首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Integral membrane proteins are central to many cellular processes and constitute approximately 50% of potential targets for novel drugs. However, the number of outer membrane proteins (OMPs) present in the public structure database is very limited due to the difficulties in determining structure with experimental methods. Therefore, discriminating OMPs from non-OMPs with computational methods is of medical importance as well as genome sequencing necessity. In this study, some sequence-derived structural and physicochemical features of proteins were incorporated with amino acid composition to discriminate OMPs from non-OMPs using support vector machines. The discrimination performance of the proposed method is evaluated on a benchmark dataset of 208 OMPs, 673 globular proteins, and 206 α-helical membrane proteins. A high overall accuracy of 97.8% was observed in the 5-fold cross-validation test. In addition, the current method distinguished OMPs from globular proteins and α-helical membrane proteins with overall accuracies of 98.2 and 96.4%, respectively. The prediction performance is superior to the state-of-the-art methods in the literature. It is anticipated that the current method might be a powerful tool for the discrimination of OMPs.  相似文献   

2.
Outer membrane proteins (OMPs) play important roles in cell biology. In addition, OMPs are targeted by multiple drugs. The identification of OMPs from genomic sequences and successful prediction of their secondary and tertiary structures is a challenging task due to short membrane-spanning regions with high variation in properties. Therefore, an effective and accurate silico method for discrimination of OMPs from their primary sequences is needed. In this paper, we have analyzed the performance of various machine learning mechanisms for discriminating OMPs such as: Genetic Programming, K-nearest Neighbor, and Fuzzy K-nearest Neighbor (Fuzzy K-NN) in conjunction with discrete methods such as: Amino acid composition, Amphiphilic Pseudo amino acid composition, Split amino acid composition (SAAC), and hybrid versions of these methods. The performance of the classifiers is evaluated by two datasets using 5-fold crossvalidation. After the simulation, we have observed that Fuzzy K-NN using SAAC based-features makes it quite effective in discriminating OMPs. Fuzzy K-NN achieves the highest success rates of 99.00% accuracy for discriminating OMPs from non-OMPs and 98.77% and 98.28% accuracies from α-helix membrane and globular proteins, respectively on dataset1. While on dataset2, Fuzzy K-NN achieves 99.55%, 99.90%, and 99.81% accuracies for discriminating OMPs from non- OMPs, α-helix membrane, and globular proteins, respectively. It is observed that the classification performance of our proposed method is satisfactory and is better than the existing methods. Thus, it might be an effective tool for high throughput innovation of OMPs.  相似文献   

3.
Liang GZ  Ma XY  Li YC  Lv FL  Yang L 《Bio Systems》2011,105(1):101-106
This article offers a novel sequence-based approach to discriminate outer membrane proteins (OMPs). The first step is to use a new representation approach, factor analysis scales of generalized amino acid information (FASGAI) representing hydrophobicity, alpha and turn propensities, bulky properties, compositional characteristics, local flexibility and electronic properties, etc., to characterize sequences of OMPs and non-OMPs. The subsequent data is then transformed into a uniform matrix by the auto cross covariance (ACC). The second step is to develop discrimination predictors of OMPs from non-OMPs using a support vector machine (SVM). The SVM predictors thus successfully produce a high Matthews correlation coefficient (MCC) of 0.916 on 208 OMPs from non-OMPs including 206 α-helical membrane proteins and 673 globular proteins by a fivefold cross validation test. Meanwhile, overall MCC values of 0.923 and 0.930 are obtained for the discrimination OMPs from the α-helical membrane proteins and the globular proteins, respectively. The results demonstrate that the FASGAI-ACC-SVM combination approach shows great prospect of application in the field of bioinformatics or proteomics studies.  相似文献   

