首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rat brain expresses two types of corticosteroid-binding proteins. The type I receptor binds corticosterone with high affinity and is structurally related to the kidney mineralocorticoid receptor (MR), while the type II or classical glucocorticoid receptor binds corticosterone with lower affinity and displays an in vivo preference for dexamethasone. Here we describe the isolation and characterization of a cDNA coding for the MR, from a rat hippocampus cDNA library, by low stringency hybridization to radiolabeled human glucocorticoid receptor cDNA. The nucleotide and deduced amino acid sequence for rat hippocampal MR displays extensive homology to a MR cDNA isolated from human kidney, suggesting that they are orthologous genes. Southern analysis suggests that there is only one gene for the MR, and in vitro expression of the receptor generates a high affinity corticosterone-binding protein. These data provide evidence to support the contention that a single gene gives rise to the MR in renal tissues and type I receptors in the brain.  相似文献   

2.
The effect of aldosterone administration on exploratory activity of chronic adrenalectomized (10 days) male rats was investigated. Aldosterone (30 μg/100 g body wt sc) administered 1 hr or 30 min prior to the behavioral test failed to normalize disturbed exploratory activity of adrenalectomized rats, in contrast to the restoration observed after corticosterone, the naturally occurring glucocorticoid of the rat. Administration of the mineralocorticoid 30 min prior to corticosterone prevented the normalization of the behavioral response by the latter steroid. Administration of the same dose of aldosterone 30 min prior to a tracer amount of [3H]corticosterone effectively blocked cell nuclear uptake of radioactive-labeled hormone in the hippocampus. The specific action of corticosterone on exploratory behavior corresponds with the stringent specificity of the neuronal hippocampal corticosterone receptor system. Mineralocorticoid receptors do not seem to be involved in effects on this behavior. The antagonistic action of aldosterone is probably exerted by competitive binding to the corticosterone receptor.  相似文献   

3.
Abstract: Ornithine decarboxylase (ODC), the rate-limiting enzyme in the biosynthesis of polyamines, was measured in the brain and the liver of adrenalectomized rats after an acute S.C. treatment with glucocorticoids. The effects of corticosterone and dexamethasone were compared in three brain areas, the cerebral cortex, hippocampus, and cerebellum. These structures have similar concentrations of cytosolic glucocorticoid receptor, as measured by an in vitro exchange assay using a specific glucocorticoid ligand, [3H]RU 26988, but contain different amounts of mineralocorticoid receptor. Corticosterone and dexamethasone increased ODC activity in the liver and brain areas in a dose dependent manner, dexamethasone being more active than corticosterone in all tissues. Moreover, estradiol, progesterone, and testosterone were inactive. Aldosterone, at high doses, increased brain ODC activity. Glucocorticoids, selected for their weak binding, or lack of binding to the mineralocorticoid receptor, were tested and found to be highly active in inducing brain and liver ODC, thus showing that ODC induction by steroids is specific for glucocorticoids. These results are among the first to suggest biochemically a central action of glucocorticoids following an acute treatment and confirm that the brain is a glucocorticoid target organ.  相似文献   

4.
Maternal undernutrition leads to intrauterine growth retardation and predisposes to the development of pathologies in adulthood. The hypothalamo-pituitary-adrenal axis is a major target of early-life programming. We showed previously that perinatal maternal 50% food restriction leads to hypothalamo-pituitary-adrenal axis hyperactivity and disturbs glucocorticoid feedback in adult male rats. To try to better understand these alterations, we studied several factors involved in corticosterone sensitivity. We showed that unlike the restricted expression of 11 beta-HSD2 mRNA, the 11 beta-HSD1, glucocorticoid, and mineralocorticoid receptor genes are widely distributed in rat. In contrast to the hypothalamus, we confirmed that maternal undernutrition modulates hippocampal corticosterone receptor balance and leads to increased 11 beta-HSD1 gene expression. In the pituitary, rats exhibited a huge increase in both mRNA and mineralocorticoid receptor binding capacities as well as decreased 11 beta-HSD1/11 beta-HSD2 gene expression. Using IN SITU hybridization, we showed that the mineralocorticoid receptor gene was expressed in rat corticotroph cells and by other adenopituitary cells. In the adrenal gland, maternal food restriction decreased 11beta-HSD2 mRNA. This study demonstrated that maternal food restriction has both long-term and tissue-specific effects on gene expression of factors involved in glucocorticoid sensitivity and that it could contribute, via glucocorticoid excess, to the development of adult diseases.  相似文献   

