首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Bacteria are able to sense an increase in population density and can respond to it by coordinated regulation of the expression of certain sets of genes in the total population of bacteria. This specific mode of regulation is known as Quorum Sensing (QS). The QS systems include low-molecular-weight signaling molecules of different chemical nature and the regulatory proteins that interact with the signaling molecules. The QS systems are global regulators of bacterial gene expression. They play an important role in controlling metabolic processes in bacteria. This review describes QS systems in members of the bacterial family Enterobacteriaceae functioning with the involvement of various signaling molecules, including N-acyl-homoserine lactones, AI-2, AI-3, peptides, and indole. The differences of the QS system in these bacteria from those in other taxonomic groups of bacteria are discussed. Data on the role of different types of QS systems in the regulation of different cellular processes in bacteria, i.e., their virulence, the synthesis of enzymes and antibiotics, biofilm formation, apoptosis, etc. are presented.  相似文献   

2.
Pathogenic bacteria use interconnected multi-layered regulatory networks, such as quorum sensing (QS) networks to sense and respond to environmental cues and external and internal bacterial cell signals, and thereby adapt to and exploit target hosts. Despite the many advances that have been made in understanding QS regulation, little is known regarding how these inputs are integrated and processed in the context of multi-layered QS regulatory networks. Here we report the examination of the Pseudomonas aeruginosa QS 4-hydroxy-2-alkylquinolines (HAQs) MvfR regulatory network and determination of its interaction with the QS acyl-homoserine-lactone (AHL) RhlR network. The aim of this work was to elucidate paradigmatically the complex relationships between multi-layered regulatory QS circuitries, their signaling molecules, and the environmental cues to which they respond. Our findings revealed positive and negative homeostatic regulatory loops that fine-tune the MvfR regulon via a multi-layered dependent homeostatic regulation of the cell-cell signaling molecules PQS and HHQ, and interplay between these molecules and iron. We discovered that the MvfR regulon component PqsE is a key mediator in orchestrating this homeostatic regulation, and in establishing a connection to the QS rhlR system in cooperation with RhlR. Our results show that P. aeruginosa modulates the intensity of its virulence response, at least in part, through this multi-layered interplay. Our findings underscore the importance of the homeostatic interplay that balances competition within and between QS systems via cell-cell signaling molecules and environmental cues in the control of virulence gene expression. Elucidation of the fine-tuning of this complex relationship offers novel insights into the regulation of these systems and may inform strategies designed to limit infections caused by P. aeruginosa and related human pathogens.  相似文献   

3.
Expression of many bacterial genes is regulated in a cell density-dependent manner via small signal molecules known as autoinducers; this type of regulation is termed quorum sensing (QS). The QS systems that employ N-acyl-homoserine lactones (HSLs) are best un derstood in Gram-negative bacteria. QS regulates expression of various genes, including the genes responsible for the production of virulence factors, synthesis of exoenzymes and antibiotics, antagonistic properties of bacteria, etc. The QS systems of the genus Pseudomonas are linked to other global regulatory networks of the cell, and their functions are controlled by numerous additional regulatory factors. Such regulators and the QS systems together form an intricate multifactorial cascade regulatory network. The review considers the QS systems of several Pseudomonas species, their interaction with other regulatory systems, and their roles in the regulation of cell processes.  相似文献   

4.
5.
6.
We present detailed results on the C4-HSL-mediated quorum sensing (QS) regulatory system of the opportunistic Gram-negative bacterium Aeromonas hydrophila. This bacterium contains a particularly simple QS system that allows for a detailed modeling of kinetics. In a model system (i.e., the Escherichia coli monitor strain MH205), the C4-HSL production of A. hydrophila is interrupted by fusion of gfp(ASV). In the present in vitro study, we measure the response of the QS regulatory ahyRI locus in the monitor strain to predetermined concentrations of C4-HSL signal molecules. A minimal kinetic model describes the data well. It can be solved analytically, providing substantial insight into the QS mechanism: at high concentrations of signal molecules, a slow decay of the activated regulator sets the timescale for the QS regulation loop. Slow saturation ensures that, in an A. hydrophila cell, the QS system is activated only by signal molecules produced by other A. hydrophila cells. Separate information on the ahyR and ahyI loci can be extracted, thus allowing the probe to be used in identifying the target when testing QS inhibitors.  相似文献   

