首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We model the stages of a T cell response from initial activation to T cell expansion and contraction using a system of ordinary differential equations. Results of this modeling suggest that state transitions enable the T cell population to detect change and respond effectively to changes in antigen stimulation levels, rather than simply the presence or absence of antigen. A key component of the system that gives rise to this emergent change detector is initial activation of naïve T cells. The activation step creates a barrier that separates the long-term, slow dynamics of naïve T cells from the short-term, fast dynamics of effector T cells. This separation allows the T cell population to compare current, up-to-date changes in antigen levels to long-term, steady state levels. As a result, the T cell population responds very effectively to sudden shifts in antigen levels, even if the antigen were already present prior to the change. This feature provides a mechanism for T cells to react to rapidly expanding sources of antigen stimulation, such as viruses, while maintaining tolerance to constant or slowly fluctuating sources of stimulation, such as healthy tissue during growth.In addition to modeling T cell activation, we also formulate a model of the proliferation of effector T cells in response to the consumption of positive growth signal, secreted throughout the T cell response. We discuss how the interaction between T cells and growth signal generates an emergent threshold detector that responds preferentially to large changes in antigen stimulation while ignoring small ones. As a final step, we discuss how the de novo generation of adaptive regulatory T cells during the latter phase of the T cell response creates a negative feedback loop that controls the duration and magnitude of the T cell response. Hence, the immune network continually adjusts to a shifting baseline of (self and non-self) antigens, and responds primarily to abrupt changes in these antigens rather than merely their presence or absence.  相似文献   

2.
A potential mechanism that allows T cells to reliably discriminate pMHC ligands involves an interplay between kinetic proofreading, negative feedback and a destruction of this negative feedback. We analyse a detailed model of these mechanisms which involves the TCR, SHP1 and ERK. We discover that the behaviour of pSHP1 negative feedback is of primary importance, and particularly the influence of a kinetic proofreading base negative feedback state on pSHP1 dynamics. The CD8 co-receptor is shown to benefit from a kinetic proofreading locking mechanism and is able to overcome pSHP1 negative influences to sensitise a T cell.  相似文献   

3.
4.
CD4+ T cells differentiate into subsets that promote immunity or minimize damage to the host. T helper 17 cells (Th17) are effector cells that function in inflammatory responses. T regulatory cells (Tregs) maintain tolerance and prevent autoimmunity by secreting immunosuppressive cytokines and expressing check point receptors. While the functions of Th17 and Treg cells are different, both cell fate trajectories require T cell receptor (TCR) and TGF-β receptor (TGF-βR) signals, and Th17 polarization requires an additional IL-6 receptor (IL-6R) signal. Utilizing high-resolution phosphoproteomics, we identified that both synergistic and additive interactions between TCR, TGF-βR, and IL-6R shape kinase signaling networks to differentially regulate key pathways during the early phase of Treg versus Th17 induction. Quantitative biochemical analysis revealed that CD4+ T cells integrate receptor signals via SMAD3, which is a mediator of TGF-βR signaling. Treg induction potentiates the formation of the canonical SMAD3/4 trimer to activate a negative feedback loop through kinases PKA and CSK to suppress TCR signaling, phosphatidylinositol metabolism, and mTOR signaling. IL-6R signaling activates STAT3 to bind SMAD3 and block formation of the SMAD3/4 trimer during the early phase of Th17 induction, which leads to elevated TCR and PI3K signaling. These data provide a biochemical mechanism by which CD4+ T cells integrate TCR, TGF-β, and IL-6 signals via generation of alternate SMAD3 complexes that control the development of early signaling networks to potentiate the choice of Treg versus Th17 cell fate.  相似文献   

5.
T lymphocytes are believed to alter their sensitivity to TCR stimulation by means of a tunable cellular activation threshold. We present two modelling examples which show that the concept of a tunable threshold can be made mechanistically plausible. The tunable threshold is treated as an emergent property of the dynamics of the T cell's signalling machinery. In addition, we discuss how the dynamic properties of activation threshold tuning can be determined experimentally with the aid of these two models. We propose a novel 'avidity selection' mechanism for the initial stages of the immune response, based on the properties of the T cell activation threshold tuning mechanism we propose for the commitment to differentiation. Our main finding is that activation threshold tuning allows T cells to respond to relevant ligands with a detection threshold that is (i) uniform across both the T cell repertoire and the secondary lymphoid tissues, while (ii) retaining tolerance to autostimulation. Our analysis indicates that central tolerance enhances the efficiency of peripheral tolerance, casting new light on the role of negative selection in the thymus.  相似文献   

