首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Wu S  Hoxter B  Byers SW  Tozeren A 《Biorheology》1998,35(1):37-51
Recent mathematical models show that molecular events that mediate rolling interactions also have an impact on the stochastic features of rolling. In spherical cells, statistical fluctuations in cell displacement were shown to be an indication that only a few adhesion bonds are involved in rolling interactions. In this study, we investigated whether cell shape and cell deformability could also modulate the stochastic features of rolling. As an experimental model we considered the flow-initiated rolling of MCF-10 breast epithelial cells on laminin. The dynamic adhesion of MCF-10A cells to laminin, which involves integrin alpha 6 beta 4, occurs slow enough to allow for an accurate determination of the trajectories of rolling cells. The data from high-magnification videomicroscopy showed that cell shape, cell deformability, and the level of fluid shear stress were all strong determinants of the rolling velocity and the extent of fluctuations in the trajectory of rolling cells. MCF-10A cells with large surface projections rolled faster and wobbled more extensively than spherical cells under the same flow conditions. The extent of wobbling decreased and the variation of rolling velocity increased with increasing fluid shear stress. MCF-10A cells treated with cytochalasin B, which increased cell deformability and caused extensive blebbing without significantly altering surface expression of laminin integrins, reduced mean rolling velocity and increased its variance. Because leukocytes change shape as they roll in postcapillary blood venules at high shear rates, results indicate the need for further expanding the present biophysical models of rolling to the case of deformable cells.  相似文献   

2.
Computational fluid dynamics was used to model flow past multiple adherent leukocytes in postcapillary size vessels. A finite-element package was used to solve the Navier-Stokes equations for low Reynolds number flow of a Newtonian fluid past spheres adhering to the wall of a cylindrical vessel. We determined the effects of sphere number, relative geometry, and spacing on the flow resistance in the vessel and the fluid flow drag force acting to sweep the sphere off the vessel wall. The computations show that when adherent leukocytes are aligned on the same side of the vessel, the drag force on each of the interacting leukocytes is less than the drag force on an isolated adherent leukocyte and can decrease by up to 50%. The magnitude of the reduction depends on the ratio of leukocyte to blood vessel diameter and distance between adherent leukocytes. However, there is an increase in the drag force when leukocytes adhere to opposite sides of the vessel wall. The increase in resistance generated by adherent leukocytes in vessels of various sizes is calculated from the computational results. The resistance increases with decreasing vessel size and is most pronounced when leukocytes adhere to opposite sides of the vessel.  相似文献   

3.
Polymorphonuclear leukocyte (PMN) recruitment to sites of inflammation is initiated by selectin-mediated PMN tethering and rolling on activated endothelium under flow. Cell rolling is modulated by bulk cell deformation (mesoscale), microvillus deformability (microscale), and receptor-ligand binding kinetics (nanoscale). Selectin-ligand bonds exhibit a catch-slip bond behavior, and their dissociation is governed not only by the force but also by the force history. Whereas previous theoretical models have studied the significance of these three "length scales" in isolation, how their interplay affects cell rolling has yet to be resolved. We therefore developed a three-dimensional computational model that integrates the aforementioned length scales to delineate their relative contributions to PMN rolling. Our simulations predict that the catch-slip bond behavior and to a lesser extent bulk cell deformation are responsible for the shear threshold phenomenon. Cells bearing deformable rather than rigid microvilli roll slower only at high P-selectin site densities and elevated levels of shear (>or=400 s(-1)). The more compliant cells (membrane stiffness=1.2 dyn/cm) rolled slower than cells with a membrane stiffness of 3.0 dyn/cm at shear rates >50 s(-1). In summary, our model demonstrates that cell rolling over a ligand-coated surface is a highly coordinated process characterized by a complex interplay between forces acting on three distinct length scales.  相似文献   

