首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Euglena ignobilis cells in natural puddle water of pH 7.8, when kept at 21 +/- 2 degrees C and under continuous light (intensity of approximately 30 micromol m(-2) s(-1)) in a culture chamber, decreased their speed of movement from > or = 78000 microm/min (after a 12-h cultivation), to 850-1300 microm/min after 18 h. Simultaneously initiated were changes in morphology from the usual elongated motile forms to round motile ones by curving and contraction. Water stress (2 and 4 % agarized puddle water, puddle water with 0.2-1 mol/L NaCl), temperature shock (< or = 10 degrees C, > or = 30 degrees C), darkness and low-light intensity, UV exposure (0.96-2.88 kJ/m2), pH extremes (< or = 6.5 and > or = 10), presence of 'heavy' metals (1-100 ppm Fe, Cu, Zn, Co, Ni, Hg) or organic substances in puddle water (25-1000 ppm 2,4-D, captan, urea, DDT, thiourea), all these factors rapidly (after 5 to 30 min) decreased the speed of the elongated motile form to < or = 300 microm/min, and induced all morphological changes leading to formation of round motile and round nonmotile forms. These features in the alga (i.e. sudden speed reduction and morphological changes from elongate motile to round motile form) may thus be suggested to be used in assessing water quality.  相似文献   

2.
The goal of study was to evaluate DNA damage in rat's renal, liver and brain cells after in vivo exposure to radiofrequency/microwave (Rf/Mw) radiation of cellular phone frequencies range. To determine DNA damage, a single cell gel electrophoresis/comet assay was used. Wistar rats (male, 12 week old, approximate body weight 350 g) (N = 9) were exposed to the carrier frequency of 915 MHz with Global System Mobile signal modulation (GSM), power density of 2.4 W/m2, whole body average specific absorption rate SAR of 0.6 W/kg. The animals were irradiated for one hour/day, seven days/week during two weeks period. The exposure set-up was Gigahertz Transversal Electromagnetic Mode Cell (GTEM--cell). Sham irradiated controls (N = 9) were apart of the study. The body temperature was measured before and after exposure. There were no differences in temperature in between control and treated animals. Comet assay parameters such as the tail length and tail intensity were evaluated. In comparison with tail length in controls (13.5 +/- 0.7 microm), the tail was slightly elongated in brain cells of irradiated animals (14.0 +/- 0.3 microm). The tail length obtained for liver (14.5 +/- 0.3 microm) and kidney (13.9 +/- 0.5 microm) homogenates notably differs in comparison with matched sham controls (13.6 +/- 0.3 microm) and (12.9 +/- 0.9 microm). Differences in tail intensity between control and exposed animals were not significant. The results of this study suggest that, under the experimental conditions applied, repeated 915 MHz irradiation could be a cause of DNA breaks in renal and liver cells, but not affect the cell genome at the higher extent compared to the basal damage.  相似文献   

3.
Navicula grimmei and Nitzschia palea occurring almost equally in a mixed population on department moist garden soil surface when maintained in fresh supernatant (of soil-water medium) at pH 7.0, temperature of 26 +/- 1 degree C and under continuous light (intensity of approximately equal to 30 micromol m(-2) s(-1)) in a culture chamber exhibited a similar cell survival period (of 28 d) and percentage (at the beginning 100 % and mid of survival period 65 %) and stop gliding 11 d prior to cell death (with gliding speed reduced in both from 204-330 microm/min at the beginning to 82.5-99 microm/min at the mid of gliding period) irrespective of their size differences. However, a sharp fall in the cell gliding period, gliding cell percentage and speed occurred at various levels (different from cell survival period and percentage) in both diatoms in a similar extent under water stress (2, 4 and 6 % agarized supernatant, liquid supernatant with 0.2-1.0 mol/L NaCl, blot-dryness of cells for 5-15 min), pH extreme of liquid supernatant (< or =5.0, > or =9.0), temperature extremes in liquid supernatant (< or =15, > or =40 degrees C), UV exposure (0.96-5.76 kJ/m2), lack of all nutrients from the medium (double distilled water), darkness or low light intensities (2 and 10 micromol m(-2) s(-1)), presence of 'heavy' metals (Ni, Cu, Zn, Co, Fe, Hg; 1-200 ppm), organic substances in liquid supernatant (DDT, captan, urea, 2,4-D, 100-2000 ppm; thiourea, 50-1000 ppm). N. palea sway (turn around at either ends) or not only when gliding but independent of cell gliding speed, which decreased continuously under all conditions.  相似文献   

