首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A fine-scale in situ spatial organization of ammonia-oxidizing bacteria (AOB) in biofilms was investigated by combining molecular techniques (i.e., fluorescence in situ hybridization (FISH) and 16S rDNA-cloning analysis) and microelectrode measurements. Important parameters of AOB microcolonies such as size distribution and areal cell density of the microcolonies were determined and correlated with substrate microprofiles in the biofilms. In situ hybridization with a nested 16S rRNA-targeted oligonucleotide probe set revealed two different populations of AOB, Nitrosomonas europaea-lineage and Nitrosospira multiformis-lineage, coexisting in an autotrophic nitrifying biofilm. Nitrosospira formed looser microcolonies, with an areal cell density of 0.51 cells microm(-2), which was half of the cell density of Nitrosomonas (1.12 cells microm(-2)). It is speculated that the formation of looser microcolonies facilitates substrate diffusion into the microcolonies, which might be a survival strategy to low O(2) and NH(4) (+) conditions in the biofilm. A long-term experiment (4-week cultivation at different substrate C/N ratios) revealed that the size distribution of AOB microcolonies was strongly affected by better substrate supply due to shorter distance from the surface and the presence of organic carbon. The microcolony size was relatively constant throughout the autotrophic nitrifying biofilm, while the size increased by approximately 80% toward the depth of the biofilm cultured at the substrate C/N = 1. A short-term ( approximately 3 h) organic carbon addition experiment showed that the addition of organic carbon created interspecies competition for O(2) between AOB and heterotrophic bacteria, which dramatically decreased the in situ NH(4) (+)-uptake activity of AOB in the surface of the biofilms. This result might explain the spatial distribution of AOB microcolony size in the biofilms cultured at the substrate C/N = 1. These experimental results suggest O(2) and organic carbon were the main factors controlling the spatial organization and activity of AOB in biofilms. These findings are significantly important to further improve mathematical models used to describe how the slow-growing AOB develop their niches in biofilms and how that configuration affects nitrification performance in the biofilm.  相似文献   

2.
3.
The formation of biofilms is an important survival strategy allowing rhizobia to live on soil particles and plant roots. Within the microcolonies of the biofilm developed by Rhizobium leguminosarum, rhizobial cells interact tightly through lateral and polar connections, forming organized and compact cell aggregates. These microcolonies are embedded in a biofilm matrix, whose main component is the acidic exopolysaccharide (EPS). Our work shows that the O-chain core region of the R. leguminosarum lipopolysaccharide (LPS) (which stretches out of the cell surface) strongly influences bacterial adhesive properties and cell-cell cohesion. Mutants defective in the O chain or O-chain core moiety developed premature microcolonies in which lateral bacterial contacts were greatly reduced. Furthermore, cell-cell interactions within the microcolonies of the LPS mutants were mediated mostly through their poles, resulting in a biofilm with an altered three-dimensional structure and increased thickness. In addition, on the root epidermis and on root hairs, O-antigen core-defective strains showed altered biofilm patterns with the typical microcolony compaction impaired. Taken together, these results indicate that the surface-exposed moiety of the LPS is crucial for proper cell-to-cell interactions and for the formation of robust biofilms on different surfaces.  相似文献   

4.
In a previous study we identified microcolony formation and inhibitor production as the major protective mechanisms of Pseudomonas aeruginosa biofilms against flagellate grazing. Here we compared the efficacy of these two key protective mechanisms by exposing biofilms of the non-toxic alginate overproducing strain PDO300 and the wild-type toxic strain PAO1 to a range of feeding types commonly found in the succession of protozoans associated with natural biofilms. Alginate-mediated microcolony formation conferred effective protection for strain PDO300 against the suspension feeding flagellate Bodo saltans and, as reported earlier, the surface feeding flagellate Rhynchomonas nasuta, both of which are considered as early biofilm colonizers. However, microcolonies of mature PDO300 biofilms were highly susceptible to late biofilm colonizers, the surface-feeding amoeba Acanthamoeba polyphaga and the planktonic ciliate Tetrahymena sp., resulting in a significant reduction of biofilm biomass. Mature biofilms of strain PAO1 inhibited growth of flagellates and A. polyphaga while the grazing activity of Tetrahymena sp. remained unaffected. Our findings suggest that inhibitor production of mature P. aeruginosa biofilms is effective against a wider range of biofilm-feeding predators while microcolony-mediated protection is only beneficial in the early stages of biofilm formation.  相似文献   

