首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
Domain protolife     
We propose the Thermal Protein First Paradigm (protocell theory) that affirms that first life was cellular. The first cells emerged from molecular (chemical) evolution as protocells (heated amino acids self-order in copolymerization reactions to form thermal proteins which self-organize when in contact with water to form protocells). Metaprotocells are specialized protocells capable of synthesizing ATP (light energy conversion to chemical energy), polypeptides, and polynucleotides. Aggregations of protocells in thermal protein matrices form distinctive morphologies (protocellular networks). Prokaryotic cells emerged from metaprotocells. We classify protocells and metaprotocells as members of the Domain Protolife. We revised the cell theory to include protolife.  相似文献   

2.
The imposing progress in understanding contemporary life forms on Earth and in manipulating them has not been matched by a comparable progress in understanding the origins of life. This paper argues that a crucial problem of unzipping of the double helix molecule of nucleic acid during its replication has been underrated, if not plainly overlooked, in the theories of life's origin and evolution. A model is presented of how evolution may have solved the problem in its early phase. Similar to several previous models, the model envisages the existence of a protocell, in which osmotic disbalance is being created by accumulation of synthetic products resulting in expansion and division of the protocell. Novel in the model is the presence in the protocell of a double-stranded nucleic acid, with each of its two strands being affixed by its 3'-terminus to the opposite sides of the membrane of a protocell. In the course of the protocell expansion, osmotic force is utilized to pull the two strands longitudinally in opposite directions, unzipping the helix and partitioning the strands between the two daughter protocells. The model is also being used as a background for arguments of why life need operate in cycles. Many formal models of life's origin and evolution have not taken into account the fact that logical possibility does not equal thermodynamic feasibility. A system of self-replication has to consist of both replicators and replicants.  相似文献   

3.
Cellular life requires the presence of a set of biochemical mechanisms in order to maintain a predictable process of growth and division. Several attempts have been made towards the building of minimal protocells from a top-down approach, i.e. by using available biomolecules. This type of synthetic approach has so far been only partially successful, and appropriate models of the synthetic protocell cycle might be needed to guide future experiments. In this paper, we present a simple biochemically and physically feasible model of cell replication involving a discrete semi-permeable vesicle with an internal minimal metabolism involving two reactive centers. It is shown that such a system can effectively undergo a whole cell replication cycle. The model can be used as a basic framework to model whole protocell dynamics including more complex sets of reactions. The possible implementation of our design in future synthetic protocells is outlined.  相似文献   

4.
de Boer FK  Hogeweg P 《PloS one》2012,7(1):e29952
It is still not clear how prebiotic replicators evolved towards the complexity found in present day organisms. Within the most realistic scenario for prebiotic evolution, known as the RNA world hypothesis, such complexity has arisen from replicators consisting solely of RNA. Within contemporary life, remarkably many RNAs are involved in modifying other RNAs. In hindsight, such RNA-RNA modification might have helped in alleviating the limits of complexity posed by the information threshold for RNA-only replicators. Here we study the possible role of such self-modification in early evolution, by modeling the evolution of protocells as evolving replicators, which have the opportunity to incorporate these mechanisms as a molecular tool. Evolution is studied towards a set of 25 arbitrary 'functional' structures, while avoiding all other (misfolded) structures, which are considered to be toxic and increase the death-rate of a protocell. The modeled protocells contain a genotype of different RNA-sequences while their phenotype is the ensemble of secondary structures they can potentially produce from these RNA-sequences. One of the secondary structures explicitly codes for a simple sequence-modification tool. This 'RNA-adapter' can block certain positions on other RNA-sequences through antisense base-pairing. The altered sequence can produce an alternative secondary structure, which may or may not be functional. We show that the modifying potential of interacting RNA-sequences enables these protocells to evolve high fitness under high mutation rates. Moreover, our model shows that because of toxicity of misfolded molecules, redundant coding impedes the evolution of self-modification machinery, in effect restraining the evolvability of coding structures. Hence, high mutation rates can actually promote the evolution of complex coding structures by reducing redundant coding. Protocells can successfully use RNA-adapters to modify their genotype-phenotype mapping in order to enhance the coding capacity of their genome and fit more information on smaller sized genomes.  相似文献   