4.
Nociceptin/orphanin FQ (N/OFQ) is the endogenous ligand for the N/OFQ peptide receptor (NOP). N/OFQ causes hypotension and vasodilation, and we aimed to determine the role of histamine in inflammatory microvascular responses to N/OFQ. Male Wistar rats (220-300 g, n = 72) were anesthetized with thiopental (30 mg/kg bolus, 40-90 mg x kg(-1) x h(-1) iv), and the mesentery was prepared for fluorescent intravital microscopy using fluorescein isothiocyanate-conjugated BSA (FITC-BSA, 0.25 ml/100 g iv) or 1 microm fluorescently labeled microspheres. N/OFQ (0.6-60 nmol/kg iv) caused hypotension (SAP, baseline: 154 +/- 11 mmHg, 15 nmol/kg N/OFQ: 112 +/- 10 mmHg, P = 0.009), vasodilation (venules: 23.9 +/- 1.2 microm, 26.7 +/- 1.2 microm, P = 0.006), macromolecular leak (interstitial gray level FITC-BSA: 103.7 +/- 3.4, 123.5 +/- 11.8, P = 0.009), and leukocyte adhesion (2.0 +/- 0.9, 15.2 +/- 0.9/100 microm, P = 0.036). Microsphere velocity also decreased (venules: 1,230 +/- 370 microm/s, P = 0.037), but there were no significant changes in blood flow. Flow cytometry measured a concurrent increase in neutrophil expression of cd11b with N/OFQ vs. controls (Geo mean fluorescence: 4.19 +/- 0.13 vs. 2.06 +/- 0.38, P < 0.05). The NOP antagonist [Nphe(1),Arg(14),Lys(15)]N/OFQ-NH(2) (UFP-101; 60 and 150 nmol/kg iv), H(1) and H(2)antagonists pyrilamine (mepyramine, 1 mg/kg iv) and ranitidine (1 mg/kg iv), and mast cell stabilizer cromolyn (1 mg x kg(-1) x min(-1)) also abolished vasodilation and macromolecular leak to N/OFQ in vivo (P < 0.05), but did not affect hypotension. Isolated mesenteric arteries (approximately 200 microm, n = 25) preconstricted with U-46619 were also mounted on a pressure myograph (60 mmHg), and both intraluminally and extraluminally administered N/OFQ (10(-5) M) caused dilation, inhibited by pyrilamine in the extraluminal but not the intraluminal (control: -6.9 +/- 3.8%; N/OFQ: 32.6 +/- 8.4%; pyrilamine: 31.5 +/- 6.8%, n = 18, P < 0.05) experiments. We conclude that, in vivo, mesenteric microvascular dilation and macromolecular leak occur via N/OFQ-NOP-mediated release of histamine from mast cells. Therefore, N/OFQ-NOP has an important role in microvascular inflammation, and this may be targeted during disease, particularly as we have proven that UFP-101 is an effective antagonist of microvascular responses in vivo.  相似文献   

