首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Shen C  Craigo J  Ding M  Chen Y  Gupta P 《PloS one》2011,6(10):e25956

Objective

To investigate the geographical origin and evolution dynamics of HIV-1 subtype C infection in India.

Design

Ninety HIV-1 subtype C env gp120 subtype C sequences from India were compared with 312 env gp120 reference subtype C sequences from 27 different countries obtained from Los Alamos HIV database. All the HIV-1 subtype C env gp120 sequences from India were used for the geographical origin analysis and 61 subtype C env gp120 sequences with known sampling year (from 1991 to 2008) were employed to determine the origin of HIV infection in India.

Methods

Phylogenetic analysis of HIV-1 env sequences was used to investigate the geographical origin and tMRCA of Indian HIV-1 subtype C. Evolutionary parameters including origin date and demographic growth patterns of Indian subtype C were estimated using a Bayesian coalescent-based approach under relaxed molecular clock models.

Findings

The majority of the analyzed Indian and South African HIV-1 subtype C sequences formed a single monophyletic cluster. The most recent common ancestor date was calculated to be 1975.56 (95% HPD, 1968.78–1981.52). Reconstruction of the effective population size revealed three phases of epidemic growth: an initial slow growth, followed by exponential growth, and then a plateau phase approaching present time. Stabilization of the epidemic growth phase correlated with the foundation of National AIDS Control Organization in India.

Interpretation

Indian subtype C originated from a single South African lineage in the middle of 1970s. The current study emphasizes not only the utility of HIV-1 sequence data for epidemiological studies but more notably highlights the effectiveness of community or government intervention strategies in controlling the trend of the epidemic.  相似文献   

2.
To address whether sequences of viral gag and env quasispecies collected during the early post-acute period can be utilized to determine multiplicity of transmitted HIV's, recently developed approaches for analysis of viral evolution in acute HIV-1 infection [1,2] were applied. Specifically, phylogenetic reconstruction, inter- and intra-patient distribution of maximum and mean genetic distances, analysis of Poisson fitness, shape of highlighter plots, recombination analysis, and estimation of time to the most recent common ancestor (tMRCA) were utilized for resolving multiplicity of HIV-1 transmission in a set of viral quasispecies collected within 50 days post-seroconversion (p/s) in 25 HIV-infected individuals with estimated time of seroconversion. The decision on multiplicity of HIV infection was made based on the model's fit with, or failure to explain, the observed extent of viral sequence heterogeneity. The initial analysis was based on phylogeny, inter-patient distribution of maximum and mean distances, and Poisson fitness, and was able to resolve multiplicity of HIV transmission in 20 of 25 (80%) cases. Additional analysis involved distribution of individual viral distances, highlighter plots, recombination analysis, and estimation of tMRCA, and resolved 4 of the 5 remaining cases. Overall, transmission of a single viral variant was identified in 16 of 25 (64%) cases, and transmission of multiple variants was evident in 8 of 25 (32%) cases. In one case multiplicity of HIV-1 transmission could not be determined. In primary HIV-1 subtype C infection, samples collected within 50 days p/s and analyzed by a single-genome amplification/sequencing technique can provide reliable identification of transmission multiplicity in 24 of 25 (96%) cases. Observed transmission frequency of a single viral variant and multiple viral variants were within the ranges of 64% to 68%, and 32% to 36%, respectively.  相似文献   

3.
The study of the evolution and specificities of neutralizing antibodies during the course of human immunodeficiency virus type 1 (HIV-1) infection may be important in the discovery of possible targets for vaccine design. In this study, we assessed the autologous and heterologous neutralization responses of 14 HIV-1 subtype C-infected individuals, using envelope clones obtained within the first 2 months postinfection. Our data show that potent but relatively strain-specific neutralizing antibodies develop within 3 to 12 months of HIV-1 infection. The magnitude of this response was associated with shorter V1-to-V5 envelope lengths and fewer glycosylation sites, particularly in the V1-V2 region. Anti-MPER antibodies were detected in 4 of 14 individuals within a year of infection, while antibodies to CD4-induced (CD4i) epitopes developed to high titers in 12 participants, in most cases before the development of autologous neutralizing antibodies. However, neither anti-MPER nor anti-CD4i antibody specificity conferred neutralization breadth. These data provide insights into the kinetics, potency, breadth, and epitope specificity of neutralizing antibody responses in acute HIV-1 subtype C infection.  相似文献   