4.
Yan C  Hu J  Wang Y 《Amino acids》2008,35(1):65-73
Identification of outer membrane proteins (OMPs) from genome is an important task. This paper presents a k-nearest neighbor (K-NN) method for discriminating outer membrane proteins (OMPs). The method makes predictions based on a weighted Euclidean distance that is computed from residue composition. The method achieves 89.1% accuracy with 0.668 MCC (Matthews correlation coefficient) in discriminating OMPs and non-OMPs. The performance of the method is improved by including homologous information into the calculation of residue composition. The final method achieves an accuracy of 96.1%, with 0.873 MCC, 87.5% sensitivity, and 98.2% specificity. Comparisons with multiple recently published methods show that the method proposed in this study outperforms the others.  相似文献   

5.
Discrimination of outer membrane proteins using support vector machines   总被引:3,自引:0,他引:3  
MOTIVATION: Discriminating outer membrane proteins from other folding types of globular and membrane proteins is an important task both for dissecting outer membrane proteins (OMPs) from genomic sequences and for the successful prediction of their secondary and tertiary structures. RESULTS: We have developed a method based on support vector machines using amino acid composition and residue pair information. Our approach with amino acid composition has correctly predicted the OMPs with a cross-validated accuracy of 94% in a set of 208 proteins. Further, this method has successfully excluded 633 of 673 globular proteins and 191 of 206 alpha-helical membrane proteins. We obtained an overall accuracy of 92% for correctly picking up the OMPs from a dataset of 1087 proteins belonging to all different types of globular and membrane proteins. Furthermore, residue pair information improved the accuracy from 92 to 94%. This accuracy of discriminating OMPs is higher than that of other methods in the literature, which could be used for dissecting OMPs from genomic sequences. AVAILABILITY: Discrimination results are available at http://tmbeta-svm.cbrc.jp.  相似文献   

6.
外膜蛋白(Outer Membrane Proteins, OMPs)是一类具有重要生物功能的蛋白质, 通过生物信息学方法来预测OMPs能够为预测OMPs的二级和三级结构以及在基因组发现新的OMPs提供帮助。文中提出计算蛋白质序列的氨基酸含量特征、二肽含量特征和加权多阶氨基酸残基指数相关系数特征, 将三类特征组合, 采用支持向量机(Support Vector Machine, SVM)算法来识别OMPs。计算了包括四种残基指数的多种组合特征的识别结果, 并且讨论了相关系数的阶次和权值对预测性能的影响。在数据集上的十倍交叉验证测试和独立性测试结果显示, 组合特征识别方法对OMPs和非OMPs的识别精度最高分别达到96.96%和97.33%, 优于现有的多种方法。在五种细菌基因组内识别OMPs的结果显示, 组合特征方法具有很高的特异性, 并且对PDB数据库中已知结构的OMPs识别准确度超过99%。表明该方法能够作为基因组内筛选OMPs的有效工具。  相似文献   

7.
外膜蛋白(Outer Membrane Proteins, OMPs)是一类具有重要生物功能的蛋白质, 通过生物信息学方法来预测OMPs能够为预测OMPs的二级和三级结构以及在基因组发现新的OMPs提供帮助。文中提出计算蛋白质序列的氨基酸含量特征、二肽含量特征和加权多阶氨基酸残基指数相关系数特征, 将三类特征组合, 采用支持向量机(Support Vector Machine, SVM)算法来识别OMPs。计算了包括四种残基指数的多种组合特征的识别结果, 并且讨论了相关系数的阶次和权值对预测性能的影响。在数据集上的十倍交叉验证测试和独立性测试结果显示, 组合特征识别方法对OMPs和非OMPs的识别精度最高分别达到96.96%和97.33%, 优于现有的多种方法。在五种细菌基因组内识别OMPs的结果显示, 组合特征方法具有很高的特异性, 并且对PDB数据库中已知结构的OMPs识别准确度超过99%。表明该方法能够作为基因组内筛选OMPs的有效工具。  相似文献   

