首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Density of Thy-1 on Axonal Membrane of Different Rat Nerves   总被引:5,自引:2,他引:3  
Abstract: The density of the cell surface antigen, Thy-1, has been measured on the axonal plasma membrane of the optic and hypoglossal nerves, and on the sympathetic (preganglionic) chain of the superior cervical ganglion in the rat. For each, the amount of Thy-1 in a standard length of nerve was determined. The amount of axonal plasma membrane in a similar length was then measured by use of a computer graphics system which determined the total length of membrane in electron micrographs of cross sections of nerve. The axons of the two peripheral nerves were found to have a similar density (1100–1500 molecules/μm2) of Thy-1 on their surface, and this was two- to threefold higher than the density on axons of optic nerve (500 molecules/μm2). These figures indicate that the density of Thy-1 on the surface of these axons is somewhat lower than that found on the cells of the lymphoid system. Moreover, contrary to the impression gained from previous determinations of Thy-1 levels, axons in the peripheral nervous system do not necessarily have a lower density of Thy-1 on their surface than do those of the central nervous system.  相似文献   

2.
In vivo phosphorylation of axonal proteins was investigated in normal and regenerating optic nerves of goldfish by two-dimensional gel electrophoresis. By 6-24 h after intraocular injection of H3(32)PO4, approximately 20 optic nerve proteins ranging in size from 19 to 180 kilodaltons and in pI from 4.4 to 6.8 were seen to have incorporated radiolabel. Five of these proteins showed a robust increase in incorporation of phosphate during regeneration. Among the latter was an acidic (pI 4.5) 45-kilodalton protein, which has previously been shown to be conveyed by fast axonal transport and to increase dramatically in its rate of synthesis during regeneration of goldfish optic axons.  相似文献   

3.
Abstract: Despite several studies indicating that cyclic nucleotides and their associated enzymes are present in peripheral nerves, their role in neuronal function remains unknown. One possible role is that of a modulating influence in the processes associated with axonal growth and maintenance, and in axonal regeneration. This study has used the frog sciatic nerve as a preparation for investigating the subcellular distribution of neuronai adenylate cyclase activity in normal and crush-injured nerves. The experiments have focused primarily on the axonal transport of adenylate cyclase activity and its subcellular redistribution at the site of constriction. The adenylate cyclase activity measurements were also compared with similar measurements of acetylcholinesterase distribution. Adenylate cyclase activity in normal sciatic nerves increased in the segment proximal to a nerve constriction over time, but did not increase distal to the constriction. Subcellular fractionation of the accumulating activity indicated that the majority of axonally transported enzyme was associated with microsomal organelles; however, an additional transported component was found in the nuclear/mitochondrial fraction. The transport velocities of these two components were different. The microsomal activity appeared to be transported with Group I proteins, while the nuclear/mitochondrial activity was transported with Group II. Rapidly transported Group I proteins have been suggested to be destined principally for the axolemma or the agranular reticu-lum, and the more slowly transported Group II proteins to be associated with intracellular organelles, including synaptic structures. Thus, axonally transported adenylate cyclase activity may have more than one functional role in peripheral nerve. The association of both adenylate cyclase and Protein I, an endogenous substrate for cyclic AMP, with Group II transport offers the intriguing possibility of a structural correspondence. Adenylate cyclase activity in Group I, however, did not appear to be transported with organelles which also contained acetylcholinesterase. The two enzymes, in terms of both velocity of transport and susceptibility to retrograde transport, were handled differently by the neuron. The subcellular distribution of adenylate cyclase activity in an isolated nerve segment was also found to change over time. Microsomal activity decreased, while nuclear/mitochondrial activity transiently increased and then also decreased. This may offer some indication of the morphological location of adenylate cyclase and its potential involvement in Wallerian degeneration and nerve regeneration, particularly in view of recent reports concerning the importance of local injury-induced changes to the initiation of nerve regeneration. We have proposed a dynamic association between axonal calcium and cyclic AMP concentration, which provides a method for membrane renewal or degradation in the intact axon and may offer a molecular basis for the structural reorganization occurring in the proximal segment of an injured nerve.  相似文献   

