首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The participation of different afferent systems in organization of internal reference frame was studied. For this was chosen the task of visual comparison that executed in different experimental conditions: in upright standing, with inclined body or head in frontal plane and availability or non-availability visual information about external environment. Results showed that dominant orientation of referent stimulus (minimal value of mean error and minimal variability of responses) was connected with body position, mainly head position but not with gravity and visual vertical even when visual environment was available. It means that for creating the internal representing of vertical CNS mainly uses proprioceptive information about longitudinal axis of body.  相似文献   

2.
The vertical posture was studied during standing with fееt on the support surfaces of different structures. The movements of the center of pressure (CP) of each leg and the common CP (CCP) were recorded while the subject stood with a support on a smooth floor and with the support of one foot on a spike mat (SM) with different load distributions between the legs. When the body weight was transferred to one leg during standing under ordinary conditions on a smooth floor, the CP of the loaded leg moved more than the CP of the unloaded leg; i.e., the posture sway was compensated mainly due to the activity of the loaded leg, which created a larger torque. When the subject stood with one foot on the SM, the CP movement of this leg did not depend on the leg load and was about 60% of the CP movement of the leg on the smooth floor. Apparently, the CP displacement of the unloaded leg on smooth support was larger than the CP displacement of the loaded leg creating the torque necessary for compensating the body sway. Thus, maintaining the vertical posture was carried out mainly by the leg standing on the smooth support. It is assumed that additional stimulation of different surface and deep receptors of the foot caused by foot support on the SM hampered the perception of its CP position, and the vertical posture was maintained mainly by the leg afferent signals from which more precisely reflected the CP position.  相似文献   

3.
The central program of a targeted movement includes a component intended for to compensate for the weight of the arm; this is why the accuracy of pointing to a memorized position of the visual target in darkness depends on orientation of the moving limb in relation to the vertical axis. Transition from the vertical to the horizontal body position is accompanied by a shift of the final hand position along the body axis towards the head. We studied how pointing errors and visual localization of the target are modified due to adaptation to the horizontal body position; targeted movements to a real target were repeatedly performed during the adaptation period. Three types of experiments were performed: a basic experiment, and two different experiments with adaptation realized under somewhat dissimilar conditions. In the course of the first adaptation experiment, subjects received no visual information on the hand’s position in space, and targeted movements of the arm to a luminous target could be corrected using proprioceptive information only. With such a paradigm, the accuracy of pointing to memorized visual targets showed no adaptation-related changes. In the second adaptation experiment, subjects were allowed to continuously view a marker (a light-emitting diode taped to the fingertip). After such adaptation practice, the accuracy of pointing movements to memorized targets increased: both constant and variational errors, as well as both components of constant error (i.e.,X andY errors) significantly dropped. Testing the accuracy of visual localization of the targets by visual/verbal adjustment, performed after this adaptation experiment, showed that the pattern of errors did not change compared with that in the basic experiment. Therefore, we can conclude that sensorimotor adaptation to the horizontal position develops much more successfully when the subject obtains visual information about the working point position; such adaptation is not related to modifications in the system of visual localization of the target.  相似文献   

4.
Errors of targeted movements of the arm to the places of presentation of light targets (in darkness) were studied in healthy subjects kept in a vertical position or laying on their backs. An error along theY axis (corresponding to the longitudinal body axis) changed its sign depending on the body orientation with respect to the gravitation vector. In the vertical position, the arm shifted to the feet at the movement’s termination, while in the laying position it shifted to the head. AnX error showed no dependence on the position of the body in space. The errors reached their maxima in the absence of visual control, but became two-three times smaller when the tested subject could observe the position of an indicator (light diodes) fixed on the end of the index finger (or of a pointer rod). When the spatial positions of targets were reconstructed according to verbal “indications”, the amplitudes ofX andY errors appeared similar to those at real movements (indication under visual control). In this case, the sign ofY errors also depended on the body orientation, but their direction was opposite. We suppose that systematicY errors at the targeted arm movements are determined not only by an antigravitation component of the motor program, but also by shifting of a sensory visual estimations of the spatial target position.  相似文献   

