首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The clonal evolution model postulated for Trypanosoma cruzi predicts a correlation between the phylogenetic divergence of T. cruzi clonal genotypes and their biological properties. In the present study, the linkage between phylogenetic divergence of the parasite and IgG, IgG1, IgG2a and IgG2b response has been evaluated during the acute and chronic phases of the experimental infection. Eight laboratory-cloned stocks representative of this phylogenetic diversity and including the lineages T. cruzi I (genotypes 19 and 20), T. cruzi II (genotype 32) and T. cruzi (genotype 39) have been studied. The results showed that the pattern of humoral immune response was correlated with T. cruzi genotype, and that stocks included in genotype 20 were responsible for the high IgG response in the acute and chronic phases. Moreover, T. cruzi I lineage was more efficient in over-expressing all subclasses of specific anti-parasite IgG than either T. cruzi II or T. cruzi lineages. Curiously, the alteration in the pattern of antibodies induced by Benznidazole treatment was related to the phase of the infection but not to the genotype of the parasite. The data suggest that genotypes of T. cruzi are able to drive levels/subclasses of specific IgG, hence giving rise to further concerns about the sensitivity of serological assays in the diagnosis of human Chagas disease.  相似文献   

2.
A multiplex PCR was developed for simultaneous detection of Trypanosoma cruzi DNA and classification of the parasite strain into groups I and II. As little as 10 fg of T. cruzi DNA could be detected by multiplex PCR. The technique was shown to be specific for T. cruzi DNA, since no PCR amplification products were obtained with DNA from other tripanosomatid species. Multiplex PCR was validated by assaying genomic DNA from 34 strains of T. cruzi that had been previously characterized; 24 blood samples from experimentally-infected mice and non-infected controls; 20 buffy coat samples from patients in the acute phase of Chagas disease and non-infected individuals, and 15 samples of feces from naturally-infected Triatoma infestans. T. cruzi samples from patients and from Y strain-infected mice were classified by multiplex PCR as T. cruzi II and samples from T. infestans and Colombiana strain-infected mice as T. cruzi I.  相似文献   

3.
Nineteen Trypanosoma cruzi stocks, most of them of wild origin, and four Trypanosoma rangeli stocks from Colombia were analysed by molecular karyotype analysis with cloned DNA cruzipain as the probe. Another 27 cloned stocks of T. cruzi from different geographic areas of South America were used as reference for T. cruzi lineages. Phenetic analysis of chromosome size polymorphism demonstrated a great variability of Colombian T. cruzi stocks, suggesting that most belong to lineage I, although two of them belong to lineage II. The 2 lineage II T. cruzi, 17 T. cruzi lineage I, and 3 T. rangeli stocks from Colombia were studied further by Southern blot analysis with a panel of kinetoplast DNA minicircle probes. Hybridisation results indicate that the two T. cruzi II stocks are genetically distant from each other and from T. cruzi lineages IIb, IId, and IIe from Chile. Finally, T. cruzi minicircle probes do not cross-hybridise in any stringency condition tested with T. rangeli minicircles, a clear indication that these parasites can be easily distinguished by this method.  相似文献   

4.
A single polymerase chain reaction (PCR) reaction targeting the spliced-leader intergenic region of Trypanosoma cruzi I was standardised by amplifying a 231 bp fragment in domestic (TcIDOM) strains or clones and 450 and 550 bp fragments in sylvatic strains or clones. This reaction was validated using 44 blind coded samples and 184 non-coded T. cruzi I clones isolated from sylvatic triatomines and the correspondence between the amplified fragments and their domestic or sylvatic origin was determined. Six of the nine strains isolated from acute cases suspected of oral infection had the sylvatic T. cruzi I profile. These results confirmed that the sylvatic T. cruzi I genotype is linked to cases of oral Chagas disease in Colombia. We therefore propose the use of this novel PCR reaction in strains or clones previously characterised as T. cruzi I to distinguish TcIDOMfrom sylvatic genotypes in studies of transmission dynamics, including the verification of population selection within hosts or detection of the frequency of mixed infections by both T. cruzi I genotypes in Colombia.  相似文献   