7.
Staphylococcus aureus is a pathogenic bacterium that utilises quorum sensing (QS), a cell-to-cell signalling mechanism, to enhance its ability to cause disease. QS allows the bacteria to monitor their surroundings and the size of their population, and S. aureus makes use of this to regulate the production of virulence factors. Here we describe a mathematical model of this QS system and perform a detailed time-dependent asymptotic analysis in order to clarify the roles of the distinct interactions that make up the QS process, demonstrating which reactions dominate the behaviour of the system at various timepoints. We couple this analysis with numerical simulations and are thus able to gain insight into how a large population of S. aureus shifts from a relatively harmless state to a highly virulent one, focussing on the need for the three distinct phases which form the feedback loop of this particular QS system.  相似文献   

8.
9.
10.
Pseudomonas aeruginosa is the predominant microorganism in chronic lung infection of cystic fibrosis patients. The chronic lung infection is preceded by intermittent colonization. When the chronic infection becomes established, it is well accepted that the isolated strains differ phenotypically from the intermittent strains. Dominating changes are the switch to mucoidity (alginate overproduction) and loss of epigenetic regulation of virulence such as the Quorum Sensing (QS). To elucidate the dynamics of P. aeruginosa QS systems during long term infection of the CF lung, we have investigated 238 isolates obtained from 152 CF patients at different stages of infection ranging from intermittent to late chronic. Isolates were characterized with regard to QS signal molecules, alginate, rhamnolipid and elastase production and mutant frequency. The genetic basis for change in QS regulation were investigated and identified by sequence analysis of lasR, rhlR, lasI and rhlI. The first QS system to be lost was the one encoded by las system 12 years (median value) after the onset of the lung infection with subsequent loss of the rhl encoded system after 17 years (median value) shown as deficiencies in production of the 3-oxo-C12-HSL and C4-HSL QS signal molecules respectively. The concomitant development of QS malfunction significantly correlated with the reduced production of rhamnolipids and elastase and with the occurrence of mutations in the regulatory genes lasR and rhlR. Accumulation of mutations in both lasR and rhlR correlated with development of hypermutability. Interestingly, a higher number of mucoid isolates were found to produce C4-HSL signal molecules and rhamnolipids compared to the non-mucoid isolates. As seen from the present data, we can conclude that P. aeruginosa and particularly the mucoid strains do not lose the QS regulation or the ability to produce rhamnolipids until the late stage of the chronic infection.  相似文献   

11.
A LuxI/R-like quorum sensing (QS) system (AfeI/R) has been reported in the acidophilic and chemoautotrophic Acidithiobacillus spp. However, the function of AfeI/R remains unclear because of the difficulties in the genetic manipulation of these bacteria. Here, we constructed different afeI mutants of the sulfur- and iron-oxidizer A. ferrooxidans, identified the N-acyl homoserine lactones (acyl-HSLs) synthesized by AfeI, and determined the regulatory effects of AfeI/R on genes expression, extracellular polymeric substance synthesis, energy metabolism, cell growth and population density of A. ferrooxidans in different energy substrates. Acyl-HSLs-mediated distinct regulation strategies were employed to influence bacterial metabolism and cell growth of A. ferrooxidans cultivated in either sulfur or ferrous iron. Based on these findings, an energy-substrate-dependent regulation mode of AfeI/R in A. ferrooxidans was illuminated that AfeI/R could produce different types of acyl-HSLs and employ specific acyl-HSLs to regulate specific genes in response to different energy substrates. The discovery of the AfeI/R-mediated substrate-dependent regulatory mode expands our knowledge on the function of QS system in the chemoautotrophic sulfur- and ferrous iron-oxidizing bacteria, and provides new insights in understanding energy metabolism modulation, population control, bacteria-driven bioleaching process, and the coevolution between the acidophiles and their acidic habitats.  相似文献   