5.
The subjective visual vertical (SVV) and the subjective haptic vertical (SHV) both claim to probe the underlying perception of gravity. However, when the body is roll tilted these two measures evoke different patterns of errors with SVV generally becoming biased towards the body (A-effect, named for its discoverer, Hermann Rudolph Aubert) and SHV remaining accurate or becoming biased away from the body (E-effect, short for Entgegengesetzt-effect, meaning “opposite”, i.e., opposite to the A-effect). We compared the two methods in a series of five experiments and provide evidence that the two measures access two different but related estimates of gravitational vertical. Experiment 1 compared SVV and SHV across three levels of whole-body tilt and found that SVV showed an A-effect at larger tilts while SHV was accurate. Experiment 2 found that tilting either the head or the trunk independently produced an A-effect in SVV while SHV remained accurate when the head was tilted on an upright body but showed an A-effect when the body was tilted below an upright head. Experiment 3 repeated these head/body configurations in the presence of vestibular noise induced by using disruptive galvanic vestibular stimulation (dGVS). dGVS abolished both SVV and SHV A-effects while evoking a massive E-effect in the SHV head tilt condition. Experiments 4 and 5 show that SVV and SHV do not combine in an optimally statistical fashion, but when vibration is applied to the dorsal neck muscles, integration becomes optimal. Overall our results suggest that SVV and SHV access distinct underlying gravity percepts based primarily on head and body position information respectively, consistent with a model proposed by Clemens and colleagues.  相似文献   

6.
Brain areas exist that appear to be specialized for the coding of visual space surrounding the body (peripersonal space). In marked contrast to neurons in earlier visual areas, cells have been reported in parietal and frontal lobes that effectively respond only when visual stimuli are located in spatial proximity to a particular body part (for example, face, arm or hand) [1-4]. Despite several single-cell studies, the representation of near visual space has scarcely been investigated in humans. Here we focus on the neuropsychological phenomenon of visual extinction following unilateral brain damage. Patients with this disorder may respond well to a single stimulus in either visual field; however, when two stimuli are presented concurrently, the contralesional stimulus is disregarded or poorly identified. Extinction is commonly thought to reflect a pathological bias in selective vision favoring the ipsilesional side under competitive conditions, as a result of the unilateral brain lesion [5-7]. We examined a parietally damaged patient (D.P.) to determine whether visual extinction is modulated by the position of the hands in peripersonal space. We measured the severity of visual extinction in a task which held constant visual and spatial information about stimuli, while varying the distance between hands and stimuli. We found that selection in the affected visual field was remarkably more efficient when visual events were presented in the space near the contralesional finger than far from it. However, the amelioration of extinction dissolved when hands were covered from view, implying that the effect of hand position was not mediated purely through proprioception. These findings illustrate the importance of the spatial relationship between hand position and object location for the internal construction of visual peripersonal space in humans.  相似文献   

7.
The turning responses of clawed toads (Xenopus laevis) to surface waves were examined in animals with an intact lateral line or with different combinations of lateral lines reversibly inactivated by CoCl2. The responses were characterized with respect to response frequency, turning accuracy, turning side, response time, and swim distance. After the inactivation most animals still responded to surface waves but the responses were different from those of animals with an intact lateral line. They also differed according to the combination of inactivated lines. In all experiments the responses for stimuli in some sectors of the surface did not differ from controls. The location of these sectors co-varied with the position of the intact lines, i.e., normal responses were found for frontal stimulus directions when head lines were intact and for caudolateral stimulus directions when trunk lines were intact. Their size was larger when lines on both sides of the body were intact and smaller when only lines on one side were intact. When the number of functional lines was reduced to one or two on one side of the body the turning angles shown within the sector of normal responses were maintained for stimulus directions outside these sectors. These results can be interpreted as indicating that head and trunk lines represent different position values. When only a single line was functional the toads still turned towards the stimulus source more often than by chance.It is hypothesized that Xenopus uses two mechanisms to determine the direction of surface waves. One uses the position values of head and trunk lines; this mechanism is comparable to the place value postulated for individual head neuromasts of surface feeding fish. The other uses the information encoded in the activity pattern that is elicited in one line when the surface wave travels over the line. This second mechanism yields information about stimulus side but not about stimulus angle.  相似文献   

