首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A virologic marker, the number of HIV RNA copies or viral load, is currently used to evaluate antiviral therapies in AIDS clinical trials. This marker can be used to assess the antiviral potency of therapies, but is easily affected by drug exposures, drug resistance and other factors during the long-term treatment evaluation process. The study of HIV dynamics is one of the most important development in recent AIDS research for understanding the pathogenesis of HIV-1 infection and antiviral treatment strategies. Although many HIV dynamic models have been proposed by AIDS researchers in the last decade, they have only been used to quantify short-term viral dynamics and do not correctly describe long-term virologic responses to antiretroviral treatment. In other words, these simple viral dynamic models can only be used to fit short-term viral load data for estimating dynamic parameters. In this paper, a mechanism-based differential equation models is introduced for characterizing the long-term viral dynamics with antiretroviral therapy. We applied this model to fit different segments of the viral load trajectory data from a simulation experiment and an AIDS clinical trial study, and found that the estimates of dynamic parameters from our modeling approach are very consistent. We may conclude that our model can not only characterize long-term viral dynamics, but can also quantify short- and middle-term viral dynamics. It suggests that if there are enough data in the early stage of the treatment, the results from our modeling based on short-term information can be used to capture the performance of long-term care with HIV-1 infected patients.  相似文献   

2.
Viral load and CD4 T-cell counts in patients infected with the human immunodeficiency virus (HIV) are commonly used to guide clinical decisions regarding drug therapy or to assess therapeutic outcomes in clinical trials. However, random fluctuations in these markers of infection can obscure clinically significant change. We employ a Monte Carlo simulation to investigate contributing factors in the expected variability in CD4 T-cell count and viral load due solely to the stochastic nature of HIV infection. The simulation includes processes that contribute to the variability in HIV infection including CD4 and CD8 T-cell population dynamics as well as T-cell activation and proliferation. The simulation results may reconcile the wide range of variabilities in viral load observed in clinical studies, by quantifying correlations between viral load measurements taken days or weeks apart. The sensitivity of variability in T-cell count and viral load to changes in the lifetimes of CD4 and CD8 T-cells is investigated, as well as the effects of drug therapy.  相似文献   

3.

HIV preferentially infects activated CD4+ T cells. Current antiretroviral therapy cannot eradicate the virus. Viral infection of other cells such as macrophages may contribute to viral persistence during antiretroviral therapy. In addition to cell-free virus infection, macrophages can also get infected when engulfing infected CD4+ T cells as innate immune sentinels. How macrophages affect the dynamics of HIV infection remains unclear. In this paper, we develop an HIV model that includes the infection of CD4+ T cells and macrophages via cell-free virus infection and cell-to-cell viral transmission. We derive the basic reproduction number and obtain the local and global stability of the steady states. Sensitivity and viral dynamics simulations show that even when the infection of CD4+ T cells is completely blocked by therapy, virus can still persist and the steady-state viral load is not sensitive to the change of treatment efficacy. Analysis of the relative contributions to viral replication shows that cell-free virus infection leads to the majority of macrophage infection. Viral transmission from infected CD4+ T cells to macrophages during engulfment accounts for a small fraction of the macrophage infection and has a negligible effect on the total viral production. These results suggest that macrophage infection can be a source contributing to HIV persistence during suppressive therapy. Improving drug efficacies in heterogeneous target cells is crucial for achieving HIV eradication in infected individuals.

  相似文献   

4.
Huang Y  Liu D  Wu H 《Biometrics》2006,62(2):413-423
HIV dynamics studies have significantly contributed to the understanding of HIV infection and antiviral treatment strategies. But most studies are limited to short-term viral dynamics due to the difficulty of establishing a relationship of antiviral response with multiple treatment factors such as drug exposure and drug susceptibility during long-term treatment. In this article, a mechanism-based dynamic model is proposed for characterizing long-term viral dynamics with antiretroviral therapy, described by a set of nonlinear differential equations without closed-form solutions. In this model we directly incorporate drug concentration, adherence, and drug susceptibility into a function of treatment efficacy, defined as an inhibition rate of virus replication. We investigate a Bayesian approach under the framework of hierarchical Bayesian (mixed-effects) models for estimating unknown dynamic parameters. In particular, interest focuses on estimating individual dynamic parameters. The proposed methods not only help to alleviate the difficulty in parameter identifiability, but also flexibly deal with sparse and unbalanced longitudinal data from individual subjects. For illustration purposes, we present one simulation example to implement the proposed approach and apply the methodology to a data set from an AIDS clinical trial. The basic concept of the longitudinal HIV dynamic systems and the proposed methodologies are generally applicable to any other biomedical dynamic systems.  相似文献   