4.
The HIV-1 subtype C has spread efficiently in the southern states of Brazil (Rio Grande do Sul, Santa Catarina and Paraná). Phylogeographic studies indicate that the subtype C epidemic in southern Brazil was initiated by the introduction of a single founder virus population at some time point between 1960 and 1980, but little is known about the spatial dynamics of viral spread. A total of 135 Brazilian HIV-1 subtype C pol sequences collected from 1992 to 2009 at the three southern state capitals (Porto Alegre, Florianópolis and Curitiba) were analyzed. Maximum-likelihood and Bayesian methods were used to explore the degree of phylogenetic mixing of subtype C sequences from different cities and to reconstruct the geographical pattern of viral spread in this country region. Phylogeographic analyses supported the monophyletic origin of the HIV-1 subtype C clade circulating in southern Brazil and placed the root of that clade in Curitiba (Paraná state). This analysis further suggested that Florianópolis (Santa Catarina state) is an important staging post in the subtype C dissemination displaying high viral migration rates from and to the other cities, while viral flux between Curitiba and Porto Alegre (Rio Grande do Sul state) is very low. We found a positive correlation (r(2) = 0.64) between routine travel and viral migration rates among localities. Despite the intense viral movement, phylogenetic intermixing of subtype C sequences from different Brazilian cities is lower than expected by chance. Notably, a high proportion (67%) of subtype C sequences from Porto Alegre branched within a single local monophyletic sub-cluster. These results suggest that the HIV-1 subtype C epidemic in southern Brazil has been shaped by both frequent viral migration among states and in situ dissemination of local clades.  相似文献   

5.
6.
We describe a mathematical model and Monte Carlo (MC) simulation of viral evolution during acute infection. We consider both synchronous and asynchronous processes of viral infection of new target cells. The model enables an assessment of the expected sequence diversity in new HIV-1 infections originating from a single transmitted viral strain, estimation of the most recent common ancestor (MRCA) of the transmitted viral lineage, and estimation of the time to coalesce back to the MRCA. We also calculate the probability of the MRCA being the transmitted virus or an evolved variant. Excluding insertions and deletions, we assume HIV-1 evolves by base substitution without selection pressure during the earliest phase of HIV-1 infection prior to the immune response. Unlike phylogenetic methods that follow a lineage backwards to coalescence, we compare the observed data to a model of the diversification of a viral population forward in time. To illustrate the application of these methods, we provide detailed comparisons of the model and simulations results to 306 envelope sequences obtained from eight newly infected subjects at a single time point. The data from patients were in good agreement with model predictions, and hence compatible with a single-strain infection evolving under no selection pressure. The diversity of the samples from the other two patients was too great to be explained by the model, suggesting multiple HIV-1-strains were transmitted. The model can also be applied to longitudinal patient data to estimate within-host viral evolutionary parameters.  相似文献   

7.

Background

The classification of HIV-1 strains in subtypes and Circulating Recombinant Forms (CRFs) has helped in tracking the course of the HIV pandemic. In Senegal, which is located at the tip of West Africa, CRF02_AG predominates in the general population and Female Sex Workers (FSWs). In contrast, 40% of Men having Sex with Men (MSM) in Senegal are infected with subtype C. In this study we analyzed the geographical origins and introduction dates of HIV-1 C in Senegal in order to better understand the evolutionary history of this subtype, which predominates today in the MSM population

Methodology/Principal Findings

We used a combination of phylogenetic analyses and a Bayesian coalescent-based approach, to study the phylogenetic relationships in pol of 56 subtype C isolates from Senegal with 3,025 subtype C strains that were sampled worldwide. Our analysis shows a significantly well supported cluster which contains all subtype C strains that circulate among MSM in Senegal. The MSM cluster and other strains from Senegal are widely dispersed among the different subclusters of African HIV-1 C strains, suggesting multiple introductions of subtype C in Senegal from many different southern and east African countries. More detailed analyses show that HIV-1 C strains from MSM are more closely related to those from southern Africa. The estimated date of the MRCA of subtype C in the MSM population in Senegal is estimated to be in the early 80''s.

