首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Revealing mechanisms underlying complex diseases poses great challenges to biologists. The traditional linkage and linkage disequilibrium analysis that have been successful in the identification of genes responsible for Mendelian traits, however, have not led to similar success in discovering genes influencing the development of complex diseases. Emerging functional genomic and proteomic ('omic') resources and technologies provide great opportunities to develop new methods for systematic identification of genes underlying complex diseases. In this report, we propose a systems biology approach, which integrates omic data, to find genes responsible for complex diseases. This approach consists of five steps: (1) generate a set of candidate genes using gene-gene interaction data sets; (2) reconstruct a genetic network with the set of candidate genes from gene expression data; (3) identify differentially regulated genes between normal and abnormal samples in the network; (4) validate regulatory relationship between the genes in the network by perturbing the network using RNAi and monitoring the response using RT-PCR; and (5) genotype the differentially regulated genes and test their association with the diseases by direct association studies. To prove the concept in principle, the proposed approach is applied to genetic studies of the autoimmune disease scleroderma or systemic sclerosis.  相似文献   

2.
多基因遗传病基因研究的策略和方法   总被引:4,自引:0,他引:4  
基因在决定个体表型方面起着决定性的作用。虽然单基因疾病的致病基因的克隆工作取得了显著的进展,但对于多基因疾病来说,仍然存在许多问题,同时也是巨大的挑战。本文综述了多基因疾病的遗传特点和多基因疾病易感基因识别、分离和克隆的一般步骤和存在的问题,介绍了人类基因组计划在此过程中的作用和单核苷酸多态性的应用前景,提出 了最有可能克隆出多基因疾病易感基因的策略和方法。  相似文献   

3.
We consider non-neutral models for unlinked loci, where the fitness of a chromosome or individual is not multiplicative across loci. Such models are suitable for many complex diseases, where there are gene-interactions. We derive a genealogical process for such models, called the complex selection graph (CSG). This coalescent-type process is related to the ancestral selection graph, and is derived from the ancestral influence graph by considering the limit as the recombination rate between loci gets large. We analyse the CSG both theoretically and via simulation. The main results are that the gene-interactions do not produce linkage disequilibrium, but do produce dependencies in allele frequencies between loci. For small selection rates, the distributions of the genealogy and the allele frequencies at a single locus are well-approximated by their distributions under a single locus model, where the fitness of each allele is the average of the true fitnesses of that allele with respect to the distribution of alleles at other loci.  相似文献   

4.
Accumulating evidence indicates that some deleterious mutations responsible for genetic diseases may offer benefits for human to prevent other diseases. Therefore, human genetic diseases and evolution were tentatively regarded as the two sides of the same coin, which stimulated our interest to explore how similar are amino acid mutations in human genetic diseases and evolution. Through a large-scale analysis on amino acid mutation patterns of genetic diseases and evolution of Hominidae (Homo sapiens and Pan troglodytes), it was found that there exist significant correlations between two mutation patterns. Besides, there also exist some evident differences between both mutations, especially those associated with four amino acids C, G, R, and L. These findings are of significance to understanding the subtle connections between human genetic diseases and evolution.  相似文献   

5.
Quantitative genetic dissection of complex traits in a QTL-mapping pedigree   总被引:1,自引:0,他引:1  
This paper summarizes and modifies quantitative genetic analyses on a pedigree used to map genetic factors (i.e., QTLs) underlying a complex trait. The total genetic variance can be exactly estimated based on the F2 family derived from two homozygous parents for alternative alleles at all QTLs of interest. The parents, F1 hybrids, and two backcrosses are combined to each parent, and the total number of QTLs and the number of dominant QTLs are estimated under the assumptions of gene association with the two parents, equal gene effect, no linkage, and no epistasis among QTLs. Further relaxation for each of the assumptions are made in detail. The biometric estimator for the QTL number and action mode averaged over the entire genome could provide some basic and complementary information to QTL mapping designed to detect the effect and location of specific genetic factors.  相似文献   