5.
6.
ABSTRACT: BACKGROUND: The dynamics of viral infections have been studied extensively in a variety of settings, both experimentally and with mathematical models. The majori-ty of mathematical models assumes that only one virus can infect a given cell at a time. It is, however, clear that especially in the context of high viral load, cells can become infected with multiple copies of a virus, a process called coinfection. This has been best demonstrated experimentally for human immunodeficiency virus (HIV), although it is thought to be equally relevant for a number of other viral infections. In a previously explored mathematical model, the viral output from an infected cell does not depend on the number of viruses that reside in the cell, i.e. viral replication is limited by cellular rather than viral factors. In this case, basic virus dynamics properties are not altered by coinfection. Results: Here, we explore the alternative assumption that multiply infected cells are characterized by an increased burst size and find that this can fundamentally alter model predictions. Under this scenario, establishment of infection may not be solely determined by the basic reproductive ratio of the virus, but can depend on the initial virus load. Upon infection, the virus population need not follow straight exponential growth. Instead, the exponential rate of growth can increase over time as virus load becomes larger. Moreover, the model suggests that the ability of anti-viral drugs to suppress the virus population can depend on the virus load upon initiation of therapy. This is because more coinfected cells, which produce more virus, are present at higher virus loads. Hence, the degree of drug resistance is not only determined by the viral genotype, but also by the prevalence of coinfected cells. Conclusions: Our work shows how an increased burst size in multiply infected cells can alter basic infection dynamics. This forms the basis for future experimental testing of model assumptions and predictions that can distinguish between the different scenarios.  相似文献   

7.
Motivated by viral persistence in HIV+ patients on long-term anti-retroviral treatment (ART), we present a stochastic model of HIV viral dynamics in the blood stream. We consider the hypothesis that the residual viremia in patients on ART can be explained principally by the activation of cells latently infected by HIV before the initiation of ART and that viral blips (clinically-observed short periods of detectable viral load) represent large deviations from the mean. We model the system as a continuous-time, multi-type branching process. Deriving equations for the probability generating function we use a novel numerical approach to extract the probability distributions for latent reservoir sizes and viral loads. We find that latent reservoir extinction-time distributions underscore the importance of considering reservoir dynamics beyond simply the half-life. We calculate blip amplitudes and frequencies by computing complete viral load probability distributions, and study the duration of viral blips via direct numerical simulation. We find that our model qualitatively reproduces short small-amplitude blips detected in clinical studies of treated HIV infection. Stochastic models of this type provide insight into treatment-outcome variability that cannot be found from deterministic models.  相似文献   

8.
A growing body of evidence indicates that proviral DNA load quantitation is an important parameter in establishing the dynamics of HIV infection. Proviral DNA load can be determined during the follow-up of infected individuals to evaluate reservoir status in addition to viral replication. Hence, the study of viral reservoirs, represented by HIV-1 latently infected cells, including resting memory CD4+ T cells, monocytes and macrophages, by which HIV-1 can be reactivated, opens new perspectives in the assessment and the comprehension of HIV-1 infection. However, the identification of viral reservoirs, that can store both wild and drug resistance viruses, is one of the most important steps in developing treatment strategies because it is now clear that viral reservoirs not only prevent sterilizing immunity but also represent a major obstacle to curing the infection with the potent antiretroviral drugs currently in use. Even if only careful evaluation of virological and immunological markers is necessary to fully characterize the course of HIV-1 infection and to provide a more complete laboratory-based assessment of disease progression, the availability of a new standardized assay such as DNA proviral load will be important to assess the true extent of virological suppression in treated patients and to verify the efficacy of new immune-based therapies aimed at purging HIV-1 DNA reservoirs. Several studies demonstrate, in fact, that HIV-1 cellular DNA load may be an indicator of spread of infection whereas the plasma RNA load is indicates active infection. This article will review the importance of monitoring HIV-1 proviral load DNA during the follow-up of HIV-1 infected subjects, suggesting that additional information complementing HIV RNA load could provide crucial information to monitor viral replication and the effectiveness of HAART therapy.  相似文献   