5.
Resistance against protozoan grazers is a crucial factor that is important for the survival of many bacteria in their natural environment. However, the basis of resistance to protozoans and how resistance factors are regulated is poorly understood. In part, resistance may be due to biofilm formation, which is known to protect bacteria from environmental stress conditions. The ubiquitous organism Serratia marcescens uses quorum sensing (QS) control to regulate virulence factor expression and biofilm formation. We hypothesized that the QS system of S. marcescens also regulates mechanisms that protect biofilms against protozoan grazing. To investigate this hypothesis, we compared the interactions of wild-type and QS mutant strains of S. marcescens biofilms with two protozoans having different feeding types under batch and flow conditions. Under batch conditions, S. marcescens forms microcolony biofilms, and filamentous biofilms are formed under flow conditions. The microcolony-type biofilms were protected from grazing by the suspension feeder, flagellate Bodo saltans, but were not protected from the surface feeder, Acanthamoeba polyphaga. In contrast, the filamentous biofilm provided protection against A. polyphaga. The main findings presented in this study suggest that (i) the QS system is not involved in grazing resistance of S. marcescens microcolony-type biofilms; (ii) QS in S. marcescens regulates antiprotozoan factor(s) that do not interfere with the grazing efficiency of the protozoans; and (iii) QS-controlled, biofilm-specific differentiation of filaments and cell chains in biofilms of S. marcescens provides an efficient mechanism against protozoan grazing.  相似文献   

6.
The survival of bacteria in nature is greatly enhanced by their ability to grow within surface-associated communities called biofilms. Commonly, biofilms generate proliferations of bacterial cells, called microcolonies, which are highly recalcitrant, 3-dimensional foci of bacterial growth. Microcolony growth is initiated by only a subpopulation of bacteria within biofilms, but processes responsible for this differentiation remain poorly understood. Under conditions of crowding and intense competition between bacteria within biofilms, microevolutionary processes such as mutation selection may be important for growth; however their influence on microcolony-based biofilm growth and architecture have not previously been explored. To study mutation in-situ within biofilms, we transformed Pseudomonas aeruginosa cells with a green fluorescent protein gene containing a +1 frameshift mutation. Transformed P. aeruginosa cells were non-fluorescent until a mutation causing reversion to the wildtype sequence occurs. Fluorescence-inducing mutations were observed in microcolony structures, but not in other biofilm cells, or in planktonic cultures of P. aeruginosa cells. Thus microcolonies may represent important foci for mutation and evolution within biofilms. We calculated that microcolony-specific increases in mutation frequency were at least 100-fold compared with planktonically grown cultures. We also observed that mutator phenotypes can enhance microcolony-based growth of P. aeruginosa cells. For P. aeruginosa strains defective in DNA fidelity and error repair, we found that microcolony initiation and growth was enhanced with increased mutation frequency of the organism. We suggest that microcolony-based growth can involve mutation and subsequent selection of mutants better adapted to grow on surfaces within crowded-cell environments. This model for biofilm growth is analogous to mutation selection that occurs during neoplastic progression and tumor development, and may help to explain why structural and genetic heterogeneity are characteristic features of bacterial biofilm populations.  相似文献   