6.
Cai T  Tonini G  Lin X 《Biometrics》2011,67(3):975-986
There is growing evidence that genomic and proteomic research holds great potential for changing irrevocably the practice of medicine. The ability to identify important genomic and biological markers for risk assessment can have a great impact in public health from disease prevention, to detection, to treatment selection. However, the potentially large number of markers and the complexity in the relationship between the markers and the outcome of interest impose a grand challenge in developing accurate risk prediction models. The standard approach to identifying important markers often assesses the marginal effects of individual markers on a phenotype of interest. When multiple markers relate to the phenotype simultaneously via a complex structure, such a type of marginal analysis may not be effective. To overcome such difficulties, we employ a kernel machine Cox regression framework and propose an efficient score test to assess the overall effect of a set of markers, such as genes within a pathway or a network, on survival outcomes. The proposed test has the advantage of capturing the potentially nonlinear effects without explicitly specifying a particular nonlinear functional form. To approximate the null distribution of the score statistic, we propose a simple resampling procedure that can be easily implemented in practice. Numerical studies suggest that the test performs well with respect to both empirical size and power even when the number of variables in a gene set is not small compared to the sample size.  相似文献   

7.
In postgenomic era, searching and identification of disease genes associated with complex diseases are still one of the great challenge for dissecting human complex diseases. To improve the disease gene localization for complex diseases, a group of closely immune-mediated disease loci were overlapped on each chromosome based on previously reported genome-wide scanning data. Interestingly, five overlapping chromosomal regions (1q21, 2q33, 5q31.1-q33.1, 6p21, and 11q13) were identified by co-localizing disease loci for the following diseases: diabetes, asthma, atopic dermatitis, osteoporosis, and inflammatory bowel disease. The development of specific disease was associated with different combinations of disease loci among five overlapped chromosomal regions. Therefore, the analysis of multiple genetic loci should be considered to determine the effects of multiple genes responsible for complex diseases resulting from the influence of multiple genes.  相似文献   

8.
Autoinflammatory diseases occupy one of a group of primary immunodeficiency diseases that are generally thought to be caused by mutation of genes responsible for innate immunity, rather than by acquired immunity. Mutations related to autoinflammatory diseases occur in 12 genes. For example, low-level somatic mosaic NLRP3 mutations underlie chronic infantile neurologic, cutaneous, articular syndrome (CINCA), also known as neonatal-onset multisystem inflammatory disease (NOMID). In current clinical practice, clinical genetic testing plays an important role in providing patients with quick, definite diagnoses. To increase the availability of such testing, low-cost high-throughput gene-analysis systems are required, ones that not only have the sensitivity to detect even low-level somatic mosaic mutations, but also can operate simply in a clinical setting. To this end, we developed a simple method that employs two-step tailed PCR and an NGS system, MiSeq platform, to detect mutations in all coding exons of the 12 genes responsible for autoinflammatory diseases. Using this amplicon sequencing system, we amplified a total of 234 amplicons derived from the 12 genes with multiplex PCR. This was done simultaneously and in one test tube. Each sample was distinguished by an index sequence of second PCR primers following PCR amplification. With our procedure and tips for reducing PCR amplification bias, we were able to analyze 12 genes from 25 clinical samples in one MiSeq run. Moreover, with the certified primers designed by our short program—which detects and avoids common SNPs in gene-specific PCR primers—we used this system for routine genetic testing. Our optimized procedure uses a simple protocol, which can easily be followed by virtually any office medical staff. Because of the small PCR amplification bias, we can analyze simultaneously several clinical DNA samples with low cost and can obtain sufficient read numbers to detect a low level of somatic mosaic mutations.  相似文献   

9.
Detecting, characterizing, and interpreting gene-gene interactions or epistasis in studies of human disease susceptibility is both a mathematical and a computational challenge. To address this problem, we have previously developed a multifactor dimensionality reduction (MDR) method for collapsing high-dimensional genetic data into a single dimension (i.e. constructive induction) thus permitting interactions to be detected in relatively small sample sizes. In this paper, we describe a comprehensive and flexible framework for detecting and interpreting gene-gene interactions that utilizes advances in information theory for selecting interesting single-nucleotide polymorphisms (SNPs), MDR for constructive induction, machine learning methods for classification, and finally graphical models for interpretation. We illustrate the usefulness of this strategy using artificial datasets simulated from several different two-locus and three-locus epistasis models. We show that the accuracy, sensitivity, specificity, and precision of a na?ve Bayes classifier are significantly improved when SNPs are selected based on their information gain (i.e. class entropy removed) and reduced to a single attribute using MDR. We then apply this strategy to detecting, characterizing, and interpreting epistatic models in a genetic study (n = 500) of atrial fibrillation and show that both classification and model interpretation are significantly improved.  相似文献   

