共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Ligation of endogenous tRNA 3' half molecules to their corresponding 5' halves via 2'-phosphomonoester,3',5'-phosphodiester bonds in extracts of Chlamydomonas 总被引:5,自引:5,他引:5 下载免费PDF全文
tRNA preparations from Chlamydomonas and wheat germ contain small amounts of tRNA 5' halves and corresponding 3' halves. Incubation of cell-free extracts from the two sources with [γ-32P]ATP yielded 5'-32P-labeled tRNA 3' halves which were joined to their corresponding 5' counterparts to form mature tRNA containing 2'-phosphomonoester,3', 5'-phosphodiester bonds. tRNA 3' halves labelled with T4 kinase were purified, sequenced and also joined to their 5' counterparts. It is proposed that these tRNA halves may be intermediates of the tRNA splicing process, and that the RNA kinase and ligase activities observed here are part of the tRNA splicing complex. 相似文献
3.
The genes for 22 tRNA species from Acholeplasma laidawii, belonging to the class Mollicutes (Mycoplasmas), have been cloned and sequenced. Sixteen genes are organized in 3 clusters consisting of eleven, three and two tRNA genes, respectively, and the other 6 genes exist as a single gene. The arrangement of tRNA genes in the 11-gene, the 3-gene and the 2-gene clusters reveals extensive similarity to several parts of the 21-tRNA or 16-tRNA gene cluster in Bacillus subtilis. The 11-gene cluster is also similar to the tRNA gene clusters found in other mycoplasma species, the 9-tRNA gene cluster in M.capricolum and in M.mycoides, and the 10-tRNA gene cluster in Spiroplasma meliferm. The results suggest that the tRNA genes in mycoplasmas have evolved from large tRNA gene clusters in the ancestral Gram-positive bacterial genome common to mycoplasmas and B.subtilis. The anticodon sequences including base modifications of 15 tRNA species from A.laidlawii were determined. The anticodon composition and codon-recognition patterns of A.laidlawii resemble those of Bacillus subtilis rather than those of other mycoplasma species. 相似文献
4.
5.
Translational efficiency is controlled by tRNAs and other genome-encoded mechanisms. In organelles, translational processes are dramatically altered because of genome shrinkage and horizontal acquisition of gene products. The influence of genome reduction on translation in endosymbionts is largely unknown. Here, we investigate whether divergent lineages of Buchnera aphidicola, the reduced-genome bacterial endosymbiont of aphids, possess altered translational features compared with their free-living relative, Escherichia coli. Our RNAseq data support the hypothesis that translation is less optimal in Buchnera than in E. coli. We observed a specific, convergent, pattern of tRNA loss in Buchnera and other endosymbionts that have undergone genome shrinkage. Furthermore, many modified nucleoside pathways that are important for E. coli translation are lost in Buchnera. Additionally, Buchnera’s A + T compositional bias has resulted in reduced tRNA thermostability, and may have altered aminoacyl-tRNA synthetase recognition sites. Buchnera tRNA genes are shorter than those of E. coli, as the majority no longer has a genome-encoded 3'' CCA; however, all the expressed, shortened tRNAs undergo 3′ CCA maturation. Moreover, expression of tRNA isoacceptors was not correlated with the usage of corresponding codons. Overall, our data suggest that endosymbiont genome evolution alters tRNA characteristics that are known to influence translational efficiency in their free-living relative. 相似文献
6.
7.
8.
9.
The statistical analysis of 5' flanking regions of eukaryotic tRNA genes was done. The analysis of nucleotides in the sequence of fungi and invertebrates showed a high content of A and T in the flanking regions versus coding regions where G and C dominate. In contrast to these results in vertebrates sequences the preferences of any nucleotide in flanking regions was not observed. The analysis of tetrads showed five conserved signals: TTGT, (T/A)(T/A)ATA, A(C/T)(C/A)A in the tRNA genes of fungi, (A/T)TGA of invertebrates and (A/T)GAG of vertebrates. The analysis of 3' flanking regions did not show any conserved signals except well known poly-T tracks. 相似文献
10.