7.
Biofilm infections may not simply be the result of colonization by one bacterium, but rather the consequence of pathogenic contributions from several bacteria. Interspecies interactions of different organisms in mixed-species biofilms remain largely unexplained, but knowledge of these is very important for understanding of biofilm physiology and the treatment of biofilm-related infectious diseases. Here, we have investigated interactions of two of the major bacterial species of cystic fibrosis lung microbial communities -Pseudomonas aeruginosa and Staphylococcus aureus- when grown in co-culture biofilms. By growing co-culture biofilms of S. aureus with P. aeruginosa mutants in a flow-chamber system and observing them using confocal laser scanning microscopy, we show that wild-type P. aeruginosa PAO1 facilitates S. aureus microcolony formation. In contrast, P. aeruginosa mucA and rpoN mutants do not facilitate S. aureus microcolony formation and tend to outcompete S. aureus in co-culture biofilms. Further investigations reveal that extracellular DNA (eDNA) plays an important role in S. aureus microcolony formation and that P. aeruginosa type IV pili are required for this process, probably through their ability to bind to eDNA. Furthermore, P. aeruginosa is able to protect S. aureus against Dictyostelium discoideum phagocytosis in co-culture biofilms.  相似文献   

8.
9.
Biofilm formation by Pseudomonas aeruginosa is hypothesized to follow a developmental pattern initiated by attachment to a surface followed by microcolony formation and mature biofilm development. Swimming and twitching motility are important for attachment and biofilm development in P. aeruginosa. However, it is clear that many P. aeruginosa strains lacking swimming motility exist as biofilms in the lungs of cystic fibrosis patients. Consequently, we have developed a dynamic attachment assay to identify motility-independent attachment-defective mutants. Using transposon mutagenesis, we identified 14 novel dynamic attachment-deficient (dad) mutants including four mutants specific to dynamic assay conditions (dad specific). Two of the dad-specific mutants contain insertions in genes involved in sensing and responding to external stimuli, implying a significant impact of external factors on the biofilm developmental pathway. Observations of initial attachment and long-term biofilm formation characterized our dad mutants into two distinct classes: biofilm delayed and biofilm impaired. Biofilm-delayed mutants form wild-type biofilms but are delayed at least 24 h compared with the wild type, whereas biofilm-impaired mutants never form wild-type biofilms in our assays. We propose a dynamic model for attachment and biofilm formation in P. aeruginosa including these two classes.  相似文献   

10.
Biofilm formation by Gfp-tagged Pseudomonas aeruginosa PAO1 wild type, flagella and type IV pili mutants in flow chambers irrigated with citrate minimal medium was characterized by the use of confocal laser scanning microscopy and comstat image analysis. Flagella and type IV pili were not necessary for P. aeruginosa initial attachment or biofilm formation, but the cell appendages had roles in biofilm development, as wild type, flagella and type IV pili mutants formed biofilms with different structures. Dynamics and selection during biofilm formation were investigated by tagging the wild type and flagella/type IV mutants with Yfp and Cfp and performing time-lapse confocal laser scanning microscopy in mixed colour biofilms. The initial microcolony formation occurred by clonal growth, after which wild-type P. aeruginosa bacteria spread over the substratum by means of twitching motility. The wild-type biofilms were dynamic compositions with extensive motility, competition and selection occurring during development. Bacterial migration prevented the formation of larger microcolonial structures in the wild-type biofilms. The results are discussed in relation to the current model for P. aeruginosa biofilm development.  相似文献   

11.
A flagellum-negative mutant, M8.2, of the marine bacterium Vibrio sp. S141 was produced by transposon mutagenesis. Time-lapse video imaging of surface colonisation behaviour and microcolony formation of S141 compared to M8.2 cells was carried out to investigate the role of the flagellum of Vibrio sp. S141 in microcolony formation on agar and glass substrata. On an agar surface, S141 cells formed a tetrad pattern after the first two cell divisions, during initial surface colonisation. Developed microcolonies consisted of tight circular arrangements of cells with infrequent branching of cells from the main body. In contrast, M8.2 cells did not form tetrad patterns and micro-colonies generally showed enhanced branching and did not develop circular arrangements of cells. On a glass surface under flow conditions, S141 cells displayed several types of movement behaviours at the surface which may have assisted microcolony formation. M8.2 cells appeared unable to develop micro-colonies, but rather displayed a behaviour which enabled them to spread out across the substratum. Laser scanning confocal microscopy revealed S141 mature biofilms consisted of characteristic towers of bacterial growth with scattered troughs. The flagellum-negative M8.2 biofilm did not form such architecture, displaying a homogeneous distribution of cells throughout the biofilm and across the entire substratum. Although not required for attachment to the glass substratum, the flagellum was required for alignment as well as specific movement behaviours by S141 cells.  相似文献   