5.
《Biophysical journal》2021,120(18):3937-3959
We propose a simple mechanism for the self-replication of protocells. Our main hypothesis is that the amphiphilic molecules composing the membrane bilayer are synthesized inside the protocell through exothermic chemical reactions. The slow increase of the inner temperature forces the hottest molecules to move from the inner leaflet to the outer leaflet of the bilayer. Because of this outward translocation flow, the outer leaflet grows faster than the inner leaflet. This differential growth increases the mean curvature and amplifies any local shrinking of the protocell until it splits in two. The proposed model, based on mere laws of physics, is a step in the study of the origin of life, as well as a clue for a better understanding of cell proliferation in cancer.  相似文献   

6.
Understanding the origin of cellular life on Earth requires the discovery of plausible pathways for the transition from complex prebiotic chemistry to simple biology, defined as the emergence of chemical assemblies capable of Darwinian evolution. We have proposed that a simple primitive cell, or protocell, would consist of two key components: a protocell membrane that defines a spatially localized compartment, and an informational polymer that allows for the replication and inheritance of functional information. Recent studies of vesicles composed of fatty-acid membranes have shed considerable light on pathways for protocell growth and division, as well as means by which protocells could take up nutrients from their environment. Additional work with genetic polymers has provided insight into the potential for chemical genome replication and compatibility with membrane encapsulation. The integration of a dynamic fatty-acid compartment with robust, generalized genetic polymer replication would yield a laboratory model of a protocell with the potential for classical Darwinian biological evolution, and may help to evaluate potential pathways for the emergence of life on the early Earth. Here we discuss efforts to devise such an integrated protocell model.The emergence of the first cells on the early Earth was the culmination of a long history of prior chemical and geophysical processes. Although recognizing the many gaps in our knowledge of prebiotic chemistry and the early planetary setting in which life emerged, we will assume for the purpose of this review that the requisite chemical building blocks were available, in appropriate environmental settings. This assumption allows us to focus on the various spontaneous and catalyzed assembly processes that could have led to the formation of primitive membranes and early genetic polymers, their coassembly into membrane-encapsulated nucleic acids, and the chemical and physical processes that allowed for their replication. We will discuss recent progress toward the construction of laboratory models of a protocell (Fig. 1), evaluate the remaining steps that must be achieved before a complete protocell model can be constructed, and consider the prospects for the observation of spontaneous Darwinian evolution in laboratory protocells. Although such laboratory studies may not reflect the specific pathways that led to the origin of life on Earth, they are proving to be invaluable in uncovering surprising and unanticipated physical processes that help us to reconstruct plausible pathways and scenarios for the origin of life.Open in a separate windowFigure 1.A simple protocell model based on a replicating vesicle for compartmentalization, and a replicating genome to encode heritable information. A complex environment provides lipids, nucleotides capable of equilibrating across the membrane bilayer, and sources of energy (left), which leads to subsequent replication of the genetic material and growth of the protocell (middle), and finally protocellular division through physical and chemical processes (right). (Reproduced from Mansy et al. 2008 and reprinted with permission from Nature Publishing ©2008.)The term protocell has been used loosely to refer to primitive cells or to the first cells. Here we will use the term protocell to refer specifically to cell-like structures that are spatially delimited by a growing membrane boundary, and that contain replicating genetic information. A protocell differs from a true cell in that the evolution of genomically encoded advantageous functions has not yet occurred. With a genetic material such as RNA (or perhaps one of many other heteropolymers that could provide both heredity and function) and an appropriate environment, the continued replication of a population of protocells will lead inevitably to the spontaneous emergence of new coded functions by the classical mechanism of evolution through variation and natural selection. Once such genomically encoded and therefore heritable functions have evolved, we would consider the system to be a complete, living biological cell, albeit one much simpler than any modern cell (Szostak et al. 2001).  相似文献   