5.
Chagas disease is an endemic parasitic infection caused by Trypanosomacruzi that affects 18-20 million people in Central and South America. Recently we described the Epoxy-α-Lap, an oxyran derivative of α-lapachone, which presents a low toxicity profile and a high inhibitory activity against T.cruzi epimastigotes forms, the non-infective form of this parasite. In this work we described the trypanocidal effects of Epoxy-α-Lap on extracellular (trypomastigote) and intracellular (amastigote) infective forms of two T. cruzi strains (Y and Colombian) known by their different infective profile. Our results showed that Epoxy-α-Lap is lethal to trypomastigote Y and Colombian strains (97% and 84%, respectively). Interestingly, Epoxy-α-Lap also showed a trypanocidal effect in human macrophage infected with T. cruzi Y (85.6%) and Colombian (71.9%) strains amastigote forms. Similar effects were observed on T. cruzi amastigote infected Vero cells (96.4% and 95.0%, respectively). Our results pointed Epoxy-α-Lap as a potential candidate for Chagas disease chemotherapy since it presents trypanocidal activity on all T. cruzi forms with low) toxicity profile.  相似文献   

6.
The majority of individuals in the chronic phase of Chagas disease are asymptomatic (indeterminate form, IF). Each year, ∼3% of them develop lesions in the heart or gastrointestinal tract. Cardiomyopathy (CCHD) is the most severe manifestation of Chagas disease. The factors that determine the outcome of the infection are unknown, but certainly depend on complex interactions amongst the genetic make-up of the parasite, the host immunogenetic background and environment. In a previous study we verified that the maxicircle gene NADH dehydrogenase (mitochondrial complex I) subunit 7 (ND7) from IF isolates had a 455 bp deletion compared with the wild type (WT) ND7 gene from CCHD strains. We proposed that ND7 could constitute a valuable target for PCR assays in the differential diagnosis of the infective strain. In the present study we evaluated this hypothesis by examination of ND7 structure in parasites from 75 patients with defined pathologies, from Southeast Brazil. We also analysed the structure of additional mitochondrial genes (ND4/CR4, COIII and COII) since the maxicircle is used for clustering Trypanosoma cruzi strains into three clades/haplogroups. We conclude that maxicircle genes do not discriminate parasite populations which induce IF or CCHD forms. Interestingly, the great majority of the analysed isolates belong to T. cruzi II (discrete typing unit, (DTU) IIb) genotype. This scenario is at variance with the prevalence of hybrid (DTU IId) human isolates in Bolivia, Chile and Argentina. The distribution of WT and deleted ND7 and ND4 genes in T. cruzi strains suggests that mutations in the two genes occurred in different ancestrals in the T. cruzi II cluster, allowing the identification of at least three mitochondrial sub-lineages within this group. The observation that T. cruzi strains accumulate mutations in several genes coding for complex I subunits favours the hypothesis that complex I may have a limited activity in this parasite.  相似文献   

7.
The correlation of genetic and biological diversity in Trypanosoma cruzi was studied. Strains of T. cruzi II, isolated from humans; and of T. cruzi I, isolated from wild-animal reservoirs and from triatomines in the state of Paraná, Brazil, were used. Thirty-six biological parameters measured in vitro and six in vivo, related to growth kinetics and metacyclogenesis, susceptibility to benznidazole, macrophage infection, and experimental infection in mice were evaluated. Data from RAPD and SSR-PCR were used as genetic parameters. Mantel’s test, group analysis, principal components analysis (PCA), and cladistical analyses were applied. With the Mantel’s test, a low correlation was observed when parameters related to growth kinetics and metacyclogenesis in vitro and development of the experimental infection in vivo were included. The group analysis defined two groups that were separated as to whether they produced patent parasitemia in BALB/c mice. In the larger group, strains derived from wild reservoirs were separated from strains derived from triatomines and humans. The PCA identified two groups that differed as to whether they produced a parasitemia curve in mice. The cladistical analysis supported the previous results. This study shows the importance of the parasite-host relationship for the behavior of the strains, and that the combination of methods supports, extends, and clarifies the available information.  相似文献   