12.
Microbes attach to surfaces and form dense communities known as biofilms, which are central to how microbes live and influence humans. The key defining feature of biofilms is adhesion, whereby cells attach to one another and to surfaces, via attachment factors and extracellular polymers. While adhesion is known to be important for the initial stages of biofilm formation, its function within biofilm communities has not been studied. Here we utilise an individual-based model of microbial groups to study the evolution of adhesion. While adhering to a surface can enable cells to remain in a biofilm, consideration of within-biofilm competition reveals a potential cost to adhesion: immobility. Highly adhesive cells that are resistant to movement face being buried and starved at the base of the biofilm. However, we find that when growth occurs at the base of a biofilm, adhesion allows cells to capture substratum territory and force less adhesive, competing cells out of the system. This process may be particularly important when cells grow on a host epithelial surface. We test the predictions of our model using the enteric pathogen Vibrio cholerae, which produces an extracellular matrix important for biofilm formation. Flow cell experiments indicate that matrix-secreting cells are highly adhesive and form expanding clusters that remove non-secreting cells from the population, as predicted by our simulations. Our study shows how simple physical properties, such as adhesion, can be critical to understanding evolution and competition within microbial communities.  相似文献   

13.
The ability to form biofilms is seen as an increasingly important colonization strategy among both pathogenic and environmental bacteria. A survey of 185 plant-associated, phytopathogenic, soil and river Pseudomonas isolates resulted in 76% producing biofilms at the air-liquid (A-L) interface after selection in static microcosms. Considerable variation in biofilm phenotype was observed, including waxy aggregations, viscous and floccular masses, and physically cohesive biofilms with continuously varying strengths over 1500-fold. Calcofluor epifluorescent microscopy identified cellulose as the matrix component in biofilms produced by Pseudomonas asplenii, Pseudomonas corrugata, Pseudomonas fluorescens, Pseudomonas marginalis, Pseudomonas putida, Pseudomonas savastanoi and Pseudomonas syringae isolates. Cellulose expression and biofilm formation could be induced by the constitutively active WspR19 mutant of the cyclic-di-GMP-associated, GGDEF domain-containing response regulator involved in the P. fluorescens SBW25 wrinkly spreader phenotype and cellular aggregation in Pseudomonas aeruginosa PA01. WspR19 could also induce P. putida KT2440, which otherwise did not produce a biofilm or express cellulose, as well as Escherichia coli K12 and Salmonella typhimurium LT2, both of which express cellulose yet lack WspR homologues. Statistical analysis of biofilm parameters suggest that biofilm development is a more complex process than that simply described by the production of attachment and matrix components and bacterial growth. This complexity was also seen in multivariate analysis as a species-ecological habitat effect, underscoring the fact that in vitro biofilms are abstractions of those surface and volume colonization processes used by bacteria in their natural environments.  相似文献   

14.
The chronic nature of many diseases is attributed to the formation of bacterial biofilms which are recalcitrant to traditional antibiotic therapy. Biofilms are community-associated bacteria attached to a surface and encased in a matrix. The role of the extracellular matrix is multifaceted, including facilitating nutrient acquisition, and offers significant protection against environmental stresses (e.g. host immune responses). In an effort to acquire a better understanding as to how the bacteria within a biofilm respond to environmental stresses we have used a protocol wherein we visualize bacterial biofilms which have formed in an 8-well chamber slide. The biofilms were stained with the BacLight Live/Dead stain and examined using a confocal microscope to characterize the relative biofilm size, and structure under varying incubation conditions. Z-stack images were collected via confocal microscopy and analyzed by COMSTAT. This protocol can be used to help elucidate the mechanism and kinetics by which biofilms form, as well as identify components that are important to biofilm structure and stability.  相似文献   