7.
H Schwegler  K Tarumi 《Bio Systems》1986,19(4):307-315
The concepts of self-generation, autonomous boundary and self-maintenance are explained briefly. The "protocell" is presented as a model of self-maintenance which is based on simple physical mechanisms of diffusion and reaction. The time evolution of the surface of the protocell is taken into account explicitly in the form of a Stefan condition giving rise to a non-linear feedback of the surface motion to the reaction and diffusion processes inside the protocell. The spatio-temporal dynamics are investigated, particularly in the neighbourhood of the stationary states, showing a self-maintaining behaviour under a certain range of nutritional conditions. Under another set of conditions we find an instability leading to a division process so that the population of protocells becomes self-maintaining instead of the single individual. The presented formulation of the protocell model is crucially improved compared with a previous version which required boundary conditions at infinity. The previous version was not strictly self-maintaining since dynamics outside the cell were essential for its behaviour.  相似文献   

8.
As the first step in an investigation of the origin of genetic information, we study how some species of molecules are preserved over cell generations and play an important role in controlling the growth of a cell. We consider a model consisting of protocells. Each protocell contains two mutually catalysing molecule species (X and Y), each of which has catalytically active and inactive types. One of the species Y is assumed to have a slower synthesis speed. Through divisions of the protocells, the system reaches and remains in a state in which there are only a few active Y and almost no inactive Y molecules in most protocells, through the selection of very rare fluctuations. In this state, the active Y molecules are shown to control the behavior of the protocell. The minority molecule species act as the carrier of heredity, due to the relatively discrete nature of its population, in comparison with the majority species which behaves statistically in accordance with the law of large numbers. The minority controlled state may give rise to a selection pressure for mechanisms that ensure the transmission of the minority molecule. Once those mechanisms are in place, the minority molecule becomes the ideal storage device for information to be transmitted across generations, thus giving rise to "genetic information". The relevance of this minority controlled state to evolvability is also discussed.  相似文献   

9.
Minocycline prevents oxidative protein modifications and damage in disease models associated with inflammatory glial activation and oxidative stress. Although the drug has been assumed to act by preventing the up-regulation of proinflammatory enzymes, we probed here its direct chemical interaction with reactive oxygen species. The antibiotic did not react with superoxide or NO radicals, but peroxynitrite (PON) was scavenged in the range of ∼1 μm minocycline and below. The interaction of pharmacologically relevant minocycline concentrations with PON was corroborated in several assay systems and significantly exceeded the efficacy of other antibiotics. Minocycline was degraded during the reaction with PON, and the resultant products lacked antioxidant properties. The antioxidant activity of minocycline extended to cellular systems, because it prevented neuronal mitochondrial DNA damage and glutathione depletion. Maintenance of neuronal viability under PON stress was shown to be solely dependent on direct chemical scavenging by minocycline. We chose α-synuclein (ASYN), known from Parkinsonian pathology as a biologically relevant target in chemical and cellular nitration reactions. Submicromolar concentrations of minocycline prevented tyrosine nitration of ASYN by PON. Mass spectrometric analysis revealed that minocycline impeded nitrations more effectively than methionine oxidations and dimerizations of ASYN, which are secondary reactions under PON stress. Thus, PON scavenging at low concentrations is a novel feature of minocycline and may help to explain its pharmacological activity.  相似文献   

10.
11.
To develop a comprehensive cells-first approach to the origin of life, we propose that protocells form spontaneously and that the fission and fusion of these protocells drives the dynamics of their evolution. The fitness criterion for this evolution is taken to be the the stability (conservation) of domains in the protocellular membrane as determined by non-covalent molecular associations between the amphiphiles of the membrane and a subset of the macromolecules in the protocell. In the presence of a source of free energy the macromolecular content of the protocell (co-)evolves as the result of (domain-dependent) membrane-catalysed polymerisation of the prebiotic constituents delivered to the protocell by fusion. The metabolism of the cell therefore (co-)evolves on a rugged fitness landscape. We indicate how domain evolution with the same fitness criterion can potentially give rise to coding. Membrane domains may therefore provide the link between protocells and the RNA/DNA-world.  相似文献   