8.
Chagas’ disease is the most important endemic arthropod-zoonosis in Argentina with an estimated 1.6 million people infected with the causative agent Trypanosoma cruzi. Triatoma infestans is the main vector of Chagas’ disease in Argentina. A survey for parasites and pathogens of Triatominae was conducted from August 2002 to February 2005. Collections of insects were made in domiciles, peridomiciles, and in the natural habitats of the Triatominae. Insects from these collections were dissected and their organs and tissues examined for flagellates. Frass from these insects was collected and examined for detection of the entomopathogenic virus Triatoma virus (TrV) using AC-ELISA and PCR. Triatominae belonging to four species, T. infestans (n = 1646), Triatoma guasayana (n = 4), Triatoma platensis (n = 1) and Triatoma sordida (n = 5) were collected from 62 sites located in 13 provinces of Argentina. Triatoma virus and two protozoan species, Blastocrithidia triatomae and T. cruzi, the etiological agent of Chagas disease, were found infecting Triatominae. The total prevalence of TrV in 1646 T. infestans analyzed by ELISA was 9.66% (159/1646) from 7 to 13 provinces where collections were made. Triatoma virus positive triatomines were found in 17 of 62 populations when examined by AC-ELISA but in 38 of 62 populations when PCR was used for detection. The prevalence of B. triatomae in T. infestans was 0.43% (7/1646), while the prevalence of T. cruzi was 1.3% (21/1646). This is the first study on the diversity, distribution and prevalence of flagellated protozoa and TrV of Triatominae in endemic Chagas’ disease regions of Argentina.  相似文献   

9.
The current intraspecific nomenclature in Trypanosoma cruzi describes two major lineages, named T. cruzi I and T. cruzi II, and five sublineages within T. cruzi II, named IIa, IIb, IIc, IId and IIe. The polymorphism of minicircle hypervariable regions (mHVRs) of T. cruzi has been used in many studies for the molecular characterization of parasite populations directly from biological samples. However, the molecular bases that allow strain typing by these markers are still unclear. In this work we examined forty cloned mHVRs sequences of CL-Brener reference strain (IIe sublineage), and we found a predominant group of sequences, with 40% of frequency in this strain, with a 97% of identity among them. Out of the forty clones analyzed, we identified other less representative types, and a few unique ones. This predominant sequence is also present in different reference strains belonging to the other main T. cruzi lineages and sublineages (TcI, IIa, IIb, IIc and IId) although in a many thousand times lower frequency than in the CL-Brener strain, as shown by semiquantitative PCR. Similarly, predominant mHVR sequences previously described for TcIId strains, were clearly more frequent (many thousand times higher) in the IId reference strain analyzed by us (Mncl2) than within the reference strains belonging to the other lineages and sublineages. The analysis of the cloned sequences shows that more sequences than just the major one contribute to define the global pattern of mHVRs RFLP in the CL-Brener strain. The possible usefulness of these predominant sequences for typing TcIId and TcIIe sublineages by semiquantitative PCR, as well as the possible role of these sequences in genotype identification by mHVR probes are discussed.  相似文献   

10.
Natural populations of Trypanosoma cruzi are structured into five genetic lineages, T. cruzi I and T. cruzi II a to e, as the result of clonal evolution with rare genetic recombination events. To explore more in depth these phenomenons, a multigene sequencing approach was used, for the first time in the case of T. cruzi. Three nuclear loci and a maxicircle locus were sequenced on 18 T. cruzi stocks. Sequences were used to build phylogenetic trees from each locus and from concatenated sequences of all loci.The data confirmed the hybrid origin of DTUs IId and IIe, as the result of an ancient genetic recombination between strains pertaining to IIb and IIc. The data confirmed also a hybrid origin of DTUs IIa and IIc. Contrary to previous reports, we failed to detect mosaic genes. The phylogenetic relationship between DTUs and the respective roles of recombination and selection were tested.  相似文献   

11.