Conclusions/Significance

Our evolutionary reconstructions suggest that multiple subtype C viruses with a common ancestor originating in the early 1970s entered Senegal. There was only one efficient spread in the MSM population, which most likely resulted from a single introduction, underlining the importance of high-risk behavior in spread of viruses.  相似文献   

8.
HIV-1 virus infectivity factor (Vif) is one of the four accessory proteins that are characteristic of primate lentiviruses and critically required for the infection of host cells. Vif plays a key role in replication and transmission of the virus in non-permissive cells, such as primary T cells and macrophages. Using co-precipitation and co-fractionation techniques, evidence has been provided that Vif interacts with a variety of host proteins, such as the cytidine deaminases APOBEC3G and 3F, the Cullin5/EloBC ubiquitin–ligase complex, Fyn and Hck tyrosine kinases, as well as with viral components, such as the immature Gag precursor and viral RNA. We report on the expression, purification and molecular characterization of a folded recombinant subtype C Vif. Vif was expressed in E. coli with a C-terminal hexahistidine tag and purified by nickel affinity chromatography. We obtained approximately 5 mg protein per liter of bacterial culture, with a purity >95%. The expected molecular mass of 23.7 kDa was confirmed by mass spectrometry. Although dynamic light scattering and small angle X-ray scattering measurements revealed the presence of high molecular weight aggregates in the protein preparation, circular dichroism analysis showed that the protein contains mainly folded β-sheet elements and exhibits remarkable thermal stability (T m > 95°C). Recombinant Vif may be used as a tool to study its biological functions and tertiary structure, as well as for the development of diagnostic, therapeutic and preventive strategies for HIV-1 infections.  相似文献   

9.
Williamson AL 《IUBMB life》2002,53(4-5):207-208
One in nine people in South Africa are estimated to be HIV-1 infected, with the majority of these infections being due to HIV-1 subtype C. Until recently, most HIV-1 candidate vaccines were not based on subtype C genes. In response to this epidemic, therefore, the South African AIDS Vaccine Initiative (SAAVI) was established to facilitate the development and testing of candidate HIV-1 subtype C vaccines. The first HIV-1 subtype C candidate vaccine is due to be, tested at the end of 2002, and is based on Venezuelan encephalitis virus replicons expressing Gag protein. The next candidate vaccines to be tested will be DNA and modified vaccinia Ankara vaccines expressing subtype C genes.  相似文献   

10.
11.
12.
Th17 cells play a crucial role in host immune response. We examined the role of Th17 cells in HIV-1 'subtype-C' infection and report that HIV-1 specific Th17 cells are induced in early infection and slow progressors but are significantly reduced at late stage of infection. There was a further decline in Th17 cells in late stage subjects with gastrointestinal infections. Additionally, we observed expanded population of IL-21 (needed for Th17 population expansion) producing CD4 T cells in early and slow progressors compared to subjects with late stage infection. A significant positive correlation existed between virus specific IL-17 and IL-21 producing CD4 T cells suggesting that HIV-1 infection induces a demand for Th17 cells. A significant negative correlation between virus specific Th17 cells and HIV-1 plasma viral load (pVL) was also observed, indicating a gradual loss of Th17 cells with HIV-1 disease progression.  相似文献   

13.
目的研究沈阳市人类免疫缺陷病毒1型(HIV-1)B'亚型毒株抗原表位的变异特征.方法从确诊的HIV-1感染者的全血样本中提取基因组DNA,经套式聚合酶链反应(PCR)扩增、产物纯化和测序分析后,将所得病毒核苷酸序列翻译成蛋白质的氨基酸序列,比较和分析我国人群中较常见的HLA型别限制的CTL表位的突变情况.结果在HIV-1 gag蛋白P24编码区,有4个抗原表位相当保守,且P17部分的抗原表位的变异率高于P24部分.结论 HIV-1 B'亚型毒株P24部分的4个抗原表位适合于抗原表位疫苗的研制.  相似文献   

14.
目的 研究沈阳市人类免疫缺陷病毒1型(HIV-1)B′亚型毒株抗原表位的变异特征。方法 从确诊的HIV-1感染者的全血样本中提取基因组DNA,经套式聚合酶链反应(PCR)扩增、产物纯化和测序分析后,将所得病毒核苷酸序列翻译成蛋白质的氨基酸序列,比较和分析我国人群中较常见的HLA型别限制的CTL表位的突变情况。结果 在HIV-1 gag蛋白P24编码区,有4个抗原表位相当保守,且P17部分的抗原表位的变异率高于P24部分。结论 HIV-1 B′亚型毒株P24部分的4个抗原表位适合于抗原表位疫苗的研制。  相似文献   