4.
The mechanics of leukocyte (white blood cell; WBC) deformation and adhesion to endothelial cells (EC) has been investigated using a novel in vitro side-view flow assay. HL-60 cell rolling adhesion to surface-immobilized P-selectin was used to model the WBC-EC adhesion process. Changes in flow shear stress, cell deformability, or substrate ligand strength resulted in significant changes in the characteristic adhesion binding time, cell-surface contact and cell rolling velocity. A 2-D model indicated that cell-substrate contact area under a high wall shear stress (20 dyn/cm2) could be nearly twice of that under a low stress (0.5 dyn/cm2) due to shear flow-induced cell deformation. An increase in contact area resulted in more energy dissipation to both adhesion bonds and viscous cytoplasm, whereas the fluid energy that inputs to a cell decreased due to a flattened cell shape. The model also predicted a plateau of WBC rolling velocity as flow shear stresses further increased. Both experimental and computational studies have described how WBC deformation influences the WBC-EC adhesion process in shear flow.  相似文献   

5.
Fu Y  Kunz R  Wu J  Dong C 《PloS one》2012,7(2):e30721
Tumor cell adhesion to the endothelium under shear flow conditions is a critical step that results in circulation-mediated tumor metastasis. This study presents experimental and computational techniques for studying the local hydrodynamic environment around adherent cells and how local shear conditions affect cell-cell interactions on the endothelium in tumor cell adhesion. To study the local hydrodynamic profile around heterotypic adherent cells, a side-view flow chamber assay coupled with micro particle imaging velocimetry (μPIV) technique was developed, where interactions between leukocytes and tumor cells in the near-endothelial wall region and the local shear flow environment were characterized. Computational fluid dynamics (CFD) simulations were also used to obtain quantitative flow properties around those adherent cells. Results showed that cell dimension and relative cell-cell positions had strong influence on local shear rates. The velocity profile above leukocytes and tumor cells displayed very different patterns. Larger cell deformations led to less disturbance to the flow. Local shear rates above smaller cells were observed to be more affected by relative positions between two cells.  相似文献   

6.
Leukocyte recruitment to sites of inflammation is initiated by their tethering and rolling on the activated endothelium under flow. Even though the fast kinetics and high tensile strength of selectin-ligand bonds are primarily responsible for leukocyte rolling, experimental evidence suggests that cellular properties such as cell deformability and microvillus elasticity actively modulate leukocyte rolling behavior. Previous theoretical models either assumed cells as rigid spheres or were limited to two-dimensional representations of deformable cells with deterministic receptor-ligand kinetics, thereby failing to accurately predict leukocyte rolling. We therefore developed a three-dimensional computational model based on the immersed boundary method to predict receptor-mediated rolling of deformable cells in shear flow coupled to a Monte Carlo method simulating the stochastic receptor-ligand interactions. Our model predicts for the first time that the rolling of more compliant cells is relatively smoother and slower compared to cells with stiffer membranes, due to increased cell-substrate contact area. At the molecular level, we show that the average number of bonds per cell as well as per single microvillus decreases with increasing membrane stiffness. Moreover, the average bond lifetime decreases with increasing shear rate and with increasing membrane stiffness, due to higher hydrodynamic force experienced by the cell. Taken together, our model captures the effect of cellular properties on the coupling between hydrodynamic and receptor-ligand bond forces, and successfully explains the stable leukocyte rolling at a wide range of shear rates over that of rigid microspheres.  相似文献   

7.
Leukocyte recruitment from blood to the endothelium plays an important role in atherosclerotic plaque formation. Cells show a primary and secondary adhesive process with primary bonds responsible for capture and rolling and secondary bonds for arrest. Our objective was to investigate the role played by this process on the adhesion of leukocytes in complex flow. Cells were modelled as rigid spheres with spring like adhesion molecules which formed bonds with endothelial receptors. Models of bond kinetics and Newton's laws of motion were solved numerically to determine cell motion. Fluid force was obtained from the local shear rate obtained from a CFD simulation of the flow over a backward facing step.In stagnation point flow the shear rate near the stagnation point has a large gradient such that adherent cells in this region roll to a high shear region preventing permanent adhesion. This is enhanced if a small time dependent perturbation is imposed upon the stagnation point. For lower shear rates the cell rolling velocity may be such that secondary bonds have time to form. These bonds resist the lower fluid forces and consequently there is a relatively large permanent adhesion region.  相似文献   