5.
The intracellular binding of [3H]corticosterone and [3H]dexamethasone and their metabolites to macromolecules in rat liver cytosol was studied in vivo and in vitro. The macromolecules binding corticosterone and its metabolites were characterized as (a) a steroid conjugate-binding (Stokes radius 2.5 nm and sedimentation coefficient 4.1 S in high ionic strength; pI 8.7, (b) transcortin and (c) a glucocorticoid "receptor". Competition experiments indicate that corticosterone and dexamethasone bind to the same site of the glucocorticoid receptor molecule. Different Stokes radii between the corticosterone-receptor and the dexamethasone-receptor complexes (6.9 and 6.3 nm, respectively, in high ionic strength) indicate that the two ligands induce different conformations of the receptor protein. This may be of importance when explaining the qualitative differences between the cellular effects of natural and synthetic glucocorticoids. 5alpha-Dihydrocorticosterone, on the other hand, competed to a very limited extent with dexamethasone for binding sites on the receptor. An assay of the inductive effect on liver tyrosine aminotransferase and tryptophan oxygenase indicated that 5alpha-dihydrocorticosterone was practically devoid of glucocorticoid activity. It is concluded that 5alpha-dihydrocorticosterone probably does not act as the mediator of corticosterone action in rat liver.  相似文献   

6.
The distribution and properties of cytoplasmic binding sites for the synthetic glucocorticoid dexamethasone and the natural glucocorticoid corticosterone in the brain and the pituitary were studied in detail. Cortisol-17 beta acid, a derivative which does not bind to the glucocorticoid receptor but is a competitor of corticosterone binding to plasma, was used to overcome plasma interference. In vitro competition assays in the presence of excess cortisol acid reveal that dexamethasone is as effective a competitor for [3H]corticosterone binding as corticosterone itself. Scatchard analysis of equilibrium experiments with both steroids, using cytosol from various brain areas and from the pituitary yielded linear plots, suggesting one class of binding sites. The quantitative distribution of the sites follows the pattern: cortex greater than hippocampus greater than or equal to pituitary greater than hypothalamus greater than brain stem white matter. Furthermore, kinetic analysis of corticosterone dissociation showed a first order reaction, thus indicating the presence of one type of receptor in all brain areas examined. Rat brain cytosolic receptors for corticosterone and dexamethasone elute from DEAE-Sephadex A-50 anion exchange columns at 0.3 M NaCl in the presence of stabilizing sodium molybdate and at 0.15 M NaCl and/or in the buffer wash when heat-activated, thus exhibiting the characteristic activation pattern of rat liver cytosolic glucocorticoid receptor. The ratio of the buffer wash to the 0.15 M NaCl form is low for dexamethasone and very high for corticosterone. Receptor complexes from various brain parts showed the same activation pattern. In our experiments, brain corticosterone and dexamethasone receptors stabilized by sodium molybdate are indistinguishable by a number of techniques, thus indicating that it is unnecessary to evoke specific binding sites for each glucocorticoid.  相似文献   

7.
When small intestinal epithelial cells are incubated with [(3)H]corticosterone, nuclear binding is displaced neither by aldosterone nor RU-28362, suggesting that [(3)H]corticosterone is binding to a site distinct from mineralocorticoid receptor and glucocorticoid receptor. Saturation and Scatchard analysis of nuclear [(3)H]corticosterone binding demonstrate a single saturable binding site with a relatively low affinity (49 nM) and high capacity (5 fmol/microg DNA). Competitive binding assays indicate that this site has a unique steroid binding specificity, which distinguishes it from other steroid receptors. Steroid specificity of nuclear binding mirrors inhibition of the low 11beta-dehydrogenase activity, suggesting that binding may be to an 11beta-hydroxysteroid dehydrogenase (11betaHSD) isoform, although 11betaHSD1 is not present in small intestinal epithelia and 11betaHSD2 does not colocalize intracellularly with the binding site. In summary, a nuclear [(3)H]corticosterone binding site is present in small intestinal epithelia that is distinct from other steroid receptors and shares steroid specificity characteristics with 11betaHSD2 but is distinguishable from the latter by its distinct intracellular localization.  相似文献   