10.
The availability of highly polymorphic markers permits testing whether complex traits and diseases result from genomic interactions between nonallelic normal variants at separate loci. Such variants may be identified by deviations from the expected distributions of alleles at a high number of polymorphic loci, when individuals with the phenotype of interest are compared to normal controls of the same breeding unit, provided that both groups share the same remote ancestry and had no ancestors in common for the last three to four generations. The circumstances needed for such studies are ideally met on the island of Sardinia. The recurrent finding of the same type of association in separate breeding units between the phenotype of interest and a given genotype should allow a distinction between true genetic identity by descent and randomly occurring identities, as these will be obviously different in separate breeding units. The availability of several breeding units located in sharply different ecological environments will permit assessment of the role of nature/nurture factors in the degree of manifestation of each newly discovered genotype/phenotype association. A pilot study to evaluate the proposed strategy has been carried out in the Sardinian village of Carloforte, a community of about 8,000 individuals who have remained genetically homogeneous. Fifty-five control samples have been genotyped with six tetranucleotide microsatellites and with a subset of the 400 markers contained in the ABI PRISM linkage mapping panel, version 2. The allele frequencies for these microsatellite markers have been determined for these 55 individuals and compared to those from a random sampling of subsets of these 55 persons. For the six tetranucleotide microsatellites, a subset of as few as 20 people displayed the same allele frequency distributions as observed with the original 55 unrelated individuals. In conclusion, when samples are chosen from the same breeding unit, the number of individuals sufficient to draw the genomic profile of an isolated population can be relatively small. Likewise, the number of probands with the phenotype of interest can be even smaller when they are ascertained with the same genealogical criteria as the normal controls. By comparing the genomic profile of the probands to a fraction of the control samples within each of several separate breeding units of common remote ancestry, the search for genotype/phenotype association for mono- and multifactorial traits and diseases should be simplified and yield unequivocal results.  相似文献   

11.
Many papers in the medical literature analyze the cost-effectiveness of screening for diseases by comparing a limited number of a priori testing policies under estimated problem parameters. However, this may be insufficient to determine the best timing of the tests or incorporate changes over time. In this paper, we develop and solve a Markov Decision Process (MDP) model for a simple class of asymptomatic diseases in order to provide the building blocks for analysis of a more general class of diseases. We provide a computationally efficient method for determining a cost-effective dynamic intervention strategy that takes into account (i) the results of the previous test for each individual and (ii) the change in the individual’s behavior based on awareness of the disease. We demonstrate the usefulness of the approach by applying the results to screening decisions for Hepatitis C (HCV) using medical data, and compare our findings to current HCV screening recommendations.  相似文献   

12.
13.
14.
Peng  Bo  Li  Lei 《Cognitive neurodynamics》2015,9(2):249-256
Wireless sensor network (WSN) are widely used in many applications. A WSN is a wireless decentralized structure network comprised of nodes, which autonomously set up a network. The node localization that is to be aware of position of the node in the network is an essential part of many sensor network operations and applications. The existing localization algorithms can be classified into two categories: range-based and range-free. The range-based localization algorithm has requirements on hardware, thus is expensive to be implemented in practice. The range-free localization algorithm reduces the hardware cost. Because of the hardware limitations of WSN devices, solutions in range-free localization are being pursued as a cost-effective alternative to more expensive range-based approaches. However, these techniques usually have higher localization error compared to the range-based algorithms. DV-Hop is a typical range-free localization algorithm utilizing hop-distance estimation. In this paper, we propose an improved DV-Hop algorithm based on genetic algorithm. Simulation results show that our proposed algorithm improves the localization accuracy compared with previous algorithms.  相似文献   