8.
Leukocyte rolling on the endothelium via selectin molecules is an important step in the adhesion cascade, which allows leukocytes in the bloodstream to reach sites of infection. We improve upon Adhesive Dynamics simulations by incorporating deformable microvilli on which adhesion molecules are clustered. As determined in micropipette experiments, microvilli deform like an elastic spring at small forces and a combination of yield and viscous dissipation at high forces. First, we create a modified version of the state diagram for adhesion which includes microvillus deformation, and find four adhesion states-firmly bound; landing; rolling; and no-adhesion. Then, we simulate the effects of receptor clustering on the tips of microvilli, number of adhesion molecules on the cell, and the spring constant of the bonds, within the context of deformable microvilli. We also explore how the microvillus rheology itself controls the dynamics of adhesion. A minimum in rolling velocity occurs at an intermediate value of the microvillus membrane viscosity, remarkably close to the reported physiological value, suggesting that the mechanics of microvilli have evolved ideally for rolling and adhesion of leukocytes. We find that a larger degree of association between the membrane and cytoskeleton leads to slower rolling, and stiffer microvilli result in faster rolling. Decreasing the overall deformability of the microvilli greatly reduces a simulated cell's ability to roll. A comparison to experimental results of in vitro cell rolling agrees with the simulation at low shear rates. Furthermore, simulated rolling trajectories of cells with deformable microvilli display periods of rolling interdispersed with pauses, consistent with that seen in experiments where microvilli were observed to stretch.  相似文献   

9.
Influence of cell deformation on leukocyte rolling adhesion in shear flow   总被引:9,自引:0,他引:9  
Blood cell interaction with vascular endothelium is important in microcirculation, where rolling adhesion of circulating leukocytes along the surface of endothelial cells is a prerequisite for leukocyte emigration under flow conditions. HL-60 cell rolling adhesion to surface-immobilized P-selectin in shear flow was investigated using a side-view flow chamber, which permitted measurements of cell deformation and cell-substrate contact length as well as cell rolling velocity. A two-dimensional model was developed based on the assumption that fluid energy input to a rolling cell was essentially distributed into two parts: cytoplasmic viscous dissipation, and energy needed to break adhesion bonds between the rolling cell and its substrate. The flow fields of extracellular fluid and intracellular cytoplasm were solved using finite element methods with a deformable cell membrane represented by an elastic ring. The adhesion energy loss was calculated based on receptor-ligand kinetics equations. It was found that, as a result of shear-flow-induced cell deformation, cell-substrate contact area under high wall shear stresses (20 dyn/cm2) could be as much as twice of that under low stresses (0.5 dyn/cm2). An increase in contact area may cause more energy dissipation to both adhesion bonds and viscous cytoplasm, whereas the fluid energy input may decrease due to the flattened cell shape. Our model predicts that leukocyte rolling velocity will reach a plateau as shear stress increases, which agrees with both in vivo and in vitro experimental observations.  相似文献   

10.
Experimental models that mimic the flow conditions in microcapillaries have suggested that the local shear stresses and shear rates can mediate tumor cell and leukocyte arrest on the endothelium and subsequent sustained adhesion. However, further investigation has been limited by the lack of experimental models that allow quantitative measurement of the hydrodynamic environment over adherent cells. The purpose of this study was to develop a system capable of acquiring quantitative flow profiles over adherent cells. By combining the techniques of side-view imaging and particle image velocimetry (PIV), an in vitro model was constructed that is capable of obtaining quantitative flow data over cells adhering to the endothelium. The velocity over an adherent leukocyte was measured and the shear rate was calculated under low and high upstream wall shear. The microcapillary channel was modeled using computational fluid dynamics (CFD) and the calculated velocity profiles over cells under the low and high shear rates were compared to experimental results. The drag force applied to each cell by the fluid was then computed. This system provides a means for future study of the forces underlying adhesion by permitting characterization of the local hydrodynamic conditions over adherent cells.  相似文献   