5.
Incomplete understanding of the water transport parameters (reference membrane permeability, L(pg), and activation energy, E(Lp)) during freezing in the presence of extracellular ice and cryoprotective agents (CPAs) is one of the main limiting factors in reconciling the difference between the numerically predicted value and the experimentally determined optimal rates of freezing in boar (and in general mammalian) gametes. In the present study, a shape-independent differential scanning calorimeter (DSC) technique was used to measure the water transport during freezing of boar spermatozoa. Water transport data during freezing of boar sperm cell suspensions were obtained at cooling rates of 5 and 20 degrees C/min in the presence of extracellular ice and 6% (v/v) glycerol. Using previously published values, the boar sperm cell was modeled as a cylinder of length 80.1 microm and a radius of 0.31 microm with an osmotically inactive cell volume, V(b), of 0.6 V(o), where V(o) is the isotonic cell volume. By fitting a model of water transport to the experimentally obtained data, the best-fit water transport parameters (L(pg) and E(Lp)) were determined. The "combined-best-fit" parameters at 5 and 20 degrees C/min for boar spermatozoa in the presence of extracellular ice are: L(pg) = 3.6 x 10(-15) m(3)/N. s (0.02 microm/min-atm) and E(Lp) = 122.5 kJ/mole (29.3 kcal/mole) (R(2) = 0.99); and the corresponding parameters in the presence of extracellular ice and glycerol are: L(pg)[cpa] = 0.90 x 10(-15) m(3)/N. s (0.005 microm/min-atm) and E(Lp)[cpa] = 75.7 kJ/mole (18.1 kcal/mole) (R(2) = 0.99). The water transport parameters obtained in the present study are significantly different from previously published parameters for boar and other mammalian spermatozoa obtained at suprazero temperatures and at subzero temperatures in the absence of extracellular ice. The theoretically predicted optimal rates of freezing using the new parameters ( approximately 30 degrees C/min) are in close agreement with previously published but experimentally determined optimal cooling rates. This analysis reconciles a long-standing difference between theoretically predicted and experimentally determined optimal cooling rates for boar spermatozoa.  相似文献   

6.
Locomotory speed correlates with muscle mass (determining force and stride rate), limb length (stride rate and distance), and laterally compressed body trunk (force and stride distance). To delineate generalization of the locomotory-morphometric relationships specifically in anuran amphibians, we investigated take-off speed and the three morphological variables from seven species, Rana nigromaculata, R. rugosa, and Bombina orientalis, Eleuthrodectilus fitzingeri, E. diastema, Bufo typhonius, Colostethus flotator and Physalaemus pustulosus. The fastest jumper E. fitzingeri (3.41 m s(-1)) showed 2.49-fold greater speed than the slowest B. typhonius. Take-off speed correlated well with both thigh muscle mass relative to body mass and hindlimb length relative to snout-vent length (HL/SVL), but poorly correlated with the inter-ilial width relative to SVL. The best morphological predictor was HL/SVL (speed=-3.28+3.916 HL/SVL, r=0.968, P<0.0001), suggesting that anuran take-off speed is portrayed well with high gear and acceleration distance characterized by hindlimbs.  相似文献   

7.
All 3-10-d-old Oscillatoria salina filaments glide with the speed of 323-330 microm/min (BG 11 medium, pH 7.5, 21 +/- 2 degrees C, continuous light intensity of approximately 30 micromol m(-2) s(-1)) in a culture chamber. However, a time bound progressive decrease in gliding speed and in percentage of gliding filaments occurred, depending upon the severity of different stress factors studied, viz. water stress (2-8% agarized media, liquid media with 0.2-1 mol/L NaCl, blot-dryness of filaments for > or = 5 min), temperature shock (5, 40 degrees C for > or = 5 min; 35 degrees C for > or = 15 min), darkness and low light intensity (2, 10 micromol m(-2) s(-1)), UV exposure (0.96-3.84 kJ/m2), pH extremes (< or = 6.5 and > or = 9.5), lack of all nutrients from liquid medium (double distilled water), presence of 'heavy' metals (1, 25 ppm Fe, Cu, Zn, Ni, Co, Hg) or organic substances in liquid medium (25, 250 ppm 2,4-D, captan, urea, DDT, thiourea). This feature of the alga (i.e. reduction in speed and percentage of gliding filaments depending upon severity of stress conditions) may thus be suggested to be used in assessing water quality.  相似文献   