11.
Zhi-Peng Fang Meng Wang Zhi-Rong Ruan Min Tan Ru-Juan Liu Mi Zhou Xiao-Long Zhou En-Duo Wang 《Nucleic acids research》2014,42(8):5109-5124
Leucyl-tRNA (transfer RNA) synthetase (LeuRS) is a multi-domain enzyme, which is divided into bacterial and archaeal/eukaryotic types. In general, one specific LeuRS, the domains of which are of the same type, exists in a single cell compartment. However, some species, such as the haloalkaliphile Natrialba magadii, encode two cytoplasmic LeuRSs, NmLeuRS1 and NmLeuRS2, which are the first examples of naturally occurring chimeric enzymes with different domains of bacterial and archaeal types. Furthermore, N. magadii encodes typical archaeal tRNALeus. The tRNA recognition mode, aminoacylation and translational quality control activities of these two LeuRSs are interesting questions to be addressed. Herein, active NmLeuRS1 and NmLeuRS2 were successfully purified after gene expression in Escherichia coli. Under the optimized aminoacylation conditions, we discovered that they distinguished cognate NmtRNALeu in the archaeal mode, whereas the N-terminal region was of the bacterial type. However, NmLeuRS1 exhibited much higher aminoacylation and editing activity than NmLeuRS2, suggesting that NmLeuRS1 is more likely to generate Leu-tRNALeu for protein biosynthesis. Moreover, using NmLeuRS1 as a model, we demonstrated misactivation of several non-cognate amino acids, and accuracy of protein synthesis was maintained mainly via post-transfer editing. This comprehensive study of the NmLeuRS/tRNALeu system provides a detailed understanding of the coevolution of aminoacyl-tRNA synthetases and tRNA. 相似文献
12.
We have previously reported the ability of a cloned tRNAMeti gene (pt145) to bind tRNAMeti specifically [5]. In this paper, we show that a pBR322 plasmid containing the tRNAAsn gene of Xenopus (pt38 - donated by Stuart Clarkson) will specifically bind to mouse tRNAAsn when total mouse tRNA, extracted from uninduced Friend erythroleukemia cells, is hybridized to the gene probe. One-dimensional electrophoresis of the hybridizing tRNA in 20% polyacrylamide reveals one major band and several small-molecular-weight minor bands. The hybridizing tRNA has been identified as tRNAAsn by partial RNA sequencing and the detection of both the Q base and t6A. The steady-state concentration of tRNAAsn in the uninduced Friend cell was determined by hybridizing tRNA labeled in vitro to pt38. 1% of the total tRNA hybridized, representing 0.017 pg tRNAAsn/cell. The fraction of newly synthesized tRNA representing tRNAAsn or tRNAMeti was also determined by hybridizing tRNA labeled in vivo to either pt38 or pt145, respectively. 0.96% and 0.85% of the tRNA hybridized to pt38 and pt145, respectively. 相似文献
13.
Mutation and selection on the anticodon of tRNA genes in vertebrate mitochondrial genomes 总被引:1,自引:0,他引:1
The H-strand of vertebrate mitochondrial DNA is left single-stranded for hours during the slow DNA replication. This facilitates C-->U mutations on the H-strand (and consequently G-->A mutations on the L-strand) via spontaneous deamination which occurs much more frequently on single-stranded than on double-stranded DNA. For the 12 coding sequences (CDS) collinear with the L-strand, NNY synonymous codon families (where N stands for any of the four nucleotides and Y stands for either C or U) end mostly with C, and NNR and NNN codon families (where R stands for either A or G) end mostly with A. For the lone ND6 gene on the other strand, the codon bias is the opposite, with NNY codon families ending mostly with U and NNR and NNN codon families ending mostly with G. These patterns are consistent with the strand-specific mutation bias. The codon usage biased towards C-ending and A-ending in the 12 CDS sequences affects the codon-anticodon adaptation. The wobble site of the anticodon is always G for NNY codon families dominated by C-ending codons and U for NNR and NNN codon families dominated by A-ending codons. The only, but consistent, exception is the anticodon of tRNA-Met which consistently has a 5'-CAU-3' anticodon base-pairing with the AUG codon (the translation initiation codon) instead of the more frequent AUA. The observed CAU anticodon (matching AUG) would increase the rate of translation initiation but would reduce the rate of peptide elongation because most methionine codons are AUA, whereas the unobserved UAU anticodon (matching AUA) would increase the elongation rate at the cost of translation initiation rate. The consistent CAU anticodon in tRNA-Met suggests the importance of maximizing the rate of translation initiation. 相似文献
14.