4.
Mechanical tension is a particularly effective stimulus for axonal elongation, but little is known about how it leads to the formation of new axon. To better understand this process, we examined the movement of axonal branch points, beads bound to the axon, and docked mitochondria while monitoring axonal width. We found these markers moved in a pattern that suggests elongation occurs by viscoelastic stretching and volume addition along the axon. To test the coupling between “lengthening” and “growth,” we measured axonal width while forcing axons to grow and then pause by controlling the tension applied to the growth cone or to the cell body. We found axons thinned during high rates of elongation and thickened when the growth cones were stationary. These findings suggest that forces cause lengthening because they stretch the axon and that growth occurs, in a loosely coupled step, by volume addition along the axon. © 2009 Wiley Periodicals, Inc. Develop Neurobiol, 2010  相似文献   

5.
beta,beta'-Iminodipropionitrile (IDPN), a neurotoxin, causes redistribution of neurofilaments in axons followed by the development of proximal axonal swellings and, in chronic intoxication, a distal decrease in axonal caliber. The latter changes are caused by a selective impairment in the slow anterograde axonal transport of neurofilament proteins. To assess the role of retrograde axonal transport in IDPN toxicity, we used [3H]N-succinimidyl propionate ([3H]NSP) to label covalently endogenous axonal proteins in sciatic nerve of the rat and measured the accumulation of radioactively labeled proteins in the cell bodies of motor and sensory neurons over time. IDPN was injected intraneurally 6 h or intraperitoneally 1 day before subepineurial injection of [3H]NSP into the sciatic nerve, and the animals were killed 1, 2, and 7 days after [3H]NSP injection. Neurotoxicity was assessed by electron microscopic observation of the nerves of similarly treated animals. Both intraneural and intraperitoneal injection of IDPN caused an acute reduction in the amount of labeled proteins transported back to the cell bodies. The early appearance of these changes suggests that alterations in retrograde transport may play a role in the production of the neuropathic changes.  相似文献   

6.
Aging in the sciatic nerve of the rat is characterized by various alterations, mainly cytoskeletal impairment, the presence of residual bodies and glycogen deposits, and axonal dystrophies. These alterations could form a mechanical blockade in the axoplasm and disturb the axoplasmic transports. However, morphometric studies on the fiber distribution indicate that the increase of the axoplasmic compartment during aging could obviate this mechanical blockade. Analysis of the axoplasmic transport, using acetylcholinesterase (AChE) molecular forms as markers, demonstrates a reduction in the total AChE flow rate, which is entirely accounted for by a significant bidirectional 40-60% decrease in the rapid axonal transport of the G4 molecular form. However, the slow axoplasmic flow of G1 + G2 forms, as well as the rapid transport of the A12 form of AChE, remain unchanged. Our results support the hypothesis that the alterations observed in aged nerves might be related either to the impairment in the rapid transport of specific factor(s) or to modified exchanges between rapidly transported and stationary material along the nerves, rather than to a general defect in the axonal transport mechanisms themselves.  相似文献   

7.
Abstract: Biochemical methods were used to study the time course of transport of choline phospholipids (labeled by the injection of [3H]choline into the ventral horn of the lumbar spinal cord) in rat sciatic nerve. Autoradiographic methods were used to localize the transported lipid within motor axons. Transported phospholipid, primarily phosphatidylcholine, present in the nerve at 6 h, continued to accumulate over the following 12 days. No discrete waves of transported lipid were observed (a small wave of radioactive phospholipid moving at the high rate would have been missed); the amounts of radioactive lipid increased uniformly along the entire sciatic nerve. In light-microscope autoradiographs, a class of large-caliber axons, presumably motor axons, retained the labeled lipid. Some lipid, even at 6 h, was seen within the myelin sheaths. Later, the labeling of the myelin relative to axon increased. The continued accumulation of choline phospholipids in the axons probably signifies their prolonged release from cell bodies and their retention in various axonal membranes, including the axolemma. The build-up of these phospholipids in myelin probably represents their transfer from the axons to the myelin sheaths surrounding them. When nerves are crushed and allowed to regenerate for 6 or 12 days, choline phospholipids transported during these times enter the regenerating nerve. In light and electron microscope autoradiographs, transported lipid was seen to be localized primarily in the regenerating axons. However, grains overlay the adjacent Schwann cell cytoplasm, indicating transported lipids were transferred from the regenerating axons to the associated Schwann cells. In addition, some cells not associated with growing axons were labeled, suggesting that phosphatidylcholine and possibly acetylcholine, carried to the regenerating axons by axonal transport, were actively metabolized in the terminal, with released choline label being used by other cells. These results demonstrate that axonal transport supplies mature and growing axons and their glial cells with choline phospholipids.  相似文献   