8.
Subjects kept a vertical posture, standing on a rigid support. Stability of a posture was estimated by the sizes of standard deviations (sigma) from average amplitudes of the subject's head fluctuation in respect to zero coordinates. To create a feedback on the vestibular input, transmastoidal bipolar galvanic stimulation was used. Changes of current in contour of feedback looked as linear function considering amplitude and velocity of the subject's head displacements. Varying the factors of feedback function, it was possible to reduce sigma for lateral sways increased (in comparison with their values at the quiet stance in the darkness) as a result of unilateral vibrating stimulation of m. gluteus medialis. The results specify inequality of "velocity" and "position" information for maintenance of vertical posture in different subjects. The results specify also the ability of the central nervous system (CNS) to revalue weights of various kinds of information entering via the same channel. The data confirm the hypothesis according to which galvanic vestibular input is capable to deliver in CNS and adequate information on the current orientation of the body. This information can be used for stabilization of a posture.  相似文献   

9.
To analyze the information provided about individual visual stimuliin the responses of single neurons in the primate temporal lobevisual cortex, neuronal responses to a set of 65 visual stimuli wererecorded in macaques performing a visual fixation task and analyzedusing information theoretical measures. The population of neuronsanalyzed responded primarily to faces. The stimuli included 23 facesand 42 nonface images of real-world scenes, so that the function ofthis brain region could be analyzed when it was processing relativelynatural scenes.It was found that for the majority of the neurons significantamounts of information were reflected about which of several of the23 faces had been seen. Thus the representation was not local, forin a local representation almost all the information available canbe obtained when the single stimulus to which the neuron respondsbest is shown. It is shown that the information available about anyone stimulus depended on how different (for example, how manystandard deviations) the response to that stimulus was from theaverage response to all stimuli. This was the case for responsesbelow the average response as well as above.It is shown that the fraction of information carried by the lowfiring rates of a cell was large—much larger than that carried bythe high firing rates. Part of the reason for this is that theprobability distribution of different firing rates is biased towardlow values (though with fewer very low values than would bepredicted by an exponential distribution). Another factor is thatthe variability of the response is large at intermediate and highfiring rates.Another finding is that at short sampling intervals (such as 20 ms)the neurons code information efficiently, by effectively acting asbinary variables and behaving less noisily than would be expectedof a Poisson process.  相似文献   

10.
Reading performance during standing and walking was assessed for information presented on earth-fixed and head-fixed displays by determining the minimal duration during which a numerical time stimulus needed to be presented for 50% correct naming answers. Reading from the earth-fixed display was comparable during standing and walking, with optimal performance being attained for visual character sizes in the range of 0.2° to 1°. Reading from the head-fixed display was impaired for small (0.2-0.3°) and large (5°) visual character sizes, especially during walking. Analysis of head and eye movements demonstrated that retinal slip was larger during walking than during standing, but remained within the functional acuity range when reading from the earth-fixed display. The detrimental effects on performance of reading from the head-fixed display during walking could be attributed to loss of acuity resulting from large retinal slip. Because walking activated the angular vestibulo-ocular reflex, the resulting compensatory eye movements acted to stabilize gaze on the information presented on the earth-fixed display but destabilized gaze from the information presented on the head-fixed display. We conclude that the gaze stabilization mechanisms that normally allow visual performance to be maintained during physical activity adversely affect reading performance when the information is presented on a display attached to the head.  相似文献   