This paper focuses on several aspects of the specificity of mutants of Escherichia coli glutaminyl-tRNA synthetase (GlnRS) and tRNAGln. Temperature-sensitive mutants located in glnS, the gene for GlnRS, have been described previously. The mutations responsible for the temperature-sensitive phenotype were analyzed, and pseudorevertants of these mutants isolated and characterized. The nature of these mutations is discussed in terms of their location in the three-dimensional structure of the tRNAGln: GlnRS complex. In order to characterize the specificity of the aminoacylation reaction, mutant tRNAGln species were synthesized with either a 2′-deoxy AMP or 3′-deoxy AMP as their 3′-terminal nucleotide. Subsequent assays for aminoacylation and ATP/PPi exchange activity established the esterification of glutamine to the 2′-hydroxyl of the terminal adenosine: there is no glutaminylation of the 3′-OH group. This correlates with the classification of GlnRS as a class I aminoacyl-tRNA synthetase. Mutations in tRNAGln are discussed which affect the recognition of GlnRS and the current concept of glutamine identity in E coli is reviewed. 相似文献
15.
Previous in silico analysis of selenoprotein genes in Archaea revealed that the selenocysteine insertion (SECIS) motif necessary to recode UGA with selenocysteine was not adjacent to the UGA codon as is found in Bacteria. Rather, paralogous stem-loop structures are located in the 3' untranslated region (3' UTR), reminiscent of the situation in Eukarya. To assess the function of such putative SECIS elements, the Methanococcus jannaschii MJ0029 (fruA, which encodes the A subunit of the coenzyme F420-reducing hydrogenase) mRNA was mapped in vivo and probed enzymatically in vitro. It was shown that the SECIS element is indeed transcribed as part of the respective mRNA and that its secondary structure corresponds to that predicted by RNA folding programs. Its ability to direct selenocysteine insertion in vivo was demonstrated by the heterologous expression of MJ0029 in Methanococcus maripaludis, resulting in the synthesis of an additional selenoprotein, as analysed by 75Se labelling. The selective advantage of moving the SECIS element in the untranslated region may confer the ability to insert more than one selenocysteine into a single polypeptide. Evidence for this assumption was provided by the finding that the M. maripaludis genome contains an open reading frame with two in frame TGA codons, followed by a stem-loop structure in the 3' UTR of the mRNA that corresponds to the archaeal SECIS element. 相似文献
16.
17.
18.
Wei T Zhang S Zhu S Sheng D Ni J Shen Y 《Biochemical and biophysical research communications》2008,367(3):523-529
NurA is a novel 5′-3′ exonuclease that is closely linked to Mre11 and Rad50 homologues in most thermophilic archaea. We report a physical and functional interaction between NurA (StoNurA) and single-stranded DNA-binding protein (StoSSB) from the hyperthermophilic archaeon Sulfolobus tokodaii. StoSSB was identified as a novel StoNurA-interacting protein by pull-down assay using Ni-NTA agarose beads and MALDI-TOF mass spectrometry. The direct interaction between StoNurA and StoSSB was further confirmed by yeast two-hybrid and co-immunoprecipitation analysis. The interaction was supposed to have functional significance because it was found that StoSSB inhibited the 5′-3′ ssDNA and dsDNA exonuclease and ssDNA endonuclease activities of StoNurA. Our results suggest that NurA may function closely together with SSB in DNA transactions in archaea. 相似文献
19.