12.
We re-examine the problem of the evolution of protein synthesis or enzyme production using a stochastic cellular automaton model, where the replicators are fixed in the sites of a two-dimensional square lattice. In contrast with the classical chemical kinetics or mean-field predictions, we show that a small colony of mutant, protein-mediated (enzymatic) replicators has an appreciable probability to take over a resident population of simpler, direct-template replicators. In addition, we argue that the threshold phenomenon corresponding to the onset of invasion can be described quantitatively within the physics framework of nonequilibrium phase transitions. We study also the invasion of a resident population of enzymatic replicators by more efficient replicators of the same kind, and show that although slightly more efficient mutants cannot invade, invasion is a likely event if the productivity advantage of the mutants is large. In this sense, the establishment of a population of enzymatic replicators is not a `once-forever' evolutionary decision.  相似文献   

13.
Generic Darwinian selection in catalytic protocell assemblies   总被引:1,自引:0,他引:1  
To satisfy the minimal requirements for life, an information carrying molecular structure must be able to convert resources into building blocks and also be able to adapt to or modify its environment to enhance its own proliferation. Furthermore, new copies of itself must have variable fitness such that evolution is possible. In practical terms, a minimal protocell should be characterized by a strong coupling between its metabolism and genetic subsystem, which is made possible by the container. There is still no general agreement on how such a complex system might have been naturally selected for in a prebiotic environment. However, the historical details are not important for our investigations as they are related to assembling and evolution of protocells in the laboratory. Here, we study three different minimal protocell models of increasing complexity, all of them incorporating the coupling between a 'genetic template', a container and, eventually, a toy metabolism. We show that for any local growth law associated with template self-replication, the overall temporal evolution of all protocell's components follows an exponential growth (efficient or uninhibited autocatalysis). Thus, such a system attains exponential growth through coordinated catalytic growth of its component subsystems, independent of the replication efficiency of the involved subsystems. As exponential growth implies the survival of the fittest in a competitive environment, these results suggest that protocell assemblies could be efficient vehicles in terms of evolving through Darwinian selection.  相似文献   

14.
A model is proposed for the selective accumulation of amino acids, sugars, nucleotides, cations and protons from the primordial oceans into a lipid vesicle type of protocell. The model is built on facilitated diffusion using simple, primordial, lipid-soluble carriers. The advantages a lipid vesicle protocell would have had over the other potential types of protocells are discussed.  相似文献   

15.
An alternative to creating novel organisms through the traditional “top-down” approach to synthetic biology involves creating them from the “bottom up” by assembling them from non-living components; the products of this approach are called “protocells.” In this paper we describe how bottom-up and top-down synthetic biology differ, review the current state of protocell research and development, and examine the unique ethical, social, and regulatory issues raised by bottom-up synthetic biology. Protocells have not yet been developed, but many expect this to happen within the next five to ten years. Accordingly, we identify six key checkpoints in protocell development at which particular attention should be given to specific ethical, social and regulatory issues concerning bottom-up synthetic biology, and make ten recommendations for responsible protocell science that are tied to the achievement of these checkpoints.  相似文献   

16.
The paper deals with molecular self-organization leading to formation of a protocell. Plausible steps towards a protocell include: polymerization of peptides and oligonucleotides on mineral surfaces; coevolution of peptides and oligonucleotides with formation of collectively autocatalytic sets; self-organization of short peptides into vesicles; entrapment of the peptide/oligonucleotide systems in mixed peptide and simple amphiphile membranes; and formation of functioning protocells with metabolism and cell division. The established propensity of short peptides to self-ordering and to formation of vesicles makes this sequence plausible. We further suggest that evolution of a protocell produced cellular ancestors of viruses as well as ancestors of cellular organisms.  相似文献   