8.
Discriminating outer membrane proteins (OMPs) from other folding types of globular and membrane proteins is an important task both for identifying outer membrane proteins from genomic sequences and for the successful prediction of their secondary and tertiary structures. In this work, we have analyzed the influence of physico-chemical, energetic and conformational properties of amino acid residues for discriminating outer membrane proteins using different machine learning algorithms, such as, Bayes rules, Logistic functions, Neural networks, Support vector machines, Decision trees, etc. We observed that most of the properties have discriminated the OMPs with similar accuracy. The neural network method with the property, free energy change could discriminate the OMPs from other folding types of globular and membrane proteins at the 5-fold cross-validation accuracy of 94.4% in a dataset of 1,088 proteins, which is better than that obtained with amino acid composition. The accuracy of discriminating globular proteins is 94.3% and that of transmembrane helical (TMH) proteins is 91.8%. Further, the neural network method is tested with globular proteins belonging to 30 major folding types and it could successfully exclude 99.4% of the considered 1612 non-redundant proteins. These accuracy levels are comparable to or better than other methods in the literature. We suggest that this method could be effectively used to discriminate OMPs and for detecting OMPs in genomic sequences.  相似文献   

9.
Discriminating outer membrane proteins for globular proteins (GPs) and other types of membrane proteins from genomic sequences is an important and hot topic. In this paper, a measure based on information discrepancy is proposed and applied to the discrimination of outer membrane proteins. It differs from previous methods which are based on amino acid composition. Our approach focuses on the comparison of subsequence distributions and takes into account the effect of residue order in protein primary structures. As a result, the new approach outperforms all previous methods on the same benchmark datasets. In particular, we show that the proposed approach has correctly identified the outer membrane proteins at an accuracy of 99% for the training set of 337 proteins and has correctly excluded the GPs at an accuracy of 86% in a non-redundant dataset of 668 proteins. Furthermore, this method is able to correctly exclude alpha-helical membrane proteins at an accuracy of 100%.  相似文献   

10.
The complete nucleotide sequences of the fomA genes encoding the 40-kDa outer membrane proteins (OMPs) of strains ATCC 10953 and ATCC 25586 of Fusobacterium nucleatum were determined using the genomic DNA, or DNA fragments ligated into a vector plasmid, as template in a polymerase chain reaction. The deduced amino acid sequences of these two proteins were aligned with the amino acid sequence of the corresponding protein of F. nucleatum strain Fev1 and examined for conserved/variable polypeptide segments. A model for the topology of the 40-kDa OMPs is proposed on the basis of this alignment and application of the structural principles derived for OMPs of Escherichia coli. According to this model, sixteen polypeptide segments, which are highly conserved, traverse the outer membrane, thereby creating eight external loops, most of which are highly variable.  相似文献   

11.
Outer membrane proteins (OMPs) expressed by Vibrio tubiashii under different environmental growth conditions were characterized by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, N-terminal amino acid sequencing, and PCR analyses. Results showed the presence of a 38- to 40-kDa OmpU-like protein and ompU gene, a maltoporin-like protein, several novel OMPs, and a regulatory toxR homolog.  相似文献   

12.
13.
Discrimination of Lysosomal membrane proteins (LMP’s) from folding types of globular (GPs) and other membrane proteins (OtMPs) is an important task both for identifying LMPs from genomic sequences and for the successful prediction of their secondary and tertiary structures. We have systematically analyzed the amino acid frequencies as well as dipeptide count of GPs, LMPs and OtMPs. Based on the above calculated single amino acid frequency combined with dipeptide count information, we statistically discriminated LMPs from GPs and OtMPs. This approach correctly classified the LMPs with an accuracy of 95 %. On the other hand, the amino acid frequency alone can discriminate LMPs with an accuracy of only 79 %. Similarly dipeptide count alone has an accuracy of 87 % for the discrimination of LMPs. Thus the combined information of both amino acid frequencies and dipeptide composition gives us significant high accurate results.