11.
ABSTRACT. Horizontal head movements of the praying mantis, Sphodromantis lineola Burm., were recorded continuously. They responded to the presence of a live blowfly prey in the antero-lateral visual field with a rapid saccadic head movement. The angular movement of a fixation saccade was correlated positively to the displacement of the prey from the prothoracic midline. Saccade magnitude and velocity are related. After the stimulus moved out of the visual field, the mantis made a second saccadic head movement, a return saccade towards the body midline. We observed return saccades in which the head overshot or undershot the body midline, as well as saccades which returned the head exactly to its initial position. In 92% of trials with intact mantids, the return movement succeeded eventually in rotating the head back to its initial position, whereas after removal of the neck hair plates this occurred in only 47% of trials. There is a consistent relation between saccade extent and velocity. Velocities of return saccades were slower than those of fixation saccades. It is suggested that sensory inputs from the neck hair plate proprioceptors modify both the magnitude and the angular velocity of fixation and return saccadic head movements.  相似文献   

12.
Anatomical studies have demonstrated that the vestibular nuclei project to nucleus tractus solitarius (NTS), but little is known about the effects of vestibular inputs on NTS neuronal activity. Furthermore, lesions of NTS abolish vomiting elicited by a variety of different triggering mechanisms, including vestibular stimulation, suggesting that emetic inputs may converge on the same NTS neurons. As such, an emetic stimulus that activates gastrointestinal (GI) receptors could alter the responses of NTS neurons to vestibular inputs. In the present study, we examined in decerebrate cats the responses of NTS neurons to rotations of the body in vertical planes before and after the intragastric administration of the emetic compound copper sulfate. The activity of more than one-third of NTS neurons was modulated by vertical vestibular stimulation, with most of the responsive cells having their firing rate altered by rotations in the head-up or head-down directions. These responses were aligned with head position in space, as opposed to the velocity of head movements. The activity of NTS neurons with baroreceptor, pulmonary, and GI inputs could be modulated by vertical plane rotations. However, injection of copper sulfate into the stomach did not alter the responses to vestibular stimulation of NTS neurons that received GI inputs, suggesting that the stimuli did not have additive effects. These findings show that the detection and processing of visceral inputs by NTS neurons can be altered in accordance with the direction of ongoing movements.  相似文献   

13.

Background

How does the brain estimate object stability? Objects fall over when the gravity-projected centre-of-mass lies outside the point or area of support. To estimate an object''s stability visually, the brain must integrate information across the shape and compare its orientation to gravity. When observers lie on their sides, gravity is perceived as tilted toward body orientation, consistent with a representation of gravity derived from multisensory information. We exploited this to test whether vestibular and kinesthetic information affect this visual task or whether the brain estimates object stability solely from visual information.

Methodology/Principal Findings

In three body orientations, participants viewed images of objects close to a table edge. We measured the critical angle at which each object appeared equally likely to fall over or right itself. Perceived gravity was measured using the subjective visual vertical. The results show that the perceived critical angle was significantly biased in the same direction as the subjective visual vertical (i.e., towards the multisensory estimate of gravity).

Conclusions/Significance

Our results rule out a general explanation that the brain depends solely on visual heuristics and assumptions about object stability. Instead, they suggest that multisensory estimates of gravity govern the perceived stability of objects, resulting in objects appearing more stable than they are when the head is tilted in the same direction in which they fall.  相似文献   

14.
The accuracy of pointing movements performed under different head positions to remembered target locations in 3-D space was studied in healthy persons. The subjects fixated a visual target, then closed their eyes and after 1.0 sec performed the targeted movement with their right arm. The target (a point light source) was presented in random order by a programmable robot arm at one of five space locations. The accuracy of pointing movements was examined in a spherical coordinate system centered in respect with the shoulder of the responding arm. The pointing movements were most accurate under natural eye-head coordination. With the head fixed in the straight-ahead position, both the 3-D absolute error and its standard deviation increased significantly. At the same time, individual components of spatial error (directional and radial) did not change significantly. With the head turned to the rightmost or leftmost position, the pointing accuracy was disturbed within larger limits than under head-fixed condition. The main contributors to the 3-D absolute error were the changes in the azimuth error. The latter depended on the direction of the head-turn: the rightmost turn either increased leftward or decreased rightward shift, and conversely, the left turn increased rightward shift or decreased leftward shift of the target-directed movements.It is suggested that the increased inaccuracy of pointing under head-fixed condition reflected the impairment of the eye-head coordination underlying gaze orientation, and increased inaccuracy under the head-turned condition may be explained by changes in the internal representation of the head and target position in space.Neirofiziologiya/Neurophysiology, Vol. 26, No. 2, pp. 122–131, March–April, 1994.  相似文献   