Background

The genetic diversity of Trypanosoma cruzi, the etiological agent of Chagas disease, has been traditionally divided in two major groups, T. cruzi I and II, corresponding to discrete typing units TcI and TcII-VI under a recently proposed nomenclature. The two major groups of T. cruzi seem to differ in important biological characteristics, and are thus thought to represent a natural division relevant for epidemiological studies and development of prophylaxis. To understand the potential connection between the different manifestations of Chagas disease and variability of T. cruzi strains, it is essential to have a correct reconstruction of the evolutionary history of T. cruzi.

Methodology/Principal Findings

Nucleotide sequences from 32 unlinked loci (>26 Kilobases of aligned sequence) were used to reconstruct the evolutionary history of strains representing the known genetic variability of T. cruzi. Thorough phylogenetic analyses show that the original classification of T. cruzi in two major lineages does not reflect its evolutionary history and that there is only strong evidence for one major and recent hybridization event in the history of this species. Furthermore, estimates of divergence times using Bayesian methods show that current extant lineages of T. cruzi diverged very recently, within the last 3 million years, and that the major hybridization event leading to hybrid lineages TcV and TcVI occurred less than 1 million years ago, well before the contact of T. cruzi with humans in South America.

Conclusions/Significance

The described phylogenetic relationships among the six major genetic subdivisions of T. cruzi should serve as guidelines for targeted epidemiological and prophylaxis studies. We suggest that it is important to reconsider conclusions from previous studies that have attempted to uncover important biological differences between the two originally defined major lineages of T. cruzi especially if those conclusions were obtained from single or few strains.  相似文献   

12.
13.
The causes of the particular distribution of both Trypanosoma cruzi lineages throughout the American continent remain unknown. In Colombia, T. cruzi I is the predominant group in both domestic and sylvatic cycles. Here, we present the biological characterization of T. cruzi parasites belonging to both T. cruzi I and T. cruzi IIb groups. Our results show the inability of the T. cruzi IIb clones to infect mammalian cells, produce trypomastigotes and replicate in Rhodnius prolixus, the main vector species in this country. Moreover, this result was confirmed when other species from the same genus, such as R. pallescens and R. robustus, were infected with the same TcIIb clone and its parental strain, while the infection in other genera such as Triatoma and Panstrongylus was successful. Furthermore, the growth kinetics and duplication time in vitro suggest that the high prevalence of T. cruzi I in Colombia results from more successful interactions between parasite lineage, vector, and host species. This type of study may help to understand the factors influencing the particular epidemiological patterns of Chagas disease transmission in different endemic regions.  相似文献   

14.
Faeces-mediated transmission of Trypanosoma cruzi (the aetiological agent of Chagas disease) by triatomine insects is extremely inefficient. Still, the parasite emerges frequently, and has infected millions of people and domestic animals. We synthesize here the results of field and laboratory studies of T. cruzi transmission conducted in and around Arequipa, Peru. We document the repeated occurrence of large colonies of triatomine bugs (more than 1000) with very high infection prevalence (more than 85%). By inoculating guinea pigs, an important reservoir of T. cruzi in Peru, and feeding triatomine bugs on them weekly, we demonstrate that, while most animals quickly control parasitaemia, a subset of animals remains highly infectious to vectors for many months. However, we argue that the presence of these persistently infectious hosts is insufficient to explain the observed prevalence of T. cruzi in vector colonies. We posit that seasonal rains, leading to a fluctuation in the price of guinea pig food (alfalfa), leading to annual guinea pig roasts, leading to a concentration of vectors on a small subpopulation of animals maintained for reproduction, can propel T. cruzi through vector colonies and create a considerable force of infection for a pathogen whose transmission might otherwise fizzle out.  相似文献   