8.
The use of cryosurgery in the treatment of uterine fibroids is emerging as a possible treatment modality. The two known mechanisms of direct cell injury during the tissue freezing process are linked to intracellular ice formation and cellular dehydration. These processes have not been quantified within uterine fibroid tumor tissue. This study reports the use of a combination of freeze-substitution microscopy and differential scanning calorimetry (DSC) to quantify freeze-induced dehydration within uterine fibroid tumor tissue. Stereological analysis of histological tumor sections was used to obtain the initial cellular volume (V(o)) or the Krogh model dimensions (deltaX, the distance between the microvascular channels = 15.5 microm, r(vo), the initial radius of the extracellular space = 4.8 micro m, and L, the axial length of the Krogh cylinder = 19.1 microm), the interstitial volume ( approximately 23%), and the vascular volume ( approximately 7%) of the fibroid tumor tissue. A Boyle-van't Hoff plot was then constructed by examining freeze-substituted micrographs of "equilibrium"-cooled tissue slices to obtain the osmotically inactive cell volume, V(b) = 0.47V(o). The high interstitial volume precludes the use of freeze-substitution microscopy data to quantify freeze-induced dehydration. Therefore, a DSC technique, which does not suffer from this artifact, was used to obtain the water transport data. A model of water transport was fit to the calorimetric data at 5 and 20 degrees C/min to obtain the "combined best fit" membrane permeability parameters of the embedded fibroid tumor cells, assuming either a Krogh cylinder geometry, L(pg) = 0.92 x 10(-13) m(3)/Ns (0.55 microm/min atm) and E(Lp) = 129.3 kJ/mol (30.9 kcal/mol), or a spherical cell geometry (cell diameter = 18.3 microm), L(pg) = 0.45 x 10(-13) m(3)/Ns (0.27 microm/min atm) and E(Lp) = 110.5 kJ/mol (26.4 kcal/mol). In addition, numerical simulations were performed to generate conservative estimates, in the absence of ice nucleation between -5 and -30 degrees C, of intracellular ice volume in the tumor tissue at various cooling rates typical of those experienced during cryosurgery (< or =100 degrees C/min). With this assumption, the Krogh model simulations showed that the fibroid tumor tissue cells cooled at rates < or = 50 degrees C/min are essentially dehydrated; however, at rates >50 degrees C/min the amount of water trapped within the tissue cells increases rapidly with increasing cooling rate, suggesting the formation of intracellular ice.  相似文献   

9.
The purpose of this study was to investigate the discriminative ability of rebound jump squat force-time and power-time measures in differentiating speed performance and competition level in elite and elite junior rugby union players. Forty professional rugby union players performed 3 rebound jump squats with an external load of 40 kg from which a number of force-time and power-time variables were acquired and analyzed. Additionally, players performed 3 sprints over 30 m with timing gates at 5, 10, and 30 m. Significant differences (p < 0.05) between the fastest 20 and slowest 20 athletes, and elite (n = 25) and elite junior (n = 15) players in speed and force-time and power-time variables were determined using independent sample t-tests. The fastest and slowest sprinters over 10 m differed in peak power (PP) expressed relative to body weight. Over 30 m, there were significant differences in peak velocity and relative PP and rate of power development. There was no significant difference in speed over any distance between elite and elite junior rugby union players; however, a number of force and power variables including peak force, PP, force at 100 milliseconds from minimum force, and force and impulse 200 milliseconds from minimum force were significantly (p < 0.05) different between playing levels. Although only power values expressed relative to body weight were able to differentiate speed performance, both absolute and relative force and power values differentiated playing levels in professional rugby union players. For speed development in rugby union players, training strategies should aim to optimize the athlete's power to weight ratio, and lower body resistance training should focus on movement velocity. For player development to transition elite junior players to elite status, adding lean mass is likely to be most beneficial.  相似文献   