8.
The growth and branching of the epithelial ureteric tree is critical for development of the permanent kidney (metanephros). Current methods of analysis of ureteric branching are mostly qualitative. We have developed a method for measuring the length of individual branches, and thereby the total length of the ureteric tree in 3 dimensions (3D). The method involves confocal microscopy of whole-mount immunostained metanephroi and computer-based image segmentation, skeletonisation and measurement. The algorithm performs semi-automatic segmentation of a set of confocal images and skeletonisation of the resulting binary object. Length measurements and number of branch points are automatically obtained. The final representation can be reconstructed providing a fully rotating 3D perspective of the skeletonised tree. After 36 h culture of E12 mouse metanephroi, the total length of the ureteric tree was 6103 +/- 291 microm (mean +/- SD), a four-fold increase compared with metanephroi cultured for just 6 h (1522 +/- 149 microm). Ureteric duct length increased at a rate of 153 microm/h over the first 30 h period and was maximal between 18 and 24 h at 325 microm/h. The distribution of branch lengths at the six time points studied was similar, suggesting tight control of ureteric lengthening and branching. This method will be of use in analysing ureteric growth in kidneys cultured in the presence of specific molecules suspected of regulating ureteric growth. The method can also be used to analyse in vivo kidneys and to quantify branching morphogenesis in other developing organs.  相似文献   

9.
The bladder of adult female rats receives ~16,000 axons (i.e., is the target of that many ganglion neurons) of which at least half are sensory. In nerves containing between 40 and 1200 axons cross-sectional area is proportional to number of axons; >99% of axons are unmyelinated. A capsule forms a seal around nerves and ends abruptly where nerves, after branching, contain ~10 axons. A single blood vessel is present in many of the large nerves but never in nerves of <600 axons. The number of glial cells was estimated through the number of their nuclei. There is a glial nucleus profile every 76 axonal profiles. Each glial cell is associated with many axons and collectively covers ~1,000 μm of axonal length. In all nerves a few axonal profiles contain large clusters of vesicles independent of microtubules. The axons do not branch; they alter their relative position along the nerve; they vary in size along their length; none has a circular profile. All the axons are fully wrapped by glial cells and never contact each other. The volume of axons is larger than that of glial cells (55%–45%), while the surface of glial cell is twice as extensive as that of axons; there are ~2.27 m2 of axolemma and ~4.60 m2 of glial cell membrane per gram of nerve. Of the mitochondria of a nerve ~3/4 are in axons and ~1/4 in glial cells.  相似文献   

10.
We studied the axonal transport characteristics of major cytoskeletal proteins: tubulin, the 69,000 molecular weight protein of chicken neurofilaments, and actin. After intracerebral injection of [35S]methionine, we monitored the specific radioactivity of these proteins as they passed through a very short nerve segment of the chicken oculomotor nerve. Specific radioactivities were assessed by quantitative sodium dodecyl sulfate polyacrylamide gel electrophoresis and autoradiography. The transport patterns obtained for tubulin and the neurofilament protein were very similar, corresponding to transport rate ranges of 1-15 and 1-10 mm/day, respectively. A narrower velocity range of 3 to 4.3 mm/day was found for actin. Tubulin and the neurofilament protein appeared to be largely dispersed during the course of their transit along the nerve. The radioactivity associated with the proteins studied persisted in the nerve segment for a long time after the bulk of the labeled molecules had swept down. Finally, none of these proteins was observed to be transported with the fast axonal transport.  相似文献   