15.
Genetic diversity of Trypanosoma cruzi populations and parasite transmission dynamics have been well documented throughout the Americas, but few studies have been conducted in the Gran Chaco ecoregion, one of the most highly endemic areas for Chagas disease, caused by T. cruzi. In this study, we assessed the distribution of T. cruzi lineages (identified by PCR strategies) in Triatoma infestans, domestic dogs, cats, humans and sylvatic mammals from two neighbouring rural areas with different histories of transmission and vector control in northern Argentina. Lineage II predominated amongst the 99 isolates characterised and lineage I amongst the six isolates obtained from sylvatic mammals. T. cruzi lineage IIe predominated in domestic habitats; it was found in 87% of 54 isolates from Tr. infestans, in 82% of 33 isolates from dogs, and in the four cats found infected. Domestic and sylvatic cycles overlapped in the study area in the late 1980s, when intense domestic transmission occurred, and still overlap marginally. The introduction of T. cruzi from sylvatic into domestic habitats is likely to occur very rarely in the current epidemiological context. The household distribution of T. cruzi lineages showed that Tr. infestans, dogs and cats from a given house compound shared the same parasite lineage in most cases. Based on molecular evidence, this result lends further support to the importance of dogs and cats as domestic reservoir hosts of T. cruzi. We believe that in Argentina, this is the first time that lineage IIc has been isolated from naturally infected domestic dogs and Tr. infestans.  相似文献   

16.

Background

New safe and effective treatments for Chagas disease (CD) are urgently needed. Current chemotherapy options for CD have significant limitations, including failure to uniformly achieve parasitological cure or prevent the chronic phase of CD, and safety and tolerability concerns. Fexinidazole, a 2-subsituted 5-nitroimidazole drug candidate rediscovered following extensive compound mining by the Drugs for Neglected Diseases initiative and currently in Phase I clinical study for the treatment of human African trypanosomiasis, was evaluated in experimental models of acute and chronic CD caused by different strains of Trypanosoma cruzi.

Methods and Findings

We investigated the in vivo activity of fexinidazole against T. cruzi, using mice as hosts. The T. cruzi strains used in the study were previously characterized in murine models as susceptible (CL strain), partially resistant (Y strain), and resistant (Colombian and VL-10 strains) to the drugs currently in clinical use, benznidazole and nifurtimox. Our results demonstrated that fexinidazole was effective in suppressing parasitemia and preventing death in infected animals for all strains tested. In addition, assessment of definitive parasite clearance (cure) through parasitological, PCR, and serological methods showed cure rates of 80.0% against CL and Y strains, 88.9% against VL-10 strain, and 77.8% against Colombian strain among animals treated during acute phase, and 70% (VL-10 strain) in those treated in chronic phase. Benznidazole had a similar effect against susceptible and partially resistant T. cruzi strains. Fexinidazole treatment was also shown to reduce myocarditis in all animals infected with VL-10 or Colombian resistant T. cruzi strains, although parasite eradication was not achieved in all treated animals at the tested doses.

Conclusions

Fexinidazole is an effective oral treatment of acute and chronic experimental CD caused by benznidazole-susceptible, partially resistant, and resistant T. cruzi. These findings illustrate the potential of fexinidazole as a drug candidate for the treatment of human CD.  相似文献   

17.
In this study, we provide phylogenetic and biogeographic evidence that the Trypanosoma cruzi lineages T. cruzi I (TCI) and T. cruzi IIa (TCIIa) circulate amongst non-human primates in Brazilian Amazonia, and are transmitted by Rhodnius species in overlapping arboreal transmission cycles, sporadically infecting humans. TCI presented higher prevalence rates, and no lineages other than TCI and TCIIa were found in this study in wild monkeys and Rhodnius from the Amazonian region. We characterised TCI and TCIIa from wild primates (16 TCI and five TCIIa), Rhodnius spp. (13 TCI and nine TCIIa), and humans with Chagas disease associated with oral transmission (14 TCI and five TCIIa) in Brazilian Amazonia. To our knowledge, TCIIa had not been associated with wild monkeys until now. Polymorphisms of ssrDNA, cytochrome b gene sequences and randomly amplified polymorphic DNA (RAPD) patterns clearly separated TCIIa from TCIIb-e and TCI lineages, and disclosed small intra-lineage polymorphisms amongst isolates from Amazonia. These data are important in understanding the complexity of the transmission cycles, genetic structure, and evolutionary history of T. cruzi populations circulating in Amazonia, and they contribute to both the unravelling of human infection routes and the pathological peculiarities of Chagas disease in this region.  相似文献   