11.
We demonstrate an additional step and a positive feedback loop in leukocyte accumulation on inflamed endothelium. Leukocytes in shear flow bind to adherent leukocytes through L-selectin/ligand interactions and subsequently bind downstream and roll on inflamed endothelium, purified E-selectin, P-selectin, L-selectin, VCAM-1, or peripheral node addressin. Thus adherent leukocytes nucleate formation of strings of rolling cells and synergistically enhance leukocyte accumulation. Neutrophils, monocytes, and activated T cell lines, but not peripheral blood T lymphocytes, tether to each other through L-selectin. L- selectin is not involved in direct binding to either E- or P-selectin and is not a major counterreceptor of endothelial selectins. Leukocyte- leukocyte tethers are more tolerant to high shear than direct tethers to endothelial selectins and, like other L-selectin-mediated interactions, require a shear threshold. Synergism between leukocyte- leukocyte and leukocyte-endothelial interactions introduces novel regulatory mechanisms in recruitment of leukocytes in inflammation.  相似文献   

12.
Leukocyte arrest during cytokine-dependent inflammation in vivo   总被引:11,自引:0,他引:11  
Leukocyte rolling along the walls of inflamed venules precedes their adhesion during inflammation. Rolling leukocytes are thought to arrest by engaging beta2 integrins following cellular activation. In vitro studies suggest that chemoattractants may instantaneously activate and arrest rolling leukocytes. However, how leukocytes stop rolling and become adherent in inflamed venules in vivo has remained rather mysterious. In this paper we use a novel method of tracking individual leukocytes through the microcirculation to show that rolling neutrophils become progressively activated while rolling down the venular tree. On average, leukocytes in wild-type mice roll for 86 s (and cover 270 microm) before becoming adherent with an efficiency around 90%. These rolling leukocytes exhibit a gradual beta2 integrin-dependent decrease in rolling velocity that correlates with an increase in intracellular free calcium concentration before arrest. Similar tracking analyses in gene-targeted mice demonstrate that the arrest of rolling leukocytes is very rare when beta2 integrins are absent or blocked by a mAb. Arrest is approximately 50% less efficient in the absence of E-selectin. These data suggest a model of leukocyte recruitment in which beta2 integrins play a critical role in stabilizing leukocyte rolling during a protracted cellular activation period before arrest and firm adhesion.  相似文献   

13.
Rolling leukocytes deform and show a large area of contact with endothelium under physiological flow conditions. We studied the effect of cytoplasmic viscosity on leukocyte rolling using our three-dimensional numerical algorithm that treats leukocyte as a compound droplet in which the core phase (nucleus) and the shell phase (cytoplasm) are viscoelastic fluids. The algorithm includes the mechanical properties of the cell cortex by cortical tension and considers leukocyte microvilli that deform viscoelastically and form viscous tethers at supercritical force. Stochastic binding kinetics describes binding of adhesion molecules. The leukocyte cytoplasmic viscosity plays a critical role in leukocyte rolling on an adhesive substrate. High-viscosity cells are characterized by high mean rolling velocities, increased temporal fluctuations in the instantaneous velocity, and a high probability for detachment from the substrate. A decrease in the rolling velocity, drag, and torque with the formation of a large, flat contact area in low-viscosity cells leads to a dramatic decrease in the bond force and stable rolling. Using values of viscosity consistent with step aspiration studies of human neutrophils (5-30 Pa·s), our computational model predicts the velocities and shape changes of rolling leukocytes as observed in vitro and in vivo.  相似文献   

14.
Sugihara-Seki M 《Biorheology》2000,37(5-6):341-359
To evaluate the fluid forces acting on cells adhered to a microvessel wall, we numerically studied the flow field around adherent cells and the distribution of the stresses on their surfaces. For simplicity, the cells were modeled as rigid particles attached to a wall of a circular cylindrical tube regularly in the flow direction, in a row or two rows. It was found that not the detailed shape of the model cells but their height from the vessel wall is a key determinant of the fluid forces and torque acting on them. In both arrangements of one row and two rows, the axial spacing between neighboring adherent cells significantly affects the distributions of the stresses on them, which results in drastic variations of the fluid forces with the axial spacing and the relative positions with respect to their neighboring cells. The drag force acting on an adherent cell in the vessel was evaluated to be larger than the value in the 2D chamber flow at the same wall shear stress, mainly due to much larger variations of the pressure distribution on the cell surface in the vessel flow.  相似文献   