Electronic supplementary material

The online version of this article (doi:10.1007/s11693-014-9153-7) contains supplementary material, which is available to authorized users.  相似文献   

14.
Zhou XB  Chen C  Li ZC  Zou XY 《Amino acids》2008,35(2):383-388
Apoptosis proteins play an important role in the development and homeostasis of an organism. The accurate prediction of subcellular location for apoptosis proteins is very helpful for understanding the mechanism of apoptosis and their biological functions. However, most of the existing predictive methods are designed by utilizing a single classifier, which would limit the further improvement of their performances. In this paper, a novel predictive method, which is essentially a multi-classifier system, has been proposed by combing a dual-layer support vector machine (SVM) with multiple compositions including amino acid composition (AAC), dipeptide composition (DPC) and amphiphilic pseudo amino acid composition (Am-Pse-AAC). As a demonstration, the predictive performance of our method was evaluated on two datasets of apoptosis proteins, involving the standard dataset ZD98 generated by Zhou and Doctor, and a larger dataset ZW225 generated by Zhang et al. With the jackknife test, the overall accuracies of our method on the two datasets reach 94.90% and 88.44%, respectively. The promising results indicate that our method can be a complementary tool for the prediction of subcellular location.  相似文献   

15.
Discriminating outer membrane proteins (OMPs) from other folding types of globular and membrane proteins is an important problem for predicting their secondary and tertiary structures and detecting outer membrane proteins from genomic sequences as well. In this work, we have systematically analyzed the distribution of amino acid residues in the sequences of globular and outer membrane proteins with several motifs, such as A*B, A**B, etc. We observed that the motifs E*L, A*K and L*E occur frequently in globular proteins while S*S, N*S and R*D predominantly occur in OMPs. We have devised a statistical method based on frequently occurring motifs in globular and OMPs and obtained an accuracy of 96% and 82% for correctly identifying OMPs and excluding globular proteins, respectively. Further, we noticed that the motifs of transmembrane helical (TMH) proteins are different from that of OMPs. While I*A, I*L and L*I prefer in TMH proteins S*S, N*S and N*N predominantly occur in OMPs. The information about the occurrence of A*B motifs in TMH and OMPs could discriminate them with an accuracy of 80% for excluding OMPs and 100% for identifying OMPs. The influence of protein size and structural class for discrimination is discussed.  相似文献   

16.
Francisella tularensis is a Gram-negative intracellular coccobacillus and the causative agent of the zoonotic disease tularemia. When compared with other bacterial pathogens, the extremely low infectious dose (<10 CFU), rapid disease progression, and high morbidity and mortality rates suggest that the virulent strains of Francisella encode for novel virulence factors. Surface-exposed molecules, namely outer membrane proteins (OMPs), have been shown to promote bacterial host cell binding, entry, intracellular survival, virulence and immune evasion. The relevance for studying OMPs is further underscored by the fact that they can serve as protective vaccines against a number of bacterial diseases. Whereas OMPs can be extracted from gram-negative bacteria through bulk membrane extraction techniques, including sonication of cells followed by centrifugation and/or detergent extraction, these preparations are often contaminated with periplasmic and/or cytoplasmic (inner) membrane (IM) contaminants. For years, the "gold standard" method for the biochemical and biophysical separation of gram-negative IM and outer membranes (OM) has been to subject bacteria to spheroplasting and osmotic lysis, followed by sucrose density gradient centrifugation. Once layered on a sucrose gradient, OMs can be separated from IMs based on the differences in buoyant densities, believed to be predicated largely on the presence of lipopolysaccharide (LPS) in the OM. Here, we describe a rigorous and optimized method to extract, enrich, and isolate F. tularensis outer membranes and their associated OMPs.  相似文献   

17.
Gromiha MM  Suwa M 《Proteins》2006,63(4):1031-1037
Discriminating outer membrane proteins (OMPs) from other folding types of globular and membrane proteins is an important task both for identifying OMPs from genomic sequences and for the successful prediction of their secondary and tertiary structures. In this work, we have analyzed the performance of different methods, based on Bayes rules, logistic functions, neural networks, support vector machines, decision trees, etc. for discriminating OMPs. We found that most of the machine learning techniques discriminate OMPs with similar accuracy. The neural network-based method could discriminate the OMPs from other proteins [globular/transmembrane helical (TMH)] at the fivefold cross-validation accuracy of 91.0% in a dataset of 1,088 proteins. The accuracy of discriminating globular proteins is 88.8% and that of TMH proteins is 93.7%. Further, the neural network method is tested with globular proteins belonging to 30 different folding types and it could successfully exclude 95% of the considered proteins. The proteins with SAM domain such as knottins, rubredoxin, and thioredoxin folds are eliminated with 100% accuracy. These accuracy levels are comparable to or better than other methods in the literature. We suggest that this method could be effectively used to discriminate OMPs and for detecting OMPs in genomic sequences.  相似文献   