8.
9.
A correlation has been demonstrated between binding capacity for [3H]corticosterone in the hippocampus and the performance in passive and active avoidance in the rat, and impaired behavior in adrenalectomized rats by exogenous corticosterone is restored. On this basis we have studied the possible correlation between strain-dependent behavioral differences and the glucocorticoid binding capacity in the hippocampus in mice and rats. In Naples high- (NHE) and low-excitability (NLE) rat strains, genetically selected on the basis of divergent locomotor activity upon forced exposure to a spatial novelty situation, no differences were found in glucocorticoid maximal binding capacity while both strains had a lower capacity than Naples random-breed (NRB) control rats. However, the intra-strain correlative analysis of hippocampal glucocorticoid receptors number and behavioral scores demonstrated that motor and emotional indexes of arousal to novelty were positively correlated in NLE-and negatively in NHE- while no correlation was present in NRB rats. Using two inbred strains of mice, C57BL/6 and Balb/c, extensively investigated for learning abilities, the lower active avoidance score of C57BL/6 was associated with a lower binding capacity for [3H]corticosterone in the hippocampus. Altogether the above results support the involvement of the hippocampal glucocorticoid receptor in the modulation of some adaptive behavioral responses, while do not prove that genetic differences in behavior rest on parallel differences in binding capacity for glucocorticoid hormone.  相似文献   

10.
In studies from several laboratories evidence has been adduced that renal Type I (mineralocorticoid) receptors and hippocampal "corticosterone-preferring" high affinity glucocorticoid receptors have similar high affinity for both aldosterone and corticosterone. In all these studies the evidence for renal mineralocorticoid receptors is indirect, inasmuch as the high concentrations of transcortin (CBG) in renal cytosol make studies with [3H]corticosterone as a probe difficult to interpret, given its high affinity for CBG. We here report direct binding studies, with [3H]aldosterone and [3H]corticosterone as probes, on hippocampal and renal cytosols from adrenalectomized rats, in which tracer was excluded from Type II dexamethasone binding glucocorticoid receptors with excess RU26988, and from CBG by excess cortisol 17 beta acid. In addition, we have compared the binding of [3H]aldosterone and [3H]corticosterone in renal cytosols from 10-day old rats, in which CBG levels in plasma and kidney are extremely low. Under conditions where neither tracer binds to type II sites or CBG, they label an equal number of sites (kidney 30-50 fmol/mg protein, hippocampus approximately 200 fmol/mg protein) with equal, high affinity (Kd 4 degrees C 0.3-0.5 nM). Thus direct tracer binding studies support the identity of renal Type I mineralocorticoid receptors and hippocampal Type I (high affinity, corticosterone preferring) glucocorticoid receptors.  相似文献   

11.
Dynamic Aspects of Glucocorticoid Receptors in the Spinal Cord of the Rat   总被引:5,自引:2,他引:3  
In spite of biochemical and autoradiographic evidence for glucocorticoid binding sites in the spinal cord (SC), events occurring after the preliminary step of hormone binding were not studied. In this investigation, we have examined the transformation (activation) of the cytosolic receptor coupled to [3H]dexamethasone (DEX) and the in vivo interaction of adrenal hormone [corticosterone (CORT)] with purified nuclei from the SC, in addition to the CORT content of the SC before and after stress. Binding of [3H]DEX in the SC was 40% lower than in the hippocampus (HC), although the KD values were comparable. Transformation of [3H]DEX-receptor complexes in the cytosol was demonstrated by diethylaminoethane-cellulose chromatography, by DNA-cellulose binding, and by a combined minicolumn procedure including hydroxyapatite in addition to the last two techniques for separation of transformed, nontransformed, and meroreceptor complexes. In all these situations, SC glucocorticoid binding sites behaved similarly to those in the HC. Nuclear uptake of a tracer dose of [3H]CORT was much lower in the SC than in the HC; nuclear retention of CORT was more easily detected by radioimmunoassay after injection of 1 mg of CORT into adrenalectomized rats. Substantial amounts of CORT, which increased in level after stress, were measured in five regions in the SC, with higher concentrations in the cervical regions. These studies suggest that although SC and HC receptors show similar properties in vitro, differences emerged at the level of nuclear uptake in vivo, in that glucocorticoid action in the SC was similar to that in the optic nerve, where receptors seem to be localized mostly in glial cells.  相似文献   