11.
Axonal stretching is linked to rapid rates of axonal elongation. Yet the impact of stretching on elongation and slow axonal transport is unclear. Here, we develop a mathematical model of slow axonal transport that incorporates the rate of axonal elongation, protein half-life, protein density, adhesion strength, and axonal viscosity to quantify the effects of axonal stretching. We find that under conditions where the axon (or nerve) is free of a substrate and lengthens at rapid rates (>4 mm day−1), stretching can account for almost 50% of total anterograde axonal transport. These results suggest that it is possible to accelerate elongation and transport simultaneously by increasing either the axon's susceptibility to stretching or the forces that induce stretching. To our knowledge, this work is the first to incorporate the effects of stretching in a model of slow axonal transport. It has relevance to our understanding of neurite outgrowth during development and peripheral nerve regeneration after trauma, and hence to the development of treatments for spinal cord injury.  相似文献   

12.
Between 3 and 4 days after transection of cat sciatic nerve, Schwann cell-associated premitotic activity spreads anterogradely along degenerating distal nerve stumps at a rate of approximately 200 mm/day. We investigated whether fast anterograde axonal transport contributes to the initiation of this component of Wallerian degeneration. Axonal transport was blocked in intact and transected cat sciatic nerves by focally chilling a proximal segment to temperatures below 11 degrees C for 24 hr. Incorporation of [3H]thymidine (a marker of premitotic DNA synthesis) was then measured 3 and 4 days posttransection in cold blocked- and control-degenerating nerves. Effects of cold block prior to and concomitant with nerve transection were studied. Results failed to support the hypothesis that Schwann-cell premitotic activity after axotomy is associated with entry into the axon of mitogenic substances and their anterograde fast transport along the distal stump. Instead, data suggested that progressive anterograde failure of fast anterograde transport distal to transection serves to effect the Schwann-cell premitotic response to axotomy.  相似文献   

13.
Microtubule (MT) number, axonal area, and MT density were examined in unmyelinated axons of rat cervical vagus nerve. Study of nerve regions proximal (1-5 mm) and distal (35-40 mm) to the nodosum ganglion in controls (incubation at 37 degrees C for 1 h) showed that the number of MT per axon is significantly less in distal than in proximal nerve regions. Cooling (incubation at 0 degree C for 1 h) caused a significant reduction in the number of MT per axon in both nerve regions. The unmyelinated axons from both nerve regions showed a comparable reduction in MT number by cooling, indicating that axonal MT stability to cold was not significantly different between these two nerve regions. In these nerves no detectable changes were found in cross-axonal area of unmyelinated axons between distal and proximal nerve regions. In another experimental series, in distal nerve regions (35-40 mm from the nodosum ganglion) the number of MT was not further reduced in nerves incubated at 0 degree C by increasing the incubation time. Similar results were obtained from colchicine treated nerves (incubation at 37 degrees C, with 10 mM colchicine for 1 and 2 h). Distal nerve regions (35-40 mm from the nodosum ganglion) showed a similar reduction in the number of MT per axon when nerves were incubated at 0 degree C or with colchicine, suggesting that this drug, as well as cold, may be affecting a similar population of axonal MT, i.e., MT susceptible to anti-MT agents. These results indicate that approximately one-half of the axonal MT are stable to cold as well as to colchicine in rat unmyelinated axons.  相似文献   