18.
Knowledge of structural class plays an important role in understanding protein folding patterns. In this study, a simple and powerful computational method, which combines support vector machine with PSI-BLAST profile, is proposed to predict protein structural class for low-similarity sequences. The evolution information encoding in the PSI-BLAST profiles is converted into a series of fixed-length feature vectors by extracting amino acid composition and dipeptide composition from the profiles. The resulting vectors are then fed to a support vector machine classifier for the prediction of protein structural class. To evaluate the performance of the proposed method, jackknife cross-validation tests are performed on two widely used benchmark datasets, 1189 (containing 1092 proteins) and 25PDB (containing 1673 proteins) with sequence similarity lower than 40% and 25%, respectively. The overall accuracies attain 70.7% and 72.9% for 1189 and 25PDB datasets, respectively. Comparison of our results with other methods shows that our method is very promising to predict protein structural class particularly for low-similarity datasets and may at least play an important complementary role to existing methods.  相似文献   

19.
Anaplasma marginale is a tick-borne rickettsial pathogen of cattle with a worldwide distribution. Currently a safe and efficacious vaccine is unavailable. Outer membrane protein (OMP) extracts or a defined surface protein complex reproducibly induce protective immunity. However, there are several knowledge gaps limiting progress in vaccine development. First, are these OMPs conserved among the diversity of A. marginale strains circulating in endemic regions? Second, are the most highly conserved outer membrane proteins in the immunogens recognized by immunized and protected animals? Lastly, can this subset of OMPs recognized by antibody from protected vaccinates and conserved among strains recapitulate the protection of outer membrane vaccines? To address the first goal, genes encoding OMPs AM202, AM368, AM854, AM936, AM1041, and AM1096, major subdominant components of the outer membrane, were cloned and sequenced from geographically diverse strains and isolates. AM202, AM936, AM854, and AM1096 share 99.9 to 100% amino acid identity. AM1041 has 97.1 to 100% and AM368 has 98.3 to 99.9% amino acid identity. While all four of the most highly conserved OMPs were recognized by IgG from animals immunized with outer membranes, linked surface protein complexes, or unlinked surface protein complexes and shown to be protected from challenge, the highest titers and consistent recognition among vaccinates were to AM854 and AM936. Consequently, animals were immunized with recombinant AM854 and AM936 and challenged. Recombinant vaccinates and purified outer membrane vaccinates had similar IgG and IgG2 responses to both proteins. However, the recombinant vaccinates developed higher bacteremia after challenge as compared to adjuvant-only controls and outer membrane vaccinates. These results provide the first evidence that vaccination with specific antigens may exacerbate disease. Progressing from the protective capacity of outer membrane formulations to recombinant vaccines requires testing of additional antigens, optimization of the vaccine formulation and a better understanding of the protective immune response.  相似文献   

20.
随机森林方法预测膜蛋白类型   总被引:2,自引:0,他引:2  
膜蛋白的类型与其功能是密切相关的,因此膜蛋白类型的预测是研究其功能的重要手段,从蛋白质的氨基酸序列出发对膜蛋白的类型进行预测有重要意义。文章基于蛋白质的氨基酸序列,将组合离散增量和伪氨基酸组分信息共同作为预测参数,采用随机森林分类器,对8类膜蛋白进行了预测。在Jackknife检验下的预测精度为86.3%,独立检验的预测精度为93.8%,取得了好于前人的预测结果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号