6.
7.
The role of microtubules (MTs) in the control and dynamics of the immune synapse (IS) remains unresolved. Here, we show that T cell activation requires the growth of MTs mediated by the plus-end specific protein end-binding 1 (EB1). A direct interaction of the T cell receptor (TCR) complex with EB1 provides the molecular basis for EB1 activity promoting TCR encounter with signalling vesicles at the IS. EB1 knockdown alters TCR dynamics at the IS and prevents propagation of the TCR activation signal to LAT, thus inhibiting activation of PLCγ1 and its localization to the IS. These results identify a role for EB1 interaction with the TCR in controlling TCR sorting and its connection with the LAT/PLCγ1 signalosome.  相似文献   

8.
Cytoskeletal cross-talk in the control of T cell antigen receptor signaling   总被引:1,自引:0,他引:1  
T cell antigen receptor signaling is triggered and controlled in specialized cellular interfaces formed between T cells and antigen-presenting cells named immunological synapses. Both microtubules and actin cytoskeleton rearrange at the immunological synapse in response to T cell receptor triggering, ensuring in turn the accuracy of intracellular signaling. Recent reports show that the cross-talk between the cortical actin cytoskeleton and microtubule networks is key for structuring the immunological synapse and for controlling T cell receptor signaling. Immunological synapse architecture and the interaction between the signaling machinery and various cytoskeletal elements are therefore crucial for the fine-tuning of T cell signaling.  相似文献   

9.
Herpes simplex viruses (HSV-1 and HSV-2) cause global morbidity and synergistically correlate with HIV infection.HSV exists life-long in a latent form in sensory neurons with intermittent reactivation,in despite of host immune surveillance.While abundant evidence for HSV interfering with innate immune responses so as to favor the replication and propagation of the virus,several lines of evidence declare that HSV attenuates adaptive immunity by various mechanisms,including but not limited to the ablation of antigen presentation,induction of apoptosis,and interruption of cellular signaling.In this review,we will focus on the perturbative role of HSV in Tcells signaling.  相似文献   

10.
T cell receptor (TCR) ligation (signal one) in the presence of co-stimulation (signal two) results in downstream signals that increase protein production enabling naïve T cells to fully activate and gain effector function. Enhanced production of proteins by a cell requires an increase in endoplasmic reticulum (ER) chaperone expression, which is accomplished through activation of a cellular mechanism known as the ER stress response. The ER stress response is initiated during the cascade of events that occur for the activation of many cells; however, this process has not been comprehensively studied for T cell function. In this study, we used primary T cells and mice circulating TCR transgenic CD8+ T cells to investigate ER chaperone expression in which TCR signaling was initiated in the presence or absence of co-stimulation. In the presence of both signals, in vitro and in vivo analyses demonstrated induction of the ER stress response, as evidenced by elevated expression of GRP78 and other ER chaperones. Unexpectedly, ER chaperones were also increased in T cells exposed only to signal one, a treatment known to cause T cells to enter the ‘nonresponsive’ states of anergy and tolerance. Treatment of T cells with an inhibitor to protein kinase C (PKC), a serine/threonine protein kinase found downstream of TCR signaling, indicated PKC is involved in the induction of the ER stress response during the T cell activation process, thus revealing a previously unknown role for this signaling protein in T cells. Collectively, these data suggest that induction of the ER stress response through PKC signaling is an important component for the preparation of a T cell response to antigen.  相似文献   

11.
T cell activation by nonself peptide-major histocompatibility complex (MHC) antigenic complexes can be blocked by particular sequence variants in a process termed T cell receptor antagonism. The inhibition mechanism is not understood, although such variants are encountered in viral infections and may aid immune evasion. Here, we study the effect of antagonist peptides on immunological synapse formation by T cells. This cellular communication process features early integrin engagement and T cell motility arrest, referred to as the "stop signal." We find that synapses formed on membranes presenting antagonist-agonist complexes display reduced MHC density, which leads to reduced T cell proliferation that is not overcome by the costimulatory ligands CD48 and B7-1. Most T cells fail to arrest and crawl slowly with a dense ICAM-1 crescent at the leading edge. Similar aberrant patterns of LFA-1/ICAM-1 engagement in live T-B couples correlate with reduced calcium flux and IL-2 secretion. Hence, antagonist peptides selectively disable MHC clustering and the stop signal, whereas LFA-1 valency up-regulation occurs normally.  相似文献   