18.
The complement system is the main arm of the vertebrate innate immune system against pathogen infection. For the protozoan Trypanosoma cruzi, the causative agent of Chagas disease, subverting the complement system and invading the host cells is crucial to succeed in infection. However, little attention has focused on whether the complement system can effectively control T. cruzi infection. To address this question, we decided to analyse: 1) which complement pathways are activated by T. cruzi using strains isolated from different hosts, 2) the capacity of these strains to resist the complement-mediated killing at nearly physiological conditions, and 3) whether the complement system could limit or control T. cruzi invasion of eukaryotic cells. The complement activating molecules C1q, C3, mannan-binding lectin and ficolins bound to all strains analysed; however, C3b and C4b deposition assays revealed that T. cruzi activates mainly the lectin and alternative complement pathways in non-immune human serum. Strikingly, we detected that metacyclic trypomastigotes of some T. cruzi strains were highly susceptible to complement-mediated killing in non-immune serum, while other strains were resistant. Furthermore, the rate of parasite invasion in eukaryotic cells was decreased by non-immune serum. Altogether, these results establish that the complement system recognizes T. cruzi metacyclic trypomastigotes, resulting in killing of susceptible strains. The complement system, therefore, acts as a physiological barrier which resistant strains have to evade for successful host infection.  相似文献   

19.
Virulence of Trypanosoma cruzi depends on a variety of genetic and biochemical factors. It has been proposed that components of the parasites’ antioxidant system may play a key part in this process by pre-adapting the pathogen to the oxidative environment encountered during host cell invasion. Using several isolates (10 strains) belonging to the two major phylogenetic lineages (T. cruzi-I and T. cruzi-II), we investigated whether there was an association between virulence (ranging from highly aggressive to attenuated isolates at the parasitemia and histopathological level) and the antioxidant enzyme content. Antibodies raised against trypanothione synthetase (TcTS), ascorbate peroxidase (TcAPX), mitochondrial and cytosolic tryparedoxin peroxidases (TcMPX and TcCPX) and trypanothione reductase (TcTR) were used to evaluate the antioxidant enzyme levels in epimastigote and metacyclic trypomastigote forms in the T. cruzi strains. Levels of TcCPX, TcMPX and TcTS were shown to increase during differentiation from the non-infective epimastigote to the infective metacyclic trypomastigote stage in all parasite strains examined. Peroxiredoxins were found to be present at higher levels in the metacyclic infective forms of the virulent isolates compared with the attenuated strains. Additionally, an increased resistance of epimastigotes from virulent T. cruzi populations to hydrogen peroxide and peroxynitrite challenge was observed. In mouse infection models, a direct correlation was found between protein levels of TcCPX, TcMPX and TcTS, and the parasitemia elicited by the different isolates studied (Pearson’s coefficient: 0.617, 0.771, 0.499; respectively, < 0.01). No correlation with parasitemia was found for TcAPX and TcTR proteins in any of the strains analyzed. Our data support that enzymes of the parasite antioxidant armamentarium at the onset of infection represent new virulence factors involved in the establishment of disease.  相似文献   

20.
This study offers an insight into why Trypanosoma cruzi epimastigotes lose their capacity to differentiate into metacyclic forms, if maintained in culture media long-term through serial passages. The biological and metabolic behaviour of two T. cruzi strains isolated from various origins (human, opossum), and maintained under two schedules (alternate triatomine/mouse passages and serial culture media) were compared. To determine the effect of the environment on the parasites, the epimastigotes were grown under extreme conditions (high and low glucose concentrations), and the glucose consumption, ammonia production and changes in pH, either in one compartment (along the growth curve) or two compartments (induced metacyclogenesis) were compared. The glucose effect on the stages involved in metacyclogenesis at antigenic level was also evaluated. The results indicate that T. cruzi adapts to various environmental conditions and also that the ability of epimastigotes to undergo metacyclogenesis are influenced by the maintenance schedule. Antigenic profile analysis supports the idea that epimastigotes adapted to culture media do not complete their molecular differentiation into the trypomastigote metacyclic stage. These transition forms conserve some degree of gene expression of the epimastigote stage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号