12.
Abstract: Biochemical evidence suggests that neuroglia are responsive to glucocorticoids, yet previous studies of glucocorticoid localization have typically failed to demonstrate significant uptake by neuroglial cells. To further investigate this problem, we measured glycerol-3-phosphate dehydrogenase (GPDH) activity and glucocorticoid receptor binding capacity in normal rat optic nerves and in those undergoing Wallerian (axonal) degeneration. Binding studies were also performed on hippocampus and anterior pituitary for comparison purposes. Normal optic nerve preparations possessed a high level of GPDH activity that was glucocorticoid-inducible and that increased further following axonal degeneration. Antibody inactivation experiments demonstrated the presence of more enzyme molecules in the degenerating nerve preparations. Correlative immunocytochemical studies found GPDH-positive reaction product only in morphologically identified oligodendrocytes, a result that is consistent with the previously reported localization of this enzyme in rat brain. Optic nerve cytosol fractions displayed substantial high-affinity binding of both dexamethasone (DEX) and corticosterone (CORT) that, like GPDH, was elevated approximately twofold in degenerating nerves. Finally, in vivo accumulation of [3H]DEX and [3H]CORT by optic nerve and other myelinated tracts was examined using nuclear isolation and autoradiographic methods. Although neither steroid was found to be heavily concentrated by these tissues in vivo , a small preference for DEX was observed in the nuclear uptake experiments. These results are discussed in terms of the hypothesis that glial cells are targets for glucocorticoid hormones.  相似文献   

13.
Rat brain sections, located at the hippocampal level, were used to study the effect of bilateral adrenalectomy, with or without corticosterone treatment, on the number and affinity of corticosteroid binding sites. Adrenalectomy induces an increase of corticosterone receptor binding sites whereas adrenalectomy followed by in vivo corticosterone treatment produces a 50% decrease of binding site number. Increases and decreases of binding site number were not associated with a significant modification of the affinity for corticosterone. The present data show that in vivo corticosterone modulates its own number of binding sites demonstrated by in vitro binding on brain sections, in a manner which is reminiscent of changes in cytosol receptors demonstrated by conventional biochemical methods. Thus, this in vitro method provides an alternative way to study the plasticity of hippocampal glucocorticoid receptors.  相似文献   

14.
Corticosterone regulation of brain and lymphoid corticosteroid receptors   总被引:1,自引:0,他引:1  
Circulating lymphocytes are often used as a model for brain corticosteroid receptor regulation in clinical disease states, although it is not known if lymphoid receptors are regulated in a similar manner as brain receptors. In the present study the regulation of brain (hippocampus, frontal cortex, hypothalamus and striatum), lymphoid (circulating lymphocytes, spleen and thymus) and pituitary glucocorticoid receptors in response to alterations in circulating corticosterone levels was examined. Seven days following adrenalectomy, type II corticosteroid receptors (i.e. glucocorticoid receptors) were significantly increased in the hippocampus, frontal cortex and hypothalamus, but not in any other tissues. Administration of corticosterone (10 mg/kg) for 7 days significantly decreased type II as well as type I (i.e. mineralocorticoid receptors) receptors in the hippocampus. Type II receptors in the frontal cortex, circulating lymphocytes and spleen were also significantly decreased by chronic corticosterone treatment. Immobilization stress (2 h a day for 5 days) failed to alter receptor density in any of the tissues. These results demonstrate that homologous regulation of corticosteroid receptors by corticosterone does not invariably occur in all tissues and emphasize the complex degree of regulation of these receptors. However, the simultaneous downregulation of both hippocampal and lymphocyte glucocorticoid receptors by corticosterone provides support for the hypothesis that circulating lymphocytes do reflect some aspects of brain glucocorticoid receptor regulation.  相似文献   

15.
16.
High resolution light microscopic autoradiography was used, together with regional surveys and combined acridine orange staining, to define in rat hippocampus cellular and subcellular sites of concentration and retention of 3H dexamethasone and to compare the topographic pattern of labeling with that of 3H corticosterone. Nuclear uptake of 3H dexamethasone in the hippocampus is demonstrated for the first time in vivo. With 3H dexamethasone, strongest nuclear radioactive labeling was observed in certain glial cells throughout the hippocampus, followed by strong nuclear labeling in most neurons in area CA1 and in the adjacent dorsolateral subiculum and weak nuclear labeling in granule cells of the dentate gyrus. Neurons in areas CA2, CA3, CA4, and in the dorsomedial subiculum and indusium griseum showed little or no nuclear labeling after 3H dexamethasone. With 3H corticosterone, strongest nuclear labeling was observed in neurons in area CA2 and in the dorsomedial subiculum and indusium griseum, followed by area CA1, then CA3 and CA4; the dentate gyrus contained scattered strongly labeled cells among cells with intermediate nuclear labeling. At the subcellular level, evidence for both nuclear and cytoplasmic accumulation of label was found. The results indicate that dexamethasone and corticosterone have both nuclear and cytoplasmic binding sites and that particular patterns of target cell distribution exist, characteristic for each agent. This suggests a differential regulation of cellular functions for the two compounds. Corticosterone nuclear binding appears to be more extensive and encompasses regions with dexamethasone binding. Whether in certain of these common regions corticosterone binds to the same receptor as dexamethasone, which seems possible, or to different receptors, remains to be clarified.  相似文献   