10.
In the present study, a shape-independent differential scanning calorimeter (DSC) technique was used to measure the dehydration response during freezing of sperm cells from diploid and tetraploid Pacific oysters, Crassostrea gigas. This represents the first application of the DSC technique to sperm cells from nonmammalian species. Volumetric shrinkage during freezing of oyster sperm cell suspensions was obtained at cooling rates of 5 and 20 degrees C/min in the presence of extracellular ice and 8% (v/v) concentration of dimethyl sulfoxide (DMSO), a commonly used cryoprotective agent (CPA). Using previously published data, sperm cells from diploid oysters were modeled as a two-compartment "ball-on-stick" model with a "ball" 1.66 microm in diameter and a "stick" 41 microm in length and 0.14 microm wide. Similarly, sperm cells of tetraploid oysters were modeled with a "ball" 2.14 microm in diameter and a "stick" 53 microm in length and 0.17 microm wide. Sperm cells of both ploidy levels were assumed to have an osmotically inactive cell volume, Vb, of 0.6 Vo, where Vo is the isotonic (or initial) cell volume. By fitting a model of water transport to the experimentally obtained volumetric shrinkage data, the best-fit membrane permeability parameters (Lpg and ELp) were determined. The combined-best-fit membrane permeability parameters at 5 and 20 degrees C/min for haploid sperm cells (or cells from diploid Pacific oysters) in the absence of CPAs were: Lpg = 0.30 x 10(-15) m(3)/Ns (0.0017 microm/min-atm) and ELp = 41.0 kJ/mole (9.8 kcal/mole). The corresponding parameters in the presence of 8% DMSO were: Lpg[cpa] = 0.27 x 10(-15) m(3)/Ns (0.0015 microm/min-atm) and ELp[cpa] = 38.0 kJ/mole (9.1 kcal/mole). Similarly, the combined-best-fit membrane permeability parameters at 5 and 20 degrees C/min for diploid sperm cells (or cells from tetraploid Pacific oysters) in the absence of CPAs were: Lpg = 0.34 x 10(-15) m(3)/Ns (0.0019 microm/min-atm) and ELp = 29.7 kJ/mole (7.1 kcal/mole). The corresponding parameters in the presence of 8% DMSO were: Lpg[cpa] = 0.34 x 10(-15) m(3)/Ns (0.0019 microm/min-atm) and ELp[cpa] = 37.6 kJ/mole (9.0 kcal/mole). The parameters obtained in this study suggest that optimal rates of cooling for Pacific oyster sperm cells range from 40 to 70 degrees C/min. These theoretical cooling rates are in close conformity with empirically determined optimal rates of cooling sperm cells from Pacific oysters, C. gigas.  相似文献   

11.
In humans, multiparity (repeated pregnancy) is associated with increased risk of cardiovascular disease. In rats, multiparity increases the pressor response to phenylephrine and to acute stress, due in part to changes in tone of the splanchnic arterial vasculature. Given that the venous system also changes during pregnancy, we studied the effects of multiparity on venous tone and compliance. Cardiovascular responses to volume loading (2 ml/100 g body wt), and mean circulatory filling pressure (MCFP, an index of venomotor tone) were measured in conscious, repeatedly bred (RB), and age-matched virgin rats. In addition, passive compliance and venous reactivity of isolated mesenteric veins were measured by pressure myography. There was a greater increase in mean arterial pressure after volume loading in RB rats (+7.2 +/- 2.5 mmHg, n = 8) than virgin rats (-1.4 +/- 1.7 mmHg, n = 7) (P < 0.05). The increase in MCFP in response to norepinephrine (NE) was also greater in RB rats [half maximal effective dose (ED(50)) 3.1 +/- 0.5 nmol.kg(-1).min(-1), n = 6] than virgins (ED(50): 12.1 +/- 2.7 nmol.kg(-1).min(-1), n = 6) (P < 0.05). Pressure-induced changes in passive diameter were lower in isolated mesenteric veins from RB rats (29.3 +/- 1.8 microm/mmHg, n = 6) than from virgins (36.9 +/- 1.3 microm/mmHg, n = 6) (P < 0.05). Venous reactivity to NE in isolated veins was also greater in RB rats (EC(50): 2.68 +/- 0.37x10(-8) M, n = 5) than virgins (EC(50): 4.67 +/- 0.93 x 10(-8) M, n = 8). We conclude that repeated pregnancy induces a long-term reduction in splanchnic venous compliance and augments splanchnic venous reactivity and sympathetic tonic control of total body venous tone. This compromises the ability of the capacitance (venous) system to accommodate volume overloads and to buffer changes in cardiac preload.  相似文献   