12.
The endophytic bacterium Gluconacetobacter diazotrophicus colonizes a broad range of host plants. Its plant growth-promoting capability is related to the capacity to perform biological nitrogen fixation, the biosynthesis of siderophores, antimicrobial substances and the solubilization of mineral nutrients. Colonization of and survival in these endophytic niche requires a complex regulatory network. Among these, quorum sensing systems (QS) are signaling mechanisms involved in the control of several genes related to microbial interactions, host colonization and stress survival. G. diazotrophicus PAL5 possesses a QS composed of a luxR and a luxI homolog, and produces eight molecules from the AHL family as QS signals. In this report data are provided showing that glucose concentration modifies the relative levels of these signal molecules. The activity of G. diazotrophicus PAL5 QS is also altered in presence of other carbon sources and under saline stress conditions. Inactivation of the QS system of G. diazotrophicus PAL5 by means of a quorum quenching strategy allowed the identification of extracellular and intracellular proteins under the control of this regulatory mechanism.  相似文献   

13.
The emergence of multidrug resistance has become an alarming and lifethreatening phenomenon for humans. Various mechanisms are involved in the development of resistance in bacteria towards antimicrobial compounds and immune system. Bacterial biofilm is a complicated, selfdefensive, rigid structure of bacteria crowded together to develop a selfrecessive nature, which enhances the ability to cause infections much easier in the living host. P. aeruginosa biofilm formation is supported by extracellular polymeric substances (EPS) such as exopolysaccharides, extracellular DNA (eDNA), proteins and biomolecules. Published evidences suggest that biofilm formation can also be the result of several other mechanisms such as cell signaling or communication. Bacterial biofilm is also regulated by strong intercellular communication known as Quorum Sensing (QS). It is a cellular communication mechanism involving autoinducers and regulators. In P. aeruginosa, Acyl Homoserine Lactone, the prime signaling molecule, controls approximately 300 genes responsible for various cellular functions, including its pathogenesis. The surrounding environment and metabolism have a specific effect on the biofilm and QS, thus, understanding the involvement of QS in the biofilm developing mechanism is still complicated and complex to understand. Therefore, this review will include basic knowledge of the biofilmforming mechanism and other regulatory factors involved in causing infections and diseases in the host organisms.  相似文献   

14.
15.
Serratia marcescens is an opportunistic pathogen and a major cause of ocular infections. In previous studies of S. marcescens MG1, we showed that biofilm maturation and sloughing were regulated by N-acyl homoserine lactone (AHL)-based quorum sensing (QS). Because of the importance of adhesion in initiating biofilm formation and infection, the primary goal of this study was to determine whether QS is important in adhesion to both abiotic and biotic surfaces, as assessed by determining the degree of attachment to hydrophilic tissue culture plates and human corneal epithelial (HCE) cells. Our results demonstrate that while adhesion to the abiotic surface was AHL regulated, adhesion to the HCE cell biotic surface was not. Type I fimbriae were identified as the critical adhesin for non-QS-mediated attachment to the biotic HCE cell surface but played no role in adhesion to the abiotic surface. While we were not able to identify a single QS-regulated adhesin essential for attachment to the abiotic surface, four AHL-regulated genes involved in adhesion to the abiotic surface were identified. Interestingly, two of these genes, bsmA and bsmB, were also shown to be involved in adhesion to the biotic surface in a non-QS-controlled fashion. Therefore, the expression of these two genes appears to be cocontrolled by regulators other than the QS system for mediation of attachment to HCE cells. We also found that QS in S. marcescens regulates other potential cell surface adhesins, including exopolysaccharide and the outer membrane protein OmpX. We concluded that S. marcescens MG1 utilizes different regulatory systems and adhesins in attachment to biotic and abiotic surfaces and that QS is a main regulatory pathway in adhesion to an abiotic surface but not in adhesion to a biotic surface.  相似文献   

