorine, chloramine, or inactivated disinfectant residual. Eubacteria were identified through 16S rDNA sequence analysis. The model WDS biofilm exposed to chloramine mainly contained Mycobacterium and Dechloromonas sequences, while a variety of alpha- and additional beta-proteobacteria dominated the 16S rDNA clone libraries in the other three biofilms. Additionally, bacterial clones distantly related to Legionella were found in one of the biofilms receiving water with inactivated chlorine residual. The biofilm reactor receiving chloraminated water required increasing amounts of disinfectant after 2 weeks to maintain chlorine residual. In contrast, free chlorine residual remained steady in the reactor that received chlorinated water. The differences in bacterial populations of potable water biofilms suggest that disinfecting agents can influence biofilm development. These results also suggest that biofilm communities in distribution systems are capable of changing in response to disinfection practices.  相似文献   

16.
Procedures of sterilization and disinfection are essential to ensure that medical and surgical instruments will not transmit infectious pathogens to patients. In the present paper, we tested the residual effect of these compounds on biofilm formation and its efficiency in disrupting preformed biofilms using methicillin-resistant Staphylococcus aureus (MRSA) isolates of the lineage ST239-SCCmecIII. All compounds examined, except 70% alcohol, caused a significant impairment in biofilm formation with concomitant inhibition of cell growth. Among the compounds examined, 10% povidone-iodine (PVP-I) was the only antiseptic that exhibited more than 90% reduction of both biofilm formation and dispersion. In the group of sterilants and disinfectants, a formulation containing 7% hydrogen peroxide and 0.2% peracetic acid (HP-PA), and sodium hypochlorite with 1% active chlorine (NaOCl) were equally effective.  相似文献   

17.
The goal of this study was to investigate the effect of the environmental conditions such as the temperature change, incubation time and surface type on the resistance of Staphylococcus aureus biofilms to disinfectants. The antibiofilm assays were performed against biofilms grown at 20 °C, 30 °C and 37 °C, on the stainless steel and polycarbonate, during 24 and 48 h. The involvement of the biofilm matrix and the bacterial membrane fluidity in the resistance of sessile cells were investigated. Our results show that the efficiency of disinfectants was dependent on the growth temperature, the surface type and the disinfectant product. The increase of growth temperature from 20 °C to 37 °C, with an incubation time of 24 h, increased the resistance of biofilms to cationic antimicrobials. This change of growth temperature did not affect the major content of the biofilm matrix, but it decreased the membrane fluidity of sessile cells through the increase of the anteiso-C19 relative amount. The increase of the biofilm resistance to disinfectants, with the rise of the incubation time, was dependent on both growth temperature and disinfectant product. The increase of the biofilm age also promoted increases in the matrix production and the membrane fluidity of sessile cells. The resistance of S. aureus biofilm seems to depend on the environment of the biofilm formation and involves both extracellular matrix and membrane fluidity of sessile cells. Our study represents the first report describing the impact of environmental conditions on the matrix production, sessile cells membrane fluidity and resistance of S. aureus biofilms to disinfectants.  相似文献   

18.
Impact of flow velocity on the dynamic behaviour of biofilm bacteria   总被引:1,自引:0,他引:1  
Tsai YP 《Biofouling》2005,21(5-6):267-277
The impact of flow velocity (FV) on the growth dynamics of biofilms and bulk water heterotrophic plate count (HPC) bacteria in drinking water distribution systems was quantified and modeled by combining a logistic growth model with mass balance equations. The dynamic variations in the specific growth and release rates of biofilm bacteria were also quantified. The experimental results showed that the maximum biofilm biomass did not change when flow velocity was increased from 20 to 40 cm s(-1), but was significantly affected when flow velocity was further increased to 60 cm s(-1). Although the concentration of biofilm bacteria was substantially reduced by the higher shear stress, the concentration of bacteria in the bulk fluid was slightly increased. From this it is estimated that the specific growth rate and specific release rate of biofilm bacteria had doubled. The specific release (detachment) rate was dependent on the specific growth rate of the biofilm bacteria.  相似文献   

19.
The characterization of substrate transport in the bulk phase and in the biofilm matrix is one of the problems which has to be solved for the verification of biofilm models. Additionally, the surface structure of biofilms has to be described with appropriate parameters. Magnetic resonance imaging (MRI) is one of the promising methods for the investigation of transport phenomena and structure in biofilm systems. The MRI technique allows the noninvasive determination of flow velocities and biofilm structures with a high resolution on the sub-millimeter scale. The presented investigations were carried out for defined heterotrophic biofilms which were cultivated in a tube reactor at a Reynolds number of 2000 and 8000 and a substrate load of 6 and 4 g/m2d glucose. Magnetic resonance imaging provides both structure data of the biofilm surface and flow velocities in the bulk phase and at the bulk/biofilm interface. It is shown that the surface roughness of the biofilms can be determined in one experiment for the complete cross section of the test tubes both under flow and stagnant conditions. Furthermore, the local shear stress was calculated from the measured velocity profiles. In the investigated biofilm systems the local shear stress at the biofilm surface was up to 3 times higher compared to the mean wall shear stress calculated on the base of the mean flow velocity.  相似文献   

20.
微生物消毒剂抗性机理   总被引:1,自引:0,他引:1  
在物体表面和传播介质中,消毒剂能有效抑制或杀死微生物,广泛用于食品、卫生、健康、防疫等领域.在新型冠状病毒肺炎(COVID-19)疫情期间,全球消毒剂的使用量激增,对有效防控病毒传播和防止疫情扩散起到重要作用.但消毒剂的不正确使用会降低其有效性,甚至会诱导微生物产生抗性,从而增加传染性疾病的传播风险.微生物的消毒剂抗性...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号