12.
Mathematical models of T cell population dynamics after infection typically assume that T cells differentiate according to a linear process in which they first become effector cells, and then after some time, differentiate further into memory cells. In this paper, we offer a different mathematical model which can equally well capture T cell dynamics, using data from lymphocytic choriomeningitis (LCMV) infection. Our model assumes that memory cells are intermediates that further differentiate into effector cells only from additional or stronger antigenic stimulation. Our assumption naturally leads to a testable prediction about the generation of T cell memory-that the memory phenotype of T cells should be present in detectable numbers during the expansion phase of the response. We use our model to estimate a rate of differentiation from memory type cells to effectors. We argue that this differentiation assumption, where memory cells are intermediates, captures recent experimental work on T cell differentiation, and hence this new mathematical model could be helpful in doing further studies of T cell population dynamics. We also propose a method of distinguishing the models by examining the ratio of memory T cells detectable long after an infection to the peak numbers of T cells at the end of the expansion phase.  相似文献   

13.
The 78-kDa glucose-regulated protein (GRP78) is an important molecular chaperone in the endoplasmic reticulum (ER) induced by various stresses. This study showed that stimulation with anti-CD3 mAb, PMA plus ionomycin, or an antigen increased the levels of GRP78 mRNA in primary T cells, which was inhibited by Ca2+ chelators EGTA and BAPTA-AM and by an inhibitor of calcineurin FK506. In addition, the specific knockdown of GRP78 protein expression induced apoptosis in mouse EL-4 T cell line associated with CHOP induction and caspase-3 activation. Furthermore, overexpression of GRP78 inhibited PMA/ionomycin-induced cell death in EL-4 cells. Collectively, GRP78 expression is induced by TCR activation via a Ca2+-dependent pathway and may play a critical role in maintaining T cell viability in the steady and TCR-activated states. These results suggest a novel regulatory mechanism and an essential function of GRP78 in T cells.  相似文献   

14.
15.
On the role of APC-activation for in vitro versus in vivo T cell priming   总被引:2,自引:0,他引:2  
Professional antigen-presenting cells take up antigens for processing and presentation in association with MHC class I and II molecules. When APCs receive the right stimuli, they undergo a maturation process and migrate to secondary lymphoid organs to trigger T cell activation. In this study, we compared side-by-side in vivo and in vitro activation of T cells. Transgenic CD8(+) T cells specific for the p33 epitope, derived from the lymphocytic choriomeningitis virus glycoprotein, were labeled with CFSE and injected into syngeneic mice or alternatively, co-cultured in vitro with APCs. The p33 epitope was delivered as free peptide or genetically fused to virus-like particles. Whereas proliferation of specific T cells was comparable in both systems, the production of IFN-gamma and the expression of CD25 showed important differences. Induction of effector function and expression of activation markers were strongly enhanced in vitro by both the free peptide and VLPs. Surprisingly, addition of CpG-containing immune-stimulating DNA for activation of APCs dramatically increased effector T cell differentiation in vitro, whereas no enhancement could be observed in vitro. Thus, activation of professional APCs was mandatory for induction of effector CD8(+) T cell responses in vivo, while this step was largely dispensable in vitro.  相似文献   

16.
In this study we analyzed the interaction of prion protein PrPC with components of glycosphingolipid-enriched microdomains in lymphoblastoid T cells. PrPC was distributed in small clusters on the plasma membrane, as revealed by immunoelectron microscopy. PrPC is present in microdomains, since it coimmunoprecipitates with GM3 and the raft marker GM1. A strict association between PrPC and Fyn was revealed by scanning confocal microscopy and coimmunoprecipitation experiments. The phosphorylation protein ZAP-70 was immunoprecipitated by anti-PrP after T cell activation. These results demonstrate that PrPC interacts with ZAP-70, suggesting that PrPC is a component of the multimolecular signaling complex within microdomains involved in T cell activation.  相似文献   