15.
Stimulus duration is an important feature of visual stimulation. In the present study, response properties of bullfrog ON-OFF retinal ganglion cells (RGCs) in exposure to different visual stimulus durations were studied. By using a multi-electrode recording system, spike discharges from ON-OFF RGCs were simultaneously recorded, and the cells’ ON and OFF responses were analyzed. It was found that the ON response characteristics, including response latency, spike count, as well as correlated activity and relative latency between pair-wise cells, were modulated by different light OFF intervals, while the OFF response characteristics were modulated by different light ON durations. Stimulus information carried by the ON and OFF responses was then analyzed, and it was found that information about different light ON durations was more carried by transient OFF response, whereas information about different light OFF intervals were more carried by transient ON response. Meanwhile, more than 80 % information about stimulus durations was carried by firing rate. These results suggest that ON-OFF RGCs are sensitive to different stimulus durations, and they can efficiently encode the information about visual stimulus duration by firing rate.  相似文献   

16.
Summary In the fly,Calliphora erythrocephala, visual stimuli presented in an asymmetrical position with respect to the fly elicit roll or tilt movements of the head by which its dorsal part is moved towards the light areas of the surroundings (Figs. 4–7). The influence of passive body roll and tilt (gravitational stimulus) on the amplitude of these active head movements was investigated for two types of visual stimuli: (1) a dark hollow hemisphere presented in different parts of the fly's visual field, and (2) a moving striped pattern stimulating the lateral parts of one eye only.The response characteristics of the flies in the bimodal situation in which the gravitational stimulus was paired with stimulation by the dark hollow hemisphere can be completely described by the addition of the response characteristics for both unimodal situations, i.e. by the gravity-induced and visually induced characteristics (Figs. 8, 9). Therefore, the stimulus efficacy of the dark hollow hemisphere is independent of (=invariant with respect to) the flies' spatial position. The advantage of this type of interaction between gravity and visual stimulation for the control of body posture near the horizontal is discussed.In contrast, the efficacy of moving patterns depends on (=non-invariant with respect to) the spatial position of the walking fly. Regressive pattern movements exhibit their stronger efficacy with respect to progressive ones only when the gravity receptor system of the legs is stimulated. The stronger efficacy of downward vs upward movements can only be demonstrated when the flies are walking horizontally, independently of whether the leg gravity receptor system is stimulated by gravity or not (Fig. 10).The results are discussed with respect (1) to the invariance and non-invariance of the efficacy of visual stimuli with respect to the direction of the field of gravity, (2) to the formation of reference lines by the gravitational field which are used by the walking fly to determine the orientation of visual patterns, and (3) to the possible location of the underlying convergence between gravitationally and visually evoked excitation. As all types of head responses occur only in walking flies, we also discussed the possible influences of some physiological processes like arousal, proprioceptive feedback during walking and various peripheral sensory inputs on the performance of behavioural responses in the fly (Fig. 11).  相似文献   

17.
To determine how the vestibular sense controls balance, we used instantaneous head angular velocity to drive a galvanic vestibular stimulus so that afference would signal that head movement was faster or slower than actual. In effect, this changed vestibular afferent gain. This increased sway 4-fold when subjects (N = 8) stood without vision. However, after a 240 s conditioning period with stable balance achieved through reliable visual or somatosensory cues, sway returned to normal. An equivalent galvanic stimulus unrelated to sway (not driven by head motion) was equally destabilising but in this situation the conditioning period of stable balance did not reduce sway. Reflex muscle responses evoked by an independent, higher bandwidth vestibular stimulus were initially reduced in amplitude by the galvanic stimulus but returned to normal levels after the conditioning period, contrary to predictions that they would decrease after adaptation to increased sensory gain and increase after adaptation to decreased sensory gain. We conclude that an erroneous vestibular signal of head motion during standing has profound effects on balance control. If it is unrelated to current head motion, the CNS has no immediate mechanism of ignoring the vestibular signal to reduce its influence on destabilising balance. This result is inconsistent with sensory reweighting based on disturbances. The increase in sway with increased sensory gain is also inconsistent with a simple feedback model of vestibular reflex action. Thus, we propose that recalibration of a forward sensory model best explains the reinterpretation of an altered reafferent signal of head motion during stable balance.  相似文献   