17.
Coevolution of compositional protocells and their environment   总被引:2,自引:0,他引:2  
The coevolution of environment and living organisms is well known in nature. Here, it is suggested that similar processes can take place before the onset of life, where protocellular entities, rather than full-fledged living systems, coevolve along with their surroundings. Specifically, it is suggested that the chemical composition of the environment may have governed the chemical repertoire generated within molecular assemblies, compositional protocells, while compounds generated within these protocells altered the chemical composition of the environment. We present an extension of the graded autocatalysis replication domain (GARD) model--the environment exchange polymer GARD (EE-GARD) model. In the new model, molecules, which are formed in a protocellular assembly, may be exported to the environment that surrounds the protocell. Computer simulations of the model using an infinite-sized environment showed that EE-GARD assemblies may assume several distinct quasi-stationary compositions (composomes), similar to the observations in previous variants of the GARD model. A statistical analysis suggested that the repertoire of composomes manifested by the assemblies is independent of time. In simulations with a finite environment, this was not the case. Composomes, which were frequent in the early stages of the simulation disappeared, while others emerged. The change in the frequencies of composomes was found to be correlated with changes induced on the environment by the assembly. The EE-GARD model is the first GARD model to portray a possible time evolution of the composomes repertoire.  相似文献   

18.
A mathematical framework for modeling biological cells from a physicochemical perspective is described. Cells modeled within this framework consist of at least two regions, including a cytosolic volume encapsulated by a membrane surface. The cytosol is viewed as a well-stirred chemical reactor capable of changing volume while the membrane is assumed to be an oriented 2-D surface capable of changing surface area. Two physical properties of the cell, namely volume and surface area, are determined by (and determine) the reaction dynamics generated from a set of chemical reactions designed to be occurring in the cell. This framework allows the modeling of complex cellular behaviors, including self-replication. This capability is illustrated by constructing two self-replicating prototypical whole-cell models. One protocell was designed to be of minimal complexity; the other to incorporate a previously reported well-known mechanism of the eukaryotic cell cycle. In both cases, self-replicative behavior was achieved by seeking stable physically possible oscillations in concentrations and surface-to-volume ratio, and by synchronizing the period of such oscillations to the doubling of cytosolic volume and membrane surface area. Rather than being enforced externally or artificially, growth and division occur naturally as a consequence of the assumed chemical mechanism operating within the framework.  相似文献   

19.
Compartmentalization in a prebiotic setting is an important aspect of early cell formation and is crucial for the development of an artificial protocell system that effectively couples genotype and phenotype. Aqueous two-phase systems (ATPSs) and complex coacervates are phase separation phenomena that lead to the selective partitioning of biomolecules and have recently been proposed as membrane-free protocell models. We show in this study through fluorescence recovery after photobleaching (FRAP) microscopy that despite the ability of such systems to effectively concentrate RNA, there is a high rate of RNA exchange between phases in dextran/polyethylene glycol ATPS and ATP/poly-L-lysine coacervate droplets. In contrast to fatty acid vesicles, these systems would not allow effective segregation and consequent evolution of RNA, thus rendering these systems ineffective as model protocells.  相似文献   

20.
Bistability is a nonlinear phenomenon widely observed in nature including in biochemical reaction networks. Deterministic chemical kinetics studied in the past has shown that bistability occurs in systems with strong (cubic) nonlinearity. For certain mesoscopic, weakly nonlinear (quadratic) biochemical reaction systems in a small volume, however, stochasticity can induce bistability and bifurcation that have no macroscopic counterpart. We report the simplest yet known reactions involving driven phosphorylation-dephosphorylation cycle kinetics with autocatalytic kinase. We show that the noise-induced phenomenon is correlated with free energy dissipation and thus conforms with the open-chemical system theory. A previous reported noise-induced bistability in futile cycles is found to have originated from the kinase synchronization in a bistable system with slow transitions, as reported here.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号