15.
《Biorheology》1997,34(4-5):249-260
To evaluate the force and torque acting on leukocytes attached to the vessel wall, we numerically study the flow field around the leukocytes by using rigid spherical particles adhered to the wall of a circular cylindrical tube as a model of adherent leukocytes. The adherent particles are assumed to be placed regularly in the flow direction with equal spacings, in one row or two rows. The flow field of the suspending fluid is analyzed by a finite element method applied to the Stokes equations, and the drag force and torque acting on each particle, as well as the apparent viscosity, are evaluated as a function of the particle to tube diameter ratio and the particle arrangements. For two-row arrangements of adhered particles where neighboring particles are placed alternately on opposite sides of the vessel, the drag and the torque exerted on each particle are higher than those for single-row arrangements, for constant particle to tube diameter ratio and axial spacing between neighboring particles. This is enhanced for Larger particles and smaller axial spacings. The apparent viscosity of the flow through vessels with adhered particles is found to be significantly higher than that without adhered particles or when the particles are freely floating through the vessels.  相似文献   

16.
Yu Y  Shao JY 《Biophysical journal》2007,92(2):418-429
Neutrophil rolling is the initial step of neutrophil recruitment to sites of inflammation. During the rolling, membrane tethers are very likely extracted from both the neutrophil and the endothelial cell lining of vessel walls. Here, we present a two-dimensional neutrophil-rolling model to investigate whether and how membrane tethers contribute to stable neutrophil rolling. In our model, neutrophils are assumed to be rigid spheres covered with randomly distributed deformable microvilli, and endothelial cells are modeled as flat membrane surfaces decorated with evenly distributed ligands. The instantaneous rolling velocity and other unknowns of the model are calculated by coupling the hydrodynamic resistance functions, the geometric relationships, and the constitutive equations that govern microvillus extension and tether extraction. Our results show that glutaraldehyde-fixed neutrophils (without microvillus extension or tether extraction) roll unstably on a P-selectin-coated substrate with large variance in rolling velocity. In contrast, normal neutrophils roll much more stably, with small variance in rolling velocity. Compared with tether extraction from the neutrophil alone, simultaneous tether extraction from the neutrophil and endothelial cell greatly increases the lifetime of the adhesive bond that mediates the rolling, allows more transient tethers to make the transition into stable rolling, and enables rolling neutrophils to be more shear-resistant.  相似文献   

17.
Selectin-mediated leukocyte rolling is crucial for the proper function of the immune response. Recently, selectin-mediated rolling was recreated in a cell-free system (Biophysical Journal 71:2902-2907 (1996)); it was shown that sialyl Lewis(x) (sLe(x))-coated microspheres roll over E-selectin-coated surfaces under hydrodynamic flow. The cell-free system removes many confounding cellular features, such as cell deformability and signaling, allowing us to focus on the role of carbohydrate/selectin physical chemistry in mediating rolling. In this paper, we use adhesive dynamics, a computational method that allows us to simulate adhesion, to analyze the experimental data produced in the cell-free system. We simulate the effects of shear rate, ligand density, and number of receptors per particle on rolling velocity and compare them with experimental results obtained with the cell-free system. If we assume the population of particles is homogeneous in receptor density, we predict that particle rolling velocity calculated in simulations is more sensitive to shear rate than found in experiments. Also, the calculated rolling velocity is more sensitive to the number of receptors on the microspheres than to the ligand density on the surface, again in contrast to experiment. We argue that heterogeneity in the distribution of receptors throughout the particle population causes these discrepancies. We improve the agreement between experiment and simulation by calculating the average rolling velocity of a population whose receptors follow a normal distribution, suggesting heterogeneity among particles significantly affects the experimental results. Further comparison between theory and experiment yields an estimate of the reactive compliance of sLe(x)/E-selectin interactions of 0.25 A, close to that reported in the literature for E-selectin and its natural ligand (0.3 A). We also provide an estimate of the value of the intrinsic association rate (between 10(4) and 10(5) s(-1)) for the formation of sLe(x)/E-selectin bonds.  相似文献   