15.
Pope M  Haase AT 《Nature medicine》2003,9(7):847-852
By the acute stage of HIV-1 infection, the immune system already faces daunting challenges. Research on mucosal barriers and the events immediately after heterosexual transmission that precede this acute stage could facilitate the development of effective microbicides and vaccines.  相似文献   

16.
17.
Dinucleotide usage is known to vary in the genomes of organisms. The dinucleotide usage profiles or genome signatures are similar for sequence samples taken from the same genome, but are different for taxonomically distant species. This concept of genome signatures has been used to study several organisms including viruses, to elucidate the signatures of evolutionary processes at the genome level. Genome signatures assume greater importance in the case of host–pathogen interactions, where molecular interactions between the two species take place continuously, and can influence their genomic composition. In this study, analyses of whole genome sequences of the HIV-1 subtype B, a retrovirus that caused global pandemic of AIDS, have been carried out to analyse the variation in genome signatures of the virus from 1983 to 2007. We show statistically significant temporal variations in some dinucleotide patterns highlighting the selective evolution of the dinucleotide profiles of HIV-1 subtype B, possibly a consequence of host specific selection.  相似文献   

18.
In the present study the epidemic of human immunodeficiency virus type 1 (HIV-1) subtype B in Slovenia during the 10-year period was investigated using phylogenetic analysis of pol gene sequences. 119 pol sequences generated on samples dated from January 1996 to December 2005 were retrieved from the database of Slovenian HIV/AIDS Reference Laboratory. The phylogenetic analysis revealed 14 potentially significant transmission clusters (bootstrap value > or = 98%), comprising 34 HIV-1 strains. The vast majority of clustered individuals were men (91%), and of them, 79% were men who have sex with men. Factors significantly associated with clustering were: recent infection (HIV-1 infection during or after year 2003), diagnosis of primary HIV-1 infection, higher CD4 cell count and acquiring HIV-1 infection in Slovenia. Recent subtype B HIV-1 infections are the important driving force of current HIV-1 epidemic in Slovenia.  相似文献   

19.
HLA class I-mediated selection of immune escape mutations in functionally important Gag epitopes may partly explain slower disease progression in HIV-1-infected individuals with protective HLA alleles. To investigate the impact of Gag function on disease progression, the replication capacities of viruses encoding Gag-protease from 60 individuals in early HIV-1 subtype C infection were assayed in an HIV-1-inducible green fluorescent protein reporter cell line and were correlated with subsequent disease progression. Replication capacities did not correlate with viral load set points (P = 0.37) but were significantly lower in individuals with below-median viral load set points (P = 0.03), and there was a trend of correlation between lower replication capacities and lower rates of CD4 decline (P = 0.09). Overall, the proportion of host HLA-specific Gag polymorphisms in or adjacent to epitopes was negatively associated with replication capacities (P = 0.04), but host HLA-B-specific polymorphisms were associated with higher viral load set points (P = 0.01). Further, polymorphisms associated with host-specific protective HLA alleles were linked with higher viral load set points (P = 0.03). These data suggest that transmission or early HLA-driven selection of Gag polymorphisms results in reduced early cytotoxic T-lymphocyte (CTL) responses and higher viral load set points. In support of the former, 46% of individuals with nonprotective alleles harbored a Gag polymorphism exclusively associated with a protective HLA allele, indicating a high rate of their transmission in sub-Saharan Africa. Overall, HIV disease progression is likely to be affected by the ability to mount effective Gag CTL responses as well as the replication capacity of the transmitted virus.  相似文献   

20.
The multifunctional trans-activator Tat is an essential regulatory protein for HIV-1 replication and is characterized by high sequence diversity. Numerous experimental studies have examined Tat in HIV-1 subtype B, but research on subtype C Tat is lacking, despite the high prevalence of infections caused by subtype C worldwide. We hypothesized that amino acid differences contribute to functional differences among Tat proteins. In the present study, we found that subtype B NL4-3Tat and subtype C isolate HIV1084 i Tat exhibited differences in stability by overexpressing the fusion protein Tat-Flag. In addition, 1084 i Tat can activate LTR and NF-κB more efficiently than NL4-3 Tat. In analyses of the activities of the truncated forms of Tat, we found that the carboxylterminal region of Tat regulates its stability and transactivity. According to our results, we speculated that the differences in stability between B-Tat and C-Tat result in differences in transactivation ability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号