16.
The Vfm quorum sensing (QS) system is preponderant for the virulence of different species of the bacterial genus Dickeya. The vfm gene cluster encodes 26 genes involved in the production, sensing or transduction of the QS signal. To date, the Vfm QS signal has escaped detection by analytical chemistry methods. However, we report here a strain-specific polymorphism in the biosynthesis genes vfmO and vfmP, which is predicted to be related to the production of different analogues of the QS signal. Consequently, the Vfm communication could be impossible between strains possessing different variants of the genes vfmO/P. We constructed three Vfm QS biosensor strains possessing different vfmO/P variants and compared these biosensors for their responses to samples prepared from 34 Dickeya strains possessing different vfmO/P variants. A pattern of specificity was demonstrated, providing evidence that the polymorphism in the genes vfmO/P determines the biosynthesis of different analogues of the QS signal. Unexpectedly, this vfmO/P-dependent pattern of specificity is linked to a polymorphism in the ABC transporter gene vfmG, suggesting an adaptation of the putative permease VfmG to specifically bind different analogues of the QS signal. Accordingly, we discuss the possible involvement of VfmG as co-sensor of the Vfm two-component regulatory system.  相似文献   

17.
18.
Gram-negative bacteria communicate with each other by producing and sensing diffusible signaling molecules. This mechanism is called quorum sensing (QS) and regulates many bacterial activities from gene expression to symbiotic/pathogenic interactions with hosts. Therefore, the elucidation and control of bacterial QS systems have been attracted increasing attention over the past two decades. The most common QS signals in Gram-negative bacteria are N-acyl homoserine lactones (AHLs). There are also bacteria that employ different QS systems, for example, the plant pathogen Ralstonia solanacearum utilizes 3-hydroxy fatty acid methyl esters as its QS signals. The QS system found in the endosymbiotic bacterium associated with the fungus Mortierella alpina, the development of an affinity pull-down method for AHL synthases, and the elucidation of a unique QS circuit in R. solanacearum are discussed herein.  相似文献   

19.
Ninety-one Pseudomonas aeruginosa isolates recovered from cystic fibrosis and non-cystic fibrosis patients were evaluated regarding the ability to form biofilm and acyl-homoserine lactones production and for the presence of five quorum-sensing (QS) regulatory genes (lasI, lasR, rhlI, rhlR, and vfr). Most isolates (90.1 %) presented all five QS genes. Five isolates shown to be lasI/lasR-deficient were not able to produce biofilm in vitro. Moreover, one isolate harboring all five QS genes was also not able to form a biofilm. The function of rhlR gene may be compensated by the las QS system. However, in our study, all isolates which were deficient for the rhlR gene were also deficient for the lasI/lasR system. This may point to some hierarchy in QS regulation which may pose a potential for controlling biofilm infections due to P. aeruginosa.  相似文献   

20.
The quorum sensing (QS) dependent behaviour of micro-organisms, in particular expression of virulence genes, biofilm formation and dispersal, have provided impetus for investigating practical approaches to interfere with microbial QS. This study tests Halomonas pacifica and Marinobacter hydrocarbonoclasticus, two halophilic marine micro-organism, for their AI-2 dependent QS signalling and the effect of two well-known quorum-sensing inhibitors (QSIs), patulin and penicillic acid, on biofilm formation. We report, for the first time, the successful amplification of a putative luxS gene in H. pacifica using degenerated primers and AI-2 dependent QS as well as inhibition using QSIs. Penicillic acid had a strong inhibitory effect on AI-2 induction of H. pacifica at non-growth inhibitory concentrations, while patulin has an adverse effect only at the highest concentration (25 μM). QSIs effect on biofilm forming capability was isolate specific, with maximum inhibition at 25 μM of patulin in H. pacifica. In M. hydrocarbonoclasticus, no adverse effects were noted at any tested concentration of either QSIs. Detection of bioluminescence and the presence of a putative luxS gene provide biochemical and genetic evidence for the production of a signalling molecule(s) which is the essential first step in characterizing H. pacifica QS. This study highlights the importance of AI-2 dependent QS in a marine setting, not previously reported. It further suggests that QSI compounds must be selected in the specific system in which they are to function, and they cannot easily be transferred from one QS system to another.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号