14.
The effect of ACTH/MSH peptides on fast axonal transport along intact or regenerating sciatic nerve was examined following injection of tritiated leucine into the rat lumbar spinal cord. The rate of fast axonal transport was not significantly changed by treatment with ACTH/MSH(4-10), the ACTH(4-9) analog ORG 2766, hypophysectomy, or adrenalectomy. Fast axonal transport was unchanged in regenerating nerves and in regenerating, ACTH(4-10)-treated nerves. However, treatment with ORG 2766 in dosages of either 1 or 10 micrograms/kg/day IP for seven days significantly reduced (62% and 64%, respectively) the crest height of the fast axonal transport curve of intact sciatic nerve. The results suggest that the reported peptide-induced enhancement of nerve regeneration is not due to changes in the rate of fast axonal transport.  相似文献   

15.
Reduced axonal mitochondrial transport has been observed in major neurodegenerative diseases, including fALS patients and SOD1(G93A) mice. However, it is unclear whether this defect plays a critical role in axonal degeneration or simply reflects sequelae of general transport alteration. Using genetic mouse models combined with time-lapse imaging of live neurons, we previously discovered that axon-targeted syntaphilin (SNPH) acts as a docking receptor specific for axonal mitochondria. Deletion of the snph gene in mice results in a substantially higher proportion of axonal mitochondria in the mobile state without any effect on the transport of other axonal organelles. Here we address whether increased (rescued) axonal mitochondrial mobility changes the disease course by crossing fALS-linked transgenic SOD1(G93A) and snph(-/-) knock-out mice. We found that a 2-fold increase in axonal mitochondrial mobility in SOD1(G93A)/snph(-/-) mice did not affect the onset of ALS-like symptoms. Both SOD1(G93A) and SOD1(G93A)/snph(-/-) mice exhibit similar weight loss, deterioration in motor function and motor neuron loss, significant gliosis, and a lifespan of 152-154 days. Thus, for the first time, our study provides genetic and pathological evidence that the impairment of mitochondrial transport seen in SOD1(G93A) mice plays a minimal role in the rapid-onset of fALS-linked pathology.  相似文献   

16.
Phosphorylation of Proteins in Normal and Regenerating Goldfish Optic Nerve   总被引:2,自引:2,他引:0  
Within 6 h after radiolabeled phosphate was injected into the eye of goldfish, labeled acid-soluble and acid-precipitable material began to appear in the optic nerve and subsequently also in the lobe of the optic tectum, to which the optic axons project. From the rate of appearance of the acid-precipitable material, a maximal velocity of axonal transport of 13-21 mm/day could be calculated, consistent with fast axonal transport group II. Examination of individual proteins by two-dimensional gel electrophoresis revealed that approximately 20 proteins were phosphorylated in normal and regenerating nerves. These ranged in molecular weight from approximately 18,000 to 180,000 and in pI from 4.4 to 6.9. Among them were several fast transported proteins, including protein 4, which is the equivalent of the growth-associated protein GAP-43. In addition, there was phosphorylation of some recognizable constituents of slow axonal transport, including alpha-tubulin, a neurofilament constituent (NF), and another intermediate filament protein characteristic of goldfish optic axons (ON2). At least some axonal proteins, therefore, may become phosphorylated as a result of the axonal transport of a phosphate carrier. Some of the proteins labeled by intraocular injection of 32P showed changes in phosphorylation during regeneration of the optic axons. By 3-4 weeks after an optic tract lesion, five proteins, including protein 4, showed a significant increase in labeling in the intact segment of nerve between the eye and the lesion, whereas at least four others (including ON2) showed a significant decrease. When local incorporation of radiolabeled phosphate into the nerve was examined by incubating nerve segments in 32P-containing medium, there was little or no labeling of the proteins that showed changes in phosphorylation during regeneration. Segments of either normal or regenerating nerves showed strong labeling of several other proteins, particularly a group ranging in molecular weight from 46,000 to 58,000 and in pI from 4.9 to 6.4. These proteins were presumably primarily of nonneuronal origin. Nevertheless, if degeneration of the axons had been caused by removal of the eye 1 week earlier, most of the labeling of these proteins was abolished. This suggests that phosphorylation of these proteins depends on the integrity of the optic axons.  相似文献   