18.
The vestibular organs in the inner ear are commonly thought of as sensors that serve balance, gaze control, and higher spatial functions such as navigation. Here, we investigate their role in the online control of voluntary movements. The central nervous system uses sensory feedback information during movement to detect and correct errors as they develop. Vestibular organs signal three-dimensional head rotations and translations and so could provide error information for body movements that transport the head in space. To test this, we electrically stimulated human vestibular nerves during a goal-directed voluntary tilt of the trunk. The stimulating current waveform was made identical to the angular velocity profile of the head in the roll plane. With this, we could proportionally increase or decrease the rate of vestibular nerve firing, as if the head were rotating faster or slower than it actually was. In comparison to movements performed without stimulation, subjects tilted their trunk faster and further or slower and less far, depending upon the polarity of the stimulus. The response was negligible when identical stimulus waveforms were replayed to stationary subjects. We conclude that the brain uses vestibular information for online error correction of planned body-movement trajectories.  相似文献   

19.
There has long been a problem concerning the presence in the visual cortex of binocularly activated cells that are selective for vertical stimulus disparities because it is generally believed that only horizontal disparities contribute to stereoscopic depth perception. The accepted view is that stereoscopic depth estimates are only relative to the fixation point and that independent information from an extraretinal source is needed to scale for absolute or egocentric distance. Recently, however, theoretical computations have shown that egocentric distance can be estimated directly from vertical disparities without recourse to extraretinal sources. There has been little impetus to follow up these computations with experimental observations, because the vertical disparities that normally occur between the images in the two eyes have always been regarded as being too small to be of significance for visual perception and because experiments have consistently shown that our conscious appreciation of egocentric distance is rather crude and unreliable. Nevertheless, the veridicality of stereoscopic depth constancy indicates that accurate distance information is available to the visual system and that the information about egocentric distance and horizontal disparity are processed together so as to continually recalibrate the horizontal disparity values for different absolute distances. Computations show that the recalibration can be based directly on vertical disparities without the need for any intervening estimates of absolute distance. This may partly explain the relative crudity of our conscious appreciation of egocentric distance. From published data it has been possible to calculate the magnitude of the vertical disparities that the human visual system must be able to discriminate in order for depth constancy to have the observed level of veridicality. From published data on the induced effect it has also been possible to calculate the threshold values for the detection of vertical disparities by the visual system. These threshold values are smaller than those needed to provide for the recalibration of the horizontal disparities in the interests of veridical depth constancy. An outline is given of the known properties of the binocularly activated cells in the striate cortex that are able to discriminate and assess the vertical disparities. Experiments are proposed that should validate, or otherwise, the concepts put forward in this paper.  相似文献   

20.
Reaction time (RT) and error rate that depend on stimulus duration were measured in a luminance-discrimination reaction time task. Two patches of light with different luminance were presented to participants for ‘short’ (150 ms) or ‘long’ (1 s) period on each trial. When the stimulus duration was ‘short’, the participants responded more rapidly with poorer discrimination performance than they did in the longer duration. The results suggested that different sensory responses in the visual cortices were responsible for the dependence of response speed and accuracy on the stimulus duration during the luminance-discrimination reaction time task. It was shown that the simple winner-take-all-type neural network model receiving transient and sustained stimulus information from the primary visual cortex successfully reproduced RT distributions for correct responses and error rates. Moreover, temporal spike sequences obtained from the model network closely resembled to the neural activity in the monkey prefrontal or parietal area during other visual decision tasks such as motion discrimination and oddball detection tasks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号