9.
10.
The dynamics of HIV-1 infection consist of three distinct phases starting with primary infection, then latency and finally AIDS or drug therapy. In this paper we model the dynamics of primary infection and the beginning of latency. We show that allowing for time delays in the model better predicts viral load data when compared to models with no time delays. We also find that our model of primary infection predicts the turnover rates for productively infected T cells and viral totals to be much longer than compared to data from patients receiving anti-viral drug therapy. Hence the dynamics of the infection can change dramatically from one stage to the next. However, we also show that with the data available the results are highly sensitive to the chosen model. We compare the results using analysis and Monte Carlo techniques for three different models and show how each predicts rather dramatic differences between the fitted parameters. We show, using a chi(2) test, that these differences between models are statistically significant and using a jackknifing method, we find the confidence intervals for the parameters. These differences in parameter estimations lead to widely varying conclusions about HIV pathogenesis. For instance, we find in our model with time delays the existence of a Hopf bifurcation that leads to sustained oscillations and that these oscillations could simulate the rapid turnover between viral strains and the appropriate CTL response necessary to control the virus, similar to that of a predator-prey type system.  相似文献   

11.
12.
The development of drug resistance is a major obstacle to successful treatment of HIV infection. The extraordinary replication dynamics of HIV facilitates its escape from selective pressure exerted by the human immune system and by combination drug therapy. We have developed several computational methods whose combined use can support the design of optimal antiretroviral therapies based on viral genomic data.  相似文献   

13.
A mathematical model of the host’s immune response to HIV infection is proposed. The model represents the dynamics of 13 subsets of T cells (HIV-specific and nonspecific, healthy and infected, T4 and T8 cells), infected macrophages, neutralizing antibodies, and virus. The results of simulation are in agreement with published data regarding T4 cell concentration and viral load, and exhibit the typical features of HIV infection, i.e. double viral peaks in the acute stage, sero conversion, inverted T cell ratio, establishment of set points, steady state, and decline into AIDS. This result is achieved by taking into account thymic aging, viral and infected cell stimulation of specific immune cells, background nonspecific antigens, infected cell proliferation, viral production by infected macrophages and T cells, tropism, viral, and immune adaptation. Starting from this paradigm, changes in the parameter values simulate observed differences in individual outcomes, and predict different scenarios, which can suggest new directions in therapy. In particular, large parameter changes highlight the potentially critical role of both very vigorous and extremely damped specific immune response, and of the elimination of virus release by macrophages. Finally, the time courses of virus, antibody and T cells production and removal are systematically investigated, and a comparison of T4 and T8 cell dynamics in a healthy and in a HIV infected host is offered.  相似文献   

14.
We present a model of HIV dynamics under antiretroviral therapy that combines drug pharmacokinetics and intracellular delay. A two compartment pharmacokinetic model is employed to determine the time evolution of the intracellular concentrations of the active forms of drugs, and thereby drug efficacy. The viral replication period is divided into pre- and post-drug action parts, allowing for the introduction of an intracellular delay in drug action. The standard model of viral dynamics is modified to account for the drug dependence of intracellular delay and continuously varying drug efficacy. Model calculations reveal that viral load decay in HIV infected patients under monotherapy can exhibit remarkably complex patterns depending on the relative magnitudes of the pharmacokinetic, intracellular, and intrinsic viral dynamic time-scales. The commonly assumed exponential decay is only a special case. However, uncertainties in measurement and the low sampling frequencies employed in present clinical studies preclude the identification of these patterns from existing clinical viral load data.  相似文献   