17.
The binding of [3H]dexamethasone (DEX) to rat liver nuclei in vitro and in vivo have been compared. In vitro, purified nuclei displayed a single class of specific glucocorticoid binding sites with a dissociation constant (Kd) of approximately 10(-7) M for [3H]DEX at 4 degrees C. The glucocorticoid agonists prednisolone, cortisol, and corticosterone and the antagonists progesterone and cortexolone competed avidly for this site, but the potent glucocorticoid triamcinolone acetonide (TA) competed poorly in vitro. Nuclei isolated from the livers of intact rats contained 1-2 X 10(4) [3H]DEX binding sites/nucleus. Up to 85% of the binding sites were recovered in the nuclear envelope (NE) fraction when NE were prepared either before or after labeling with [3H]DEX in vitro. After adrenalectomy, the specific [3H]DEX binding capacity of both nuclei and NE decreased to 15-20% of control values, indicating sensitivity of the binding sites to hormonal status of the animals. Efforts to restore the binding capacity by administration of exogenous glucocorticoids, however, were unsuccessful. After labeling of rat liver nuclei in vivo by intraperitoneal injection of [3H]DEX or [3H]TA into living animals, the steroid specificity and subnuclear localization of radiolabel were different. Both [3H]TA (which did not bind in vitro) and [3H]DEX became localized to nuclei in a saturable fashion in vivo. With either of these ligands, approximately 20% of the total nuclear radiolabel was recovered in the NE fraction. These results suggest the presence of two separate and distinct binding sites in rat liver nuclei, one which is localized to the NE and binds [3H]DEX (but not [3H]TA) in vitro, and another which is not localized to the NE but binds [3H]DEX and [3H]TA in vivo.  相似文献   

18.
19.
The binding of the rat hepatic dioxin and glucocorticoid receptors to the polyanionic matrices heparin-Sepharose and DNA-cellulose in vitro and to cell nuclei in vivo was studied under various conditions. In a non-liganded and non-activated state both receptors eluted from heparin-Sepharose at a low ionic strength and were not retained on DNA-cellulose. Following ligandation and activation in vitro both receptors showed an increased affinity for heparin-Sepharose and were retained on DNA-cellulose. In analogy to these in vitro data, it was found that a high salt concentration (0.4 M KCl) was required to extract in vivo liganded dioxin receptor from purified nuclear preparations in contrast to that previously reported for non-liganded nuclear receptors. Limited proteolysis of both dioxin and glucocorticoid receptors resulted in molecular species of similar binding properties with regard to DNA-cellulose and heparin-Sepharose. We conclude that, in addition to the dioxin and glucocorticoid receptors showing considerable similarities in their physicochemical properties, they may also share a similar structural organization with regard to functional domains.  相似文献   

20.
Obese Zucker rats appear to lack a circadian rhythm of serum corticosterone and maintain relatively high concentrations throughout the 24-h day. The binding characteristics of glucocorticoid receptors in lean and obese Zucker rats were examined in three tissues suggested to be involved in the feedback inhibition of corticosterone: the anterior pituitary, hypothalamus and hippocampus. Hepatic glucocorticoid receptors were also examined to determine if receptor alterations exist in a peripheral tissue. The dissociation constant (Kd) of glucocorticoid receptors in the anterior pituitary of obese rats was 50% greater than the Kd of receptors derived from lean rats. This suggests a decrease in the affinity of these receptors and could indicate a reduced feedback inhibition of corticosterone at the anterior pituitary. Hepatic glucocorticoid receptors of obese rats also showed an increase (150%) in the Kd of binding and a reduction (40%) in the number of receptors. No difference was observed in the Kd or maximal binding of receptors from the hypothalamus or hippocampus of lean and obese rats. It appears that glucocorticoid receptor alterations exist in obese Zucker rats and that these alterations may affect the drive of the pituitary-adrenal axis and possibly the expression of obesity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号