12.
The purpose of this investigation was to examine the combined effects of resistance and sprint/plyometric training with or without the Meridian Elyte athletic shoe on muscular performance in women. Fourteen resistance-trained women were randomly assigned to one of 2 training groups: (a) an athletic shoe (N = 6) (AS) group or (b) the Meridian Elyte (N = 8) (MS) group. Training was performed for 10 weeks and consisted of resistance training for 2 days per week and 2 days per week of sprint/plyometric training. Linear periodized resistance training consisted of 5 exercises per workout (4 lower body, 1 upper body) for 3 sets of 3-12 repetition maximum (RM). Sprint/plyometric training consisted of 5-7 exercises per workout (4-5 plyometric exercises, 40-yd and 60-yd sprints) for 3-6 sets with gradually increasing volume (8 weeks) followed by a 2-week taper phase. Assessments for 1RM squat and bench press, vertical jump, broad jump, sprint speed, and body composition were performed before and following the 10-week training period. Significant increases were observed in both AS and MS groups in 1RM squat (12.0 vs. 14.6 kg), bench press (6.8 vs. 7.4 kg), vertical jump height (3.3 vs. 2.3 cm), and broad jump (17.8 vs. 15.2 cm). Similar decreases in peak 20-, 40-, and 60-m sprint times were observed in both groups (20 m: 0.14 vs. 0.11 seconds; 40 m: 0.29 vs. 0.34 seconds; 60 m: 0.45 vs. 0.46 seconds in AS and MS groups, respectively). However, when sprint endurance (the difference between the fastest and slowest sprint trials) was analyzed, there was a significantly greater improvement at 60 m in the MS group. These results indicated that similar improvements in peak sprint speed and jumping ability were observed following 10 weeks of training with either shoe. However, high-intensity sprint endurance at 60 m increased to a greater extent during training with the Meridian Elyte athletic shoe.  相似文献   

13.
Successful cryopreservation of oocytes of the rhesus monkey (Macaca mulatta) would facilitate the use of this valuable animal model in research on reproduction and development, while providing a stepping stone towards human oocyte cryopreservation and the conservation of endangered primate species. To enable rational design of cryopreservation techniques for rhesus monkey oocytes, we have determined their osmotic and permeability characteristics in the presence of dimethylsulfoxide (DMSO), ethylene glycol (EG), and propylene glycol (PROH), three widely used cryoprotectants. Using nonlinear regression to fit a membrane transport model to measurements of dynamic cell volume changes, we estimated the hydraulic conductivity (L(p)) and cryoprotectant permeability (P(s)) of mature and immature oocytes at 23.5 degrees C. Mature oocyte membranes were most permeable to PROH (P(s) = 0.56 +/- 0.05 microm/sec) and least permeable to DMSO (P(s) = 0.24 +/- 0.02 microm/sec); the permeability to EG was 0.34 +/- 0.07 microm/sec. In the absence of penetrating cryoprotectants, mature oocytes had L(p) = 0.55 +/- 0.05 microm/min/atm, whereas the hydraulic conductivity increased to 1.01 +/- 0.10, 0.61 +/- 0.07, or 0.86 +/- 0.06 microm/min/atm when mature oocytes were exposed to DMSO, EG, or PROH, respectively. The osmotically inactive volume (V(b)) in mature oocytes was 19.7 +/- 2.4% of the isotonic cell volume. The only statistically significant difference between mature and immature oocytes was a larger hydraulic conductivity in immature oocytes that were exposed to DMSO. The biophysical parameters measured in this study were used to demonstrate the design of cryoprotectant loading and dilution protocols by computer-aided optimization.  相似文献   