15.
Group A Streptococcus (GAS) is a human pathogen that causes infections ranging from mild to fulminant and life‐threatening. Biofilms have been implicated in acute GAS soft‐tissue infections such as necrotising fasciitis (NF). However, most in vitro models used to study GAS biofilms have been designed to mimic chronic infections and insufficiently recapitulate in vivo conditions along with the host–pathogen interactions that might influence biofilm formation. Here, we establish and characterise an in vitro model of GAS biofilm development on mammalian cells that simulates microcolony formation observed in a mouse model of human NF. We show that on mammalian cells, GAS forms dense aggregates that display hallmark biofilm characteristics including a 3D architecture and enhanced tolerance to antibiotics. In contrast to abiotic‐grown biofilms, host‐associated biofilms require the expression of secreted GAS streptolysins O and S (SLO, SLS) that induce endoplasmic reticulum (ER) stress in the host. In an in vivo mouse model, the streptolysin null mutant is attenuated in both microcolony formation and bacterial spread, but pretreatment of soft‐tissue with an ER stressor restores the ability of the mutant to form wild‐type‐like microcolonies that disseminate throughout the soft tissue. Taken together, we have identified a new role of streptolysin‐driven ER stress in GAS biofilm formation and NF disease progression.  相似文献   

16.
The discovery that biofilms are ubiquitous among the epiphytic microflora of leaves has prompted research about the impact of biofilms on the ecology of epiphytic microorganisms and on the efficiency of strategies to manage these populations for disease control and to ensure food safety. Biofilms are likely to influence the microenvironment and phenotype of the microorganisms they harbor. However, it is also important to determine whether there are differences in the types of bacteria within biofilms compared to those outside of biofilms so as to better target microorganisms via disease control strategies. Broad-leaved endive (Cichorium endivia var. latifolia) harbors biofilms containing fluorescent pseudomonads. These bacteria can cause considerable post-harvest losses when this plant is used for manufacturing minimally processed salads. To determine whether the population structure of the fluorescent pseudomonads in biofilms is different from that outside of biofilms on the same leaves, bacteria were isolated quantitatively from the biofilm and solitary components of the epiphytic population on leaves of field-grown broad-leaved endive. Population structure was determined in terms of taxonomic identities of the bacteria isolated, in terms of genotypic profiles, and in terms of phenotypic traits related to surface colonization and biofilm formation. The results illustrate that there are no systematic differences in the composition and structure of biofilm and solitary populations of fluorescent pseudomonads, in terms of either genotypic profiles or phenotypic profiles of the strains. However, Gram-positive bacteria tended to occur more frequently within biofilms than outside of biofilms. We suggest that leaf colonization by fluorescent pseudomonads involves a flux of cells between biofilm and solitary states. This would allow bacteria to exploit the advantages of these two types of existence; biofilms would favor resistance to stressful conditions, whereas solitary cells could foster spread of bacteria to newly colonizable sites on leaves as environmental conditions fluctuate.  相似文献   

17.
Esp-independent biofilm formation by Enterococcus faecalis   总被引:12,自引:0,他引:12       下载免费PDF全文
Enterococcus faecalis is a gram-positive opportunistic pathogen known to form biofilms in vitro. In addition, this organism is often isolated from biofilms on the surfaces of various indwelling medical devices. However, the molecular mechanisms regulating biofilm formation in these clinical isolates are largely unknown. Recent work has suggested that a specific cell surface protein (Esp) of E. faecalis is critical for biofilm formation by this organism. However, in the same study, esp-deficient strains of E. faecalis were found to be capable of biofilm formation. To test the hypothesis that Esp is dispensable for biofilm formation by E. faecalis, we used microtiter plate assays and a chemostat-based biofilm fermentor assay to examine biofilm formation by genetically well-defined, non-Esp-expressing strains. Our results demonstrate that in vitro biofilm formation occurs, not only in the absence of esp, but also in the absence of the entire pathogenicity island that harbors the esp coding sequence. Using scanning electron microscopy to evaluate biofilms of E. faecalis OG1RF grown in the fermentor system, biofilm development was observed to progress through multiple stages, including attachment of individual cells to the substratum, microcolony formation, and maturation into complex multilayered structures apparently containing water channels. Microtiter plate biofilm analyses indicated that biofilm formation or maintenance was modulated by environmental conditions. Furthermore, our results demonstrate that expression of a secreted metalloprotease, GelE, enhances biofilm formation by E. faecalis. In summary, E. faecalis forms complex biofilms by a process that is sensitive to environmental conditions and does not require the Esp surface protein.  相似文献   