17.
18.
T cell signaling starts with assembling several tyrosine kinases and adapter proteins to the T cell receptor (TCR), following the antigen binding to the TCR. The stability of the TCR–antigen complex and the delay between the recruitment and activation of each kinase determines the T cell response. Integration of such delays constitutes a kinetic proofreading mechanism to regulate T cell response to the antigen binding. However, the mechanism of these delays is not fully understood. Combining biochemical experiments and kinetic modeling, here we report a thermodynamic brake in the regulatory module of the tyrosine kinase ZAP-70, which determines the ligand selectivity, and may delay the ZAP-70 activation upon antigen binding to TCR. The regulatory module of ZAP-70 comprises of a tandem SH2 domain that binds to its ligand, doubly-phosphorylated ITAM peptide (ITAM-Y2P), in two kinetic steps: a fast step and a slow step. We show the initial encounter complex formation between the ITAM-Y2P and tandem SH2 domain follows a fast-kinetic step, whereas the conformational transition to the holo-state follows a slow-kinetic step. We further observed a thermodynamic penalty imposed during the second phosphate-binding event reduces the rate of structural transition to the holo-state. Phylogenetic analysis revealed the evolution of the thermodynamic brake coincides with the divergence of the adaptive immune system to the cell-mediated and humoral responses. In addition, the paralogous kinase Syk expressed in B cells does not possess such a functional thermodynamic brake, which may explain the higher basal activation and lack of ligand selectivity in Syk.  相似文献   

19.
Intrinsically disordered cytoplasmic domains of T cell receptor (TCR) signaling subunits including ζcyt and CD3εcyt all contain one or more copies of an immunoreceptor tyrosine-based activation motif (ITAM), tyrosine residues of which are phosphorylated upon receptor triggering. Membrane binding-induced helical folding of ζcyt and CD3εcyt ITAMs is thought to control TCR activation. However, the question whether or not lipid binding of ζcyt and CD3εcyt is necessarily accompanied by a folding transition of ITAMs remains open. In this study, we investigate whether the membrane binding mechanisms of ζcyt and CD3εcyt depend on the membrane model used. Circular dichroic and fluorescence data indicate that binding of ζcyt and CD3εcyt to detergent micelles and unstable vesicles is accompanied by a disorder-to-order transition, whereas upon binding to stable vesicles these proteins remain unfolded. Using electron microscopy and dynamic light scattering, we show that upon protein binding, unstable vesicles fuse and rupture. In contrast, stable vesicles remain intact under these conditions. This suggests different membrane binding modes for ζcyt and CD3εcyt depending on the bilayer stability: (1) coupled binding and folding, and (2) binding without folding. These findings explain the long-standing puzzle in the literature and highlight the importance of the choice of an appropriate membrane model for protein-lipid interactions studies.  相似文献   

20.
The role of lipid rafts in T cell antigen receptor (TCR) signaling was investigated using fluorescence microscopy. Lipid rafts labeled with cholera toxin B subunit (CT-B) and cross-linked into patches displayed characteristics of rafts isolated biochemically, including detergent resistance and colocalization with raft-associated proteins. LCK, LAT, and the TCR all colocalized with lipid patches, although TCR association was sensitive to nonionic detergent. Aggregation of the TCR by anti-CD3 mAb cross-linking also caused coaggregation of raft-associated proteins. However, the protein tyrosine phosphatase CD45 did not colocalize to either CT-B or CD3 patches. Cross-linking of either CD3 or CT-B strongly induced tyrosine phosphorylation and recruitment of a ZAP-70(SH2)(2)-green fluorescent protein (GFP) fusion protein to the lipid patches. Also, CT-B patching induced signaling events analagous to TCR stimulation, with the same dependence on expression of key TCR signaling molecules. Targeting of LCK to rafts was necessary for these events, as a nonraft- associated transmembrane LCK chimera, which did not colocalize with TCR patches, could not reconstitute CT-B-induced signaling. Thus, our results indicate a mechanism whereby TCR engagement promotes aggregation of lipid rafts, which facilitates colocalization of LCK, LAT, and the TCR whilst excluding CD45, thereby triggering protein tyrosine phosphorylation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号