17.
We imaged axons in layer (L) 1 of the mouse barrel cortex in vivo. Axons from thalamus and L2/3/5, or L6 pyramidal cells were identified based on their distinct morphologies. Their branching patterns and sizes were stable over times of months. However, axonal branches and boutons displayed cell type-specific rearrangements. Structural plasticity in thalamocortical afferents was mostly due to elongation and retraction of branches (range, 1-150 microm over 4 days; approximately 5% of total axonal length), while the majority of boutons persisted for up to 9 months (persistence over 1 month approximately 85%). In contrast, L6 axon terminaux boutons were highly plastic (persistence over 1 month approximately 40 %), and other intracortical axon boutons showed intermediate levels of plasticity. Retrospective electron microscopy revealed that new boutons make synapses. Our data suggest that structural plasticity of axonal branches and boutons contributes to the remodeling of specific functional circuits.  相似文献   

18.
Rapid movement of microtubules in axons   总被引:1,自引:0,他引:1  
Wang L  Brown A 《Current biology : CB》2002,12(17):1496-1501
Cytoskeletal and cytosolic proteins are transported along axons in the slow components of axonal transport at average rates of about 0.002-0.1 microm/s. This movement is essential for axonal growth and survival, yet the mechanism is poorly understood. Many studies on slow axonal transport have focused on tubulin, the subunit protein of microtubules, but attempts to observe the movement of this protein in cultured nerve cells have been largely unsuccessful. Here, we report direct observations of the movement of microtubules in cultured nerve cells using a modified fluorescence photobleaching strategy combined with difference imaging. The movements are rapid, with average rates of 1 microm/s, but they are also infrequent and highly asynchronous. These observations indicate that microtubules are propelled along axons by fast motors. We propose that the overall rate of movement is slow because the microtubules spend only a small proportion of their time moving. The rapid, infrequent, and highly asynchronous nature of the movement may explain why the axonal transport of tubulin has eluded detection in so many other studies.  相似文献   

19.
A laser diffraction technique has been developed for registering small changes in sarcomere length. The technique is capable of resolving changes as small as 0.2 A in isolated frog skeletal muscle fibers. The small sarcomere lengthening that accompanies the drop in tension in the latent period of contraction was investigated. We suggest this lengthening be named latency elongation (LE). The LE is present in a completely slack fiber and must, therefore, be caused by a forcible lengthening process. Furthermore, the LE is dependent on the existence of an overlap between thin and tick filaments. The rate of elongation and the time interval between stimulation and maximum elongation may vary along the fiber. The maximum elongation was 3-5 A per sarcomere. At any instant the drop in tension is a product of the sum of sarcomere lengthenings along the fiber and the slope stiffness of the series elasticity. The latency relaxation (LR) could be registered in the sarcomere length range from 2.2 mum to 3.6-3.7 mum. The amplitude went through a sharp maximum at 3.0-3.1 mum. In the sarcomere length range from 2.2 to 2.8 mum the delay from onset to maximum LR was nearly proportional to the distance from the Z-line to the overlap zone. A working hypothesis is presented. It is suggested that the LE is caused by a lengthening of the thin filaments.  相似文献   

20.
Abstract: Using the highly sensitive HPLC-fluorophotometry technique, anterograde and retrograde axonal transport of carboxypeptidase H (CPH), a putative pro-hormone processing enzyme that removes a basic amino acid from the C-terminus of a precursor peptide, was measured 12–72 h after double ligations of rat sciatic nerves. CPH-like activity in rat sciatic nerves was 60-fold lower than that in the pituitary gland. CPH-like enzyme activity was rapidly accumulated in the proximal segment and peaked 48 h after ligation. The axonal flow was 100 mm/day, indicating that CPH in rat sciatic nerves is rapidly transported to the nerve terminals as an active form. The properties of the enzyme were similar to those of CPH in the brain: The pH optimum is at 5.5, and the molecular mass is ∼50 kDa. These results suggest that active CPH in the PNS is transported by a rapid anterograde axonal flow and may play a role in converting proneuropeptides to active neuropeptides under the axonal transport.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号