15.
The current paradigm for modeling viral kinetics and resistance evolution after treatment initiation considers only the level of circulating virus and cellular infection (CI model), while the intra-cellular level is disregarded. This model was successfully used to explain HIV dynamics and Hepatitis C virus (HCV) dynamics during interferon-based therapy. However, in the new era of direct-acting antiviral agents (DAAs) against HCV, viral kinetics is characterized by a more rapid decline of the wild-type virus as well as an early emergence of resistant strains that jeopardize the treatment outcome. Although the CI model can be extended to describe these new kinetic patterns, this approach has qualitative and quantitative limitations. Instead, we suggest that a more appropriate approach would consider viral dynamics at the cell infection level, as done currently, as well as at the intracellular level. Indeed, whereas in HIV integrated DNA serves as a static replication unit and mutations occur only once per infected cell, HCV replication is deeply affected by DAAs and furthermore processes of resistance evolution can occur at the intra-cellular level with a faster time-scale.We propose a comprehensive model of HCV dynamics that considers both extracellular and intracellular levels of infection (ICCI model). Intracellular viral genomic units are used to form replication units, which in turn synthesize genomic units that are packaged and secreted as virions infecting more target cells. Resistance evolution is modeled intra-cellularly, by different genomic- and replication-unit strains with particular relative-fitness and drug sensitivity properties, allowing for a rapid resistance takeover.Using the ICCI model, we show that the rapid decline of wild-type virus results from the ability of DAAs to destabilize the intracellular replication. On the other hand, this ability also favors the rapid emergence, intracellularly, of resistant virus. By considering the interaction between intracellular and extracellular infection we show that resistant virus, able to maintain a high level of intracellular replication, may nevertheless be unable to maintain rapid enough de novo infection rate at the extracellular level. Hence this model predicts that in HCV, and contrary to our experience with HIV, the emergence of productively resistant virus may not systematically prevent from a viral decline in the long-term. Thus, the ICCI model can explain the transient viral rebounds observed with DAA treatment as well as the viral resistance found in most patients with viral relapse at the end of DAA combination therapy.  相似文献   

16.
Trends in HIV virulence have been monitored since the start of the AIDS pandemic, as studying HIV virulence informs our understanding of HIV epidemiology and pathogenesis. Here, we model changes in HIV virulence as a strictly evolutionary process, using set point viral load (SPVL) as a proxy, to make inferences about empirical SPVL trends from longitudinal HIV cohorts. We develop an agent-based epidemic model based on HIV viral load dynamics. The model contains functions for viral load and transmission, SPVL and disease progression, viral load trajectories in multiple stages of infection, and the heritability of SPVL across transmissions. We find that HIV virulence evolves to an intermediate level that balances infectiousness with longer infected lifespans, resulting in an optimal SPVL∼4.75 log10 viral RNA copies/mL. Adaptive viral evolution may explain observed HIV virulence trends: our model produces SPVL trends with magnitudes that are broadly similar to empirical trends. With regard to variation among studies in empirical SPVL trends, results from our model suggest that variation may be explained by the specific epidemic context, e.g. the mean SPVL of the founding lineage or the age of the epidemic; or improvements in HIV screening and diagnosis that results in sampling biases. We also use our model to examine trends in community viral load, a population-level measure of HIV viral load that is thought to reflect a population''s overall transmission potential. We find that community viral load evolves in association with SPVL, in the absence of prevention programs such as antiretroviral therapy, and that the mean community viral load is not necessarily a strong predictor of HIV incidence.  相似文献   

17.
We examine the dynamics of infection by the human immunodeficiency virus (HIV), as well as therapies that minimize viral load, restore adaptive immunity, and use minimal dosage of anti-HIV drugs. Virtual therapies for wild-type infections are demonstrated; however, the HIV infection is never cured, requiring continued treatment to keep the condition in remission. With high viral turnover and mutation rates, drug-resistant strains of HIV evolve quickly. The ability of optimal therapy to contain drug-resistant strains is shown to depend upon the relative fitness of mutant strains.  相似文献   