15.
Despite their low prevalence, genetic kidney diseases (GKD) still represent a serious health problem. They often lead to kidney failure and to the consequent need of dialysis or kidney transplant. To date, reliable diagnosis requires laborious genetic tests and/or a renal biopsy. Moreover, only scant and non-specific markers exist for prognostic purposes. Biomarkers assayed in an easily available and low-cost sample, such as urine, would be highly valuable. Urinary proteomics can provide clues related to their development through the identification of differentially expressed proteins codified by the affected genes, or other dis-regulated species, in total or fractionated urine, providing novel mechanistic insights. In this review, the authors summarize and discuss the results of the main proteomic investigations on GKD urine samples and in urinary extracellular vesicles.  相似文献   

16.
Expectations are high that increasing knowledge of the genetic basis of cardiovascular disease will eventually lead to personalised medicine—to preventive and therapeutic interventions that are targeted to at-risk individuals on the basis of their genetic profiles. Most cardiovascular diseases are caused by a complex interplay of many genetic variants interacting with many non-genetic risk factors such as diet, exercise, smoking and alcohol consumption. Since several years, genetic susceptibility testing for cardiovascular diseases is being offered via the internet directly to consumers. We discuss five reasons why these tests are not useful, namely: (1) the predictive ability is still limited; (2) the risk models used by the companies are based on assumptions that have not been verified; (3) the predicted risks keep changing when new variants are discovered and added to the test; (4) the tests do not consider non-genetic factors in the prediction of cardiovascular disease risk; and (5) the test results will not change recommendations of preventive interventions. Predictive genetic testing for multifactorial forms of cardiovascular disease clearly lacks benefits for the public. Prevention of disease should therefore remain focused on family history and on non-genetic risk factors as diet and physical activity that can have the strongest impact on disease risk, regardless of genetic susceptibility.  相似文献   

17.
A new approach based on nonlinear regression for the mapping of quantitative trait loci (QTLs) using complete genetic marker linkage maps is advanced in this paper. We call the approach joint mapping as it makes comprehensive use of the information from every marker locus on a chromosome. With this approach, both the detection of the existence of QTLs and the estimation of their positions, with corresponding confidence intervals, and effects can be realized simultaneously. This approach is widely applicable because only moments are used. It is simple and can save considerable computer time. It is especially useful when there are multiple QTLs and/or interactions between them on a chromosome.  相似文献   

18.
Insulin-dependent (Type 1) diabetes (IDD) in the NOD mouse is inherited as a complex polygenic trait making the identification of susceptibility genes difficult. Currently none of the non-MHC IDD susceptibility genes in NOD have been identified. In this paper we describe the congenic mouse approach that we are using for the dissection of complex traits, such as IDD. We produced a series of six congenic strains carrying NOD-derived diabetogenic genomic intervals, which were previously identified by linkage analysis, on a resistant background. These congenic strains were produced for the purpose of characterizing the function of each of these genes, alone and in combinations, in IDD pathogenesis and to allow fine mapping of the NOD IDD susceptibility genes. Histological examination of pancreata from 6 to 8-month-old congenic mice reveals that intervals on Chromosomes (Chrs) 1 and 17, but not 3, 6, and 11, contain NOD-derived genes that can increase the trafficking of mononuclear cells into the pancreas. Insulitis was observed only very rarely, even in older congenic mice, indicating that multiple genes are required for this phenotype. These results demonstrate the utility of this congenic approach for the study of complex genetic traits. Received: 1 September 1995 / Accepted: 20 December 1995  相似文献   

19.
A mixture model for determining quantitative trait loci (QTL) affecting growth trajectories has been proposed in the literature. In this article, we extend this model to a more general situation in which longitudinal traits for each subject are measured at unequally spaced time intervals, different subjects have different measurement patterns, and the residual correlation within subjects is nonstationary. We derive an EM-simplex hybrid algorithm to estimate the allele frequencies, Hardy-Weinberg disequilibrium, and linkage disequilibrium between QTL in the original population and parameters contained in the growth equation and in the covariance structure. A worked example of head circumference growth in 145 children is used to validate our extended model. A simulation study is performed to examine the statistical properties of the parameter estimation obtained from this example. Finally, we discuss the implications and extensions of our model for detecting QTL that affect growth trajectories.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号