18.
Leukocyte adhesion is determined by the balance between molecular adhesive forces and convective dispersive forces. A key parameter influencing leukocyte adhesion is the shear stress acting on the leukocyte. This measure is indispensable for determining the molecular bond forces and estimating cell deformation. To experimentally determine this shear stress, we used microparticle tracking velocimetry analyzing more than 24,000 images of 0.5 μm fluorescent microbeads flowing within mildly inflamed postcapillary venules of the cremaster muscle in vivo. Green fluorescent protein, expressed under the lysozyme-M promoter, made leukocytes visible. After applying stringent quality criteria, 3 of 69 recordings were fully analyzed. We show that endothelial cells, but not leukocytes, are covered by a significant surface layer. The wall shear rate is nearly zero near the adherent arc of each leukocyte and reaches a maximum at the apex. This peak shear rate is 2-6-fold higher than the wall shear rate in the absence of a leukocyte. Microbead trajectories show a systematic deviation toward and away from the microvessel axis upstream and downstream from the leukocyte, respectively. The flow field around adherent leukocytes in vivo allows more accurate estimates of bond forces in rolling and adherent leukocytes and improved modeling studies.  相似文献   

19.
Interaction of leukocytes in flow with adherent leukocytes may contribute to their accumulation at sites of inflammation. Using L- selectin immobilized in a flow chamber, a model system that mimics presentation of L-selectin by adherent leukocytes, we characterize ligands for L-selectin on leukocytes and show that they mediate tethering and rolling in shear flow. We demonstrate the presence of L- selectin ligands on granulocytes, monocytes, and myeloid and lymphoid cell lines, and not on peripheral blood T lymphocytes. These ligands are calcium dependent, sensitive to protease and neuraminidase, and structurally distinct from previously described ligands for L-selectin on high endothelial venules (HEV). Differential sensitivity to O-sialo- glycoprotease provides evidence for ligand activity on both mucin-like and nonmucin-like structures. Transfection with fucosyltransferase induces expression of functional L-selectin ligands on both a lymphoid cell line and a nonhematopoietic cell line. L-selectin presented on adherent cells is also capable of supporting tethering and rolling interactions in physiologic shear flow. L-selectin ligands on leukocytes may be important in promoting leukocyte-leukocyte and subsequent leukocyte endothelial interactions in vivo, thereby enhancing leukocyte localization at sites of inflammation.  相似文献   

20.
The adhesion of leukocytes to vascular surface is an important biomedical problem and has drawn extensive attention. In this study, we propose a compound drop model to simulate a leukocyte with a nucleus adhering to the surface of blood vessel under steady shear flow. A two-dimensional computational fluid dynamics (CFD) is conducted to determine the local distribution of pressure on the surface of the adherent model cell. By introducing the parameter of deformation index (DI), we investigate the deformation of the leukocyte and its nucleus under controlled conditions. Our numerical results show that: (i) the leukocyte is capable of deformation under external exposed flow field. The deformation index increases with initial contact angle and Reynolds number of external exposed flow. (ii) The nucleus deforms with the cell, and the deformation index of the leukocyte is greater than that of the nucleus. The leukocyte is more deformable while the nucleus is more capable of resisting external shear flow. (iii) The leukocyte and the nucleus are not able to deform infinitely with the increase of Reynolds number because the deformation index reaches a maximum. (iv) Pressure distribution confirms that there exists a region downstream of the cell, which produces high pressure to retard continuous deformation and provide a positive lift force on the cell. Meanwhile, we have measured the deformation of human leukocytes exposed to shear flow by using a flow chamber system. We found that the numerical results are well consistent with those of experiment. We conclude that the nucleus with high viscosity plays a particular role in leukocyte deformation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号