14.
Optimization of equine sperm cryopreservation protocols requires an understanding of the water permeability characteristics and volumetric shrinkage response during freezing. A cell-shape-independent differential scanning calorimeter (DSC) technique was used to measure the volumetric shrinkage during freezing of equine sperm suspensions at cooling rates of 5 degrees C/min and 20 degrees C/min in the presence and absence of cryoprotective agents (CPAs), i.e., in the Kenney extender and in the lactose-EDTA extender, respectively. The equine sperm was modeled as a cylinder of length 36.5 microm and a radius of 0.66 microm with an osmotically inactive cell volume (V(b)) of 0.6V(o), where V(o) is the isotonic cell volume. Sperm samples were collected using water-insoluble Vaseline in the artificial vagina and slow cooled at < or = 0.3 degrees C/min in an Equitainer-I from 37 degrees C to 4 degrees C. By fitting a model of water transport to the experimentally obtained DSC volumetric shrinkage data, the best-fit membrane permeability parameters (L(pg) and E(Lp)) were determined. The combined best-fit parameters of water transport (at both 5 degrees C/min and 20 degrees C/min) in Kenney extender (absence of CPAs) are L(pg) = 0.02 microm min(-1) atm(-1) and E(Lp) = 32.7 kcal/mol with a goodness-of-fit parameter R(2) = 0.96, and the best-fit parameters in the lactose-EDTA extender (the CPA medium) are L(pg)[cpa] = 0.008 microm min(-1) atm(-1) and E(Lp)[cpa] = 12.1 kcal/mol with R(2) = 0.97. These parameters suggest that the optimal cooling rate for equine sperm is approximately 29 degrees C/min and is approximately 60 degrees C/min in the Kenney extender and in the lactose-EDTA extender. These rates are predicted assuming no intracellular ice formation occurs and that the approximately 5% of initial osmotically active water volume trapped inside the cells at -30 degrees C will form innocuous ice on further cooling. Numerical simulations also showed that in the lactose-EDTA extender, equine sperm trap approximately 3.4% and approximately 7.1% of the intracellular water when cooled at 20 degrees C/min and 100 degrees C/min, respectively. As an independent test of this prediction, the percentage of viable equine sperm was obtained after freezing at 6 different cooling rates (2 degrees C/min, 20 degrees C/min, 50 degrees C/min, 70 degrees C/min, 130 degrees C/min, and 200 degrees C/min) to -80 degrees C in the CPA medium. Sperm viability was essentially constant between 20 degrees C/min and 130 degrees C/min.  相似文献   

15.
The specific role of loops and/or linear segments in pleural diaphragmatic submesothelial lymphatics was investigated in seven anesthetized, paralyzed, and mechanically ventilated rats. Lymphatic loops lay peripherally above the diaphragmatic muscular plane, whereas linear vessels run over both the muscular and central tendineous regions. Lymph vessel diameter, measured by automatic software analysis, was significantly greater (P < 0.01) in linear vessels [103.4 +/- 8.5 microm (mean +/- SE), n = 18] than in loops (54.6 +/- 3.3 microm, n = 21). Conversely, the geometric mean of intraluminal flow velocity, obtained from the speed of distribution of a bolus of fluorescent dextrans injected into the vessel, was lower (P < 0.01) in linear vessels (26.3 +/- 1.4 microm/s) compared with loops (51.3 +/- 3.2 microm/s). Lymph flow, calculated as the product of flow velocity by vessel cross-sectional area, was similar in linear vessels and in individual vessels of a loop, averaging 8.6 +/- 1.6 nl/min. Flow was always directed from the diaphragm periphery toward the medial tendineous region in linear vessels, whereas it was more complex and evidently controlled by intraluminal unidirectional valves in loops. The results suggest that loops might be the preferential site of lymph formation, whereas linear vessels would be mainly involved in the progression of newly formed lymph toward deeper collecting diaphragmatic ducts. Within the same hierarchic order of diaphragmatic lymphatic vessels, the spatial organization and geometrical arrangement of the submesothelial lacunae seem to be finalized at exploiting the alternate contraction/relaxation phases of diaphragmatic muscle fibers to optimize fluid removal from serosal cavities.  相似文献   

16.
To study the spinning condition of natural biopolymer silk, the silk fibers were directly acquired from Bombyx mori silkworm, N140 x C140 by a simple artificial forcibly silking method at the speed of 60, 120, 180 and 240 cm min(-1), respectively and its microstructure and physical properties were evaluated. The fine silk fibers (about 8 microm) were obtained at faster spinning speed, 240 cm min(-1). The tensile properties of silk fibers were remarkably increased with raising the forcibly spinning speeds. The beta-sheet structure contents of silk fibers obtained at higher speed were considerably increased. The fibers obtained by different spinning speeds exhibited a fairly similar X-ray crystallinity, while the degree of molecular orientation increased with decreasing the fiber diameter. The fine silk fibers obtained at higher speed (240 cm min(-1)) exhibited a slightly higher thermal stability, as shown by the upward shift of differential scanning calorimetry (DSC) decomposition temperature.  相似文献   