18.
Gram‐positive bacteria deploy type IV secretion systems (T4SSs) to facilitate horizontal gene transfer. The T4SSs of Gram‐positive bacteria rely on surface adhesins as opposed to conjugative pili to facilitate mating. Enterococcus faecalis PrgB is a surface adhesin that promotes mating pair formation and robust biofilm development in an extracellular DNA (eDNA) dependent manner. Here, we report the structure of the adhesin domain of PrgB. The adhesin domain binds and compacts DNA in vitro. In vivo PrgB deleted of its adhesin domain does not support cellular aggregation, biofilm development and conjugative DNA transfer. PrgB also binds lipoteichoic acid (LTA), which competes with DNA binding. We propose that PrgB binding and compaction of eDNA facilitates cell aggregation and plays an important role in establishment of early biofilms in mono‐ or polyspecies settings. Within these biofilms, PrgB mediates formation and stabilization of direct cell‐cell contacts through alternative binding of cell‐bound LTA, which in turn promotes establishment of productive mating junctions and efficient intra‐ or inter‐species T4SS‐mediated gene transfer.  相似文献   

19.
Development and maturation of Escherichia coli K-12 biofilms   总被引:4,自引:0,他引:4  
The development and maturation of E. coli biofilms in flow-chambers was investigated. We found that the presence of transfer constitutive IncF plasmids induced biofilm development forming structures resembling those reported for Pseudomonas aeruginosa. The development occurred in a step-wise process: (i). attachment of cells to the substratum, (ii). clonal growth and microcolony formation, and (iii). differentiation into expanding structures rising 70-100 microm into the water phase. The first two steps were the same in the plasmid-carrying and plasmid-free strains, whereas the third step only occurred in conjugation pilus proficient plasmid-carrying strains. The final shapes of the expanding structures in the mature biofilm seem to be determined by the pilus configuration, as various mutants affected in the processing and activity of the transfer pili displayed differently structured biofilms. We further provide evidence that flagella, type 1 fimbriae, curli and Ag43 are all dispensable for the observed biofilm maturation. In addition, our results indicate that cell-to-cell signalling mediated by autoinducer 2 (AI-2) is not required for differentiation of E. coli within a biofilm community. We suggest on the basis of these results that E. coli K-12 biofilm development and maturation is dependent on cell-cell adhesion factors, which may act as inducers of self-assembly processes that result in differently structured biofilms depending on the adhesive properties on the cell surface.  相似文献   

20.
Bacteria form surface attached biofilm communities as one of the most important survival strategies in nature. Biofilms consist of water, bacterial cells and a wide range of self-generated extracellular polymeric substances (EPS). Biofilm formation is a dynamic self-assembly process and several distinguishable stages are observed during bacterial biofilm development. Biofilm formation is shown to be coordinated by EPS production, cell migration, subpopulation differentiation and interactions. However, the ways these different factors affect each other and contribute to community structural differentiation remain largely unknown. The distinct roles of different EPS have been addressed in the present report. Both Pel and Psl polysaccharides are required for type IV pilus-independent microcolony formation in the initial stages of biofilm formation by Pseudomonas aeruginosa PAO1. Both Pel and Psl polysaccharides are also essential for subpopulation interactions and macrocolony formation in the later stages of P. aeruginosa PAO1 biofilm formation. Pel and Psl polysaccharides have different impacts on Pseudomonas quinolone signal-mediated extracellular DNA release in P. aeruginosa PAO1 biofilms. Psl polysaccharide is more important than Pel polysaccharide in P. aeruginosa PAO1 biofilm formation and antibiotic resistance. Our study thus suggests that different EPS materials play distinct roles during bacterial biofilm formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号