18.
Antiretroviral therapy (ART) effectively controls HIV infection, suppressing HIV viral loads. However, some residual virus remains, below the level of detection, in HIV-infected patients on ART. The source of this viremia is an area of debate: does it derive primarily from activation of infected cells in the latent reservoir, or from ongoing viral replication? Observations seem to be contradictory: there is evidence of short term evolution, implying that there must be ongoing viral replication, and viral strains should thus evolve. However, phylogenetic analyses, and rare emergent drug resistance, suggest no long-term viral evolution, implying that virus derived from activated latent cells must dominate. We use simple deterministic and stochastic models to gain insight into residual viremia dynamics in HIV-infected patients. Our modeling relies on two underlying assumptions for patients on suppressive ART: that latent cell activation drives viral dynamics and that the reproductive ratio of treated infection is less than 1. Nonetheless, the contribution of viral replication to residual viremia in patients on ART may be non-negligible. However, even if the portion of viremia attributable to viral replication is significant, our model predicts (1) that latent reservoir re-seeding remains negligible, and (2) some short-term viral evolution is permitted, but long-term evolution can still be limited: stochastic analysis of our model shows that de novo emergence of drug resistance is rare. Thus, our simple models reconcile the seemingly contradictory observations on residual viremia and, with relatively few parameters, recapitulates HIV viral dynamics observed in patients on suppressive therapy.  相似文献   

19.
Human immunodeficiency virus (HIV) dynamics represent a complicated variant of the text-book case of non-linear dynamics: predator-prey interaction. The interaction can be described as naturally reproducing T-cells (prey) hunted and killed by virus (predator). Virus reproduce and increase in number as a consequence of successful predation; this is countered by the production of T-cells and the reaction of the immune system. Multi-drug anti-HIV therapy attempts to alter the natural dynamics of the predator-prey interaction by decreasing the reproductive capability of the virus and hence predation. These dynamics are further complicated by varying compliance to treatment and insurgence of resistance to treatment. When following the temporal progression of viral load in plasma during therapy one observes a short-term (1-12 weeks) decrease in viral load. In the long-term (more than 12 weeks from the beginning of therapy) the reduction in viral load is either sustained, or it is followed by a rebound, oscillations and a new (generally lower than at the beginning of therapy) viral load level. Biomathematicians have investigated these dynamics by means of simulations. However the estimation of the parameters associated with the dynamics from real data has been mostly limited to the case of simplified, in particular linearized, models. Linearized model can only describe the short-term changes of viral load during therapy and can only predict (apparent) suppression. In this paper we put forward relatively simple models to characterize long-term virus dynamics which can incorporate different factors associated with resurgence: (Fl) the intrinsic non-linear HIV-1 dynamics, (F2) drug exposure and in particular compliance to treatment, and (F3) insurgence of resistant HIV-1 strains. The main goal is to obtain models which are mathematically identifiable given only measurements of viral load, while retaining the most crucial features of HIV dynamics. For the purpose of illustration we demonstrate an application of the models using real AIDS clinical trial data involving patients treated with a combination of anti-retroviral agents using a model which incorporates compliance data.  相似文献   

20.
Highly active antiretroviral therapy (HAART) reduces the viral burden in human immunodeficiency virus type 1 (HIV-1) infected patients below the threshold of detectability. However, substantial evidence indicates that viral replication persists in these individuals. In this paper we examine the ability of several biologically motivated models of HIV-1 dynamics to explain sustained low viral loads. At or near drug efficacies that result in steady state viral loads below detectability, most models are extremely sensitive to small changes in drug efficacy. We argue that if these models reflect reality many patients should have cleared the virus, contrary to observation. We find that a model in which the infected cell death rate is dependent on the infected cell density does not suffer this shortcoming. The shortcoming is also overcome in two more conventional models that include small populations of cells in which the drug is less effective than in the main population, suggesting that difficulties with drug penetrance and maintenance of effective intracellular drug concentrations in all cells susceptible to HIV infection may underlie ongoing viral replication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号