17.
Although growth plate response to mechanical stress has been increasingly studied, our understanding of mechanical modulation of neonatal growth plate is incomplete, especially concerning biochemical changes. This study was designed to explore the cellular and biochemical responses of the cranial base growth plate (CBGP) explant upon cyclic loading. The growth plate with subchondral bone was aseptically isolated from each of 24 neonatal rabbits and fixated in an organ culture system. Cyclic loading was applied to growth plate explants at 200 mN and 1 Hz for 60 min (N=12), whereas control explants were immersed in organ culture for 60 min without mechanical loading (N=12). Computerized image analysis revealed that cyclic loading induced significantly more proliferating chondrocytes than unloaded controls (p<0.001), as well as significantly higher growth plate height at 856+/-30 microm than the unloaded controls at 830+/-36 microm (p<0.05). Immunoblotting with monoclonal antibodies (mAb) disclosed that the average mAb binding area for chondroitin sulfate was significantly higher in the loaded specimens than the unloaded controls at (p<0.001). The average mAb binding area for keratan sulfate was also significantly higher in the loaded specimens than the unloaded controls (p<0.01). Biochemical analysis showed that the average total hyaluronan content of loaded specimens at 0.25+/-0.06 microg/microg DNA was significantly higher than the unloaded controls at 0.09+/-0.05 microg/microg DNA (p<0.01). Taken together, these data suggest that brief doses of cyclic, intermittent forces activate cellular and molecular responses in the CBGP ex vivo. Whether hyaluronan-mediated pathway is involved in the biological responses of growth plate to mechanical loading warrants additional investigations.  相似文献   

18.
Spirochetes are unique among swimming bacteria in terms of their lack of external flagella. They actively move in viscous environments, and, surprisingly, the swimming speed of the spirochete Leptospira interrogans has been reported to increase with viscosity in methylcellulose solutions. Many researchers consider that the presence of a loose, quasi-rigid network formed by linear polymer molecules is related to this strange phenomenon. One of the authors has proposed a theory that expresses this idea mathematically and successfully explains the speed properties of an externally flagellated bacterium in viscous environments. This theory predicts that the ratio of swimming speed to wave frequency (v/f ratio, motion efficiency in a sense) increases with viscosity. In this study, we demonstrated a new method of measuring the swimming speed and wave frequency of spirochetes and the motion characteristics of a swine intestinal spirochete, Brachyspira pilosicoli strain NK1f, measured in viscous environments. Several sets of swimming speed and wave frequency data were simultaneously derived from an animation obtained by our method. The v/f ratio of NK1f displayed a tendency to increase with increasing viscosity, suggesting the validity of the above-mentioned theory. Improvement of motion efficiency is at least one of the factors that maintain spirochete motility in viscous environments.  相似文献   

19.
The available data on maximal running speeds of mammals are presented, and the relationship between speed and body mass is considered. For all mammals ( n = 106), maximal running speed scales as (body mass)0–17; however, the largest mammals are not the fastest, and an optimal size with regards to running ability is suggested ( 119 kg). Maximal running speeds are, on the average, somewhat more than twice maximal aerobic speeds.
Within the Artiodactyla, Carnivora or Rodentia, maximal running speed is mass independent, in agreement with theoretical expectations for geometrically similar animals (Thompson, 1917; Hill, 1950). McMahon's (1975 b ) model for elastic similarity is therefore not supported by the available data on maximal running speeds, and there appears to be no necessary correspondence between scaling of limb bone proportions and running ability.  相似文献   

20.
A sensitive method for the determination of Cloretazine (VNP40101M) and its metabolite (VNP4090CE) with an internal standard (ISTD) in human plasma was developed using high-performance liquid chromatographic separation with tandem mass spectrometric detection. Acidified plasma samples (500 microL) were prepared using solid phase extraction (SPE) columns, and 25 microL of the reconstituted sample was injected onto an Ascentis C18 HPLC column (3 microm, 5 cmx2.1 mm) with an isocratic mobile phase. Analytes were detected with an API-3000 LC-MS/MS System at unit (Q1) and low (Q3) resolution in negative multiple reaction monitoring mode: m/z 249.0 (precursor ion) to m/z 114.9 (product ion) for both Cloretazine (at 3.64 min) and VNP4090CE (at 2.91 min), and m/z 253.0 (precursor ion) to m/z 116.9 (product ion) for the ISTD. The mean recovery for Cloretazine (VNP40101M) and its metabolite (VNP4090CE) was greater than 87% with a lower limit of quantification of 1.0 ng/mL for Cloretazine (S/N=9.7, CV相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号