首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
P-glycoprotein (P-gp) can induce multidrug resistance (MDR) through the ATP-dependent efflux of chemotherapeutic agents. We have previously shown that P-gp can inhibit nondrug apoptotic stimuli by suppressing the activation of caspases. To determine if this additional activity is functionally linked to ATP hydrolysis, we expressed wild-type and ATPase-mutant P-gp and showed that cells expressing mutant P-gp could not efflux chemotherapeutic drugs but remained relatively resistant to apoptosis. CEM lymphoma cells expressing mutant P-gp treated with vincristine showed a decrease in the fraction of cells with apoptotic morphology, cytochrome c release from the mitochondria and suppression of caspase activation, yet still accumulated in mitosis and showed a loss of clonogenic potential. The loss of clonogenicity in vincristine-treated cells expressing mutant P-gp was associated with accumulation of cells in mitosis and the presence of multinucleated cells consistent with mitotic catastrophe. The antiapoptotic effect of mutant P-gp was not affected by antibodies that inhibit the efflux function of the protein. These data are consistent with a dual activity model for P-gp-induced MDR involving both ATPase-dependent drug efflux and ATPase-independent inhibition of apoptosis. The structure-function analyses described herein provide novel insight into the mechanisms of action of P-gp in mediating MDR.  相似文献   

2.
Multidrug resistance (MDR) genes in haematological malignancies   总被引:1,自引:0,他引:1  
The emergence of drug resistant cells is one of the main obstacles for successful chemotherapeutic treatment of haematological malignancies. Most patients initially respond to chemotherapy at the time of first clinical admission, but often relapse and become refractory to further treatment not only to the drugs used in the first treatment but also to a variety of other drugs. Laboratory investigations have now provided a cellular basis for this clinical observation of multidrug resistance (MDR). Expression of a glycoprotein (referred to as P-glycoprotein) in the membrane of cells made resistantin vitro to naturally occurring anticancer agents like anthracyclines, Vinca alkaloids and epipodophyllotoxins, has been shown to be responsible for the so-called classical MDR phenotype. P-glycoprotein functions as an ATP-dependent, unidirectional drug efflux pump with a broad substrate specificity, that effectively maintains the intracellular cytotoxic drug concentrations under a non-cytotoxic threshold value. Extensive clinical studies have shown that P-glycoprotein is expressed on virtually all types of haematological malignancies, including acute and chronic leukaemias, multiple myelomas and malignant lymphomas. Since in model systems for P-glycoprotein-mediated MDR, drug resistance may be circumvented by the addition of non-cytotoxic agents that can inhibit the outward drug pump, clinical trials have been initiated to determine if such an approach will be feasible in a clinical situation. Preliminary results suggest that some haematological malignancies, among which are acute myelocytic leukaemia, multiple myeloma and non-Hodgkin's lymphoma, might benefit from the simultaneous administration of cytotoxic drugs and P-glycoprotein inhibitors. However, randomised clinical trials are needed to evaluate the use of such resistance modifiers in the clinic.Abbreviations ALL acute lymphocytic leukaemia - AML acute myelocytic leukaemia - BM bone marrow - CAT chloramphenicol acetyltransferase - CLL chronic lymphocytic leukaemia - CML chronic myelocytic leukaemia - CR complete remission - HCL hairy cell leukaemia - MDR multidrug resistance - MDS myelodysplastic syndrome - MM multiple myeloma - MoAb monoclonal antibody - NHL non-Hodgkin's lymphoma - PB peripheral blood - PCR polymerase chain reaction - PLL prolymphocytic leukaemia - RMA resistance modifying agent - VAD vincristine, doxorubicin, dexamethasone  相似文献   

3.
Genes of multidrug resistance in haematological malignancies   总被引:2,自引:1,他引:1  
Since the early 1970s, multiple drug resistance has been known to exist in cancer cells and is thought to be attributable to a membrane-bound, energy-dependent pump protein (P-glycoprotein [P-gp]) capable of extruding various related and unrelated chemotherapeutic drugs. The development of refractory disease in haematological malignancies is frequently associated with the expression of one or several multidrug resistance (MDR) genes. MDR1, multidrug resistance-associated protein (MRP) and lung-resistance protein (LRP) have been identified as important adverse prognostic factors. Recently it has become possible to reverse clinical MDR by blocking P-gp-mediated drug efflux. The potential relevance of these reversal agents of MDR as well as the potential new approaches to treat the refractory disease are discussed in this article. In addition, an array of different molecules and mechanisms by which resistant cells can escape the cytotoxic effect of anticancer drugs has now been identified. These molecules and mechanisms include apoptosis-related proteins and drug inactivation enzymes. Resistance to chemotherapy is believed to cause treatment failure in more than 50% patients. Clearly, if drug resistance could be overcome, the impact on survival would be highly significant. This review focuses on molecular mechanism of drug resistance in haematological malignancies with emphasis on molecules involved in MDR. In addition, it brings the survey of methods involved in determination of MDR, in particular P-gp/MDR1, MRP and LRP.  相似文献   

4.
Multi-drug resistance (MDR) is a phenomenon by which tumor cells exhibit resistance to a variety of chemically unrelated chemotherapeutic drugs. The classical form of multidrug resistance is connected to overexpression of membrane P-glycoprotein (P-gp), which acts as an energy dependent drug efflux pump. P-glycoprotein expression is known to be controlled by genetic and epigenetic mechanisms. Until now processes of P-gp gene up-regulation and resistant cell selection were considered sufficient to explain the emergence of MDR phenotype within a cell population. Recently, however, "non-genetic" acquisitions of MDR by cell-to-cell P-gp transfers have been pointed out. In the present study we show that intercellular transfers of functional P-gp occur by two different but complementary modalities through donor-recipient cells interactions in the absence of drug selection pressure. P-glycoprotein and drug efflux activity transfers were followed over 7 days by confocal microscopy and flow cytometry in drug-sensitive parental MCF-7 breast cancer cells co-cultured with P-gp overexpressing resistant variants. An early process of remote transfer was established based on the release and binding of P-gp-containing microparticles. Microparticle-mediated transfers were detected after only 4 h of incubation. We also identify an alternative mode of transfer by contact, consisting of cell-to-cell P-gp trafficking by tunneling nanotubes bridging neighboring cells. Our findings supply new mechanistic evidences for the extragenetic emergence of MDR in cancer cells and indicate that new treatment strategies designed to overcome MDR may include inhibition of both microparticles and Tunneling nanotube-mediated intercellular P-gp transfers.  相似文献   

5.
Multidrug resistance (MDR) is the result of overexpression of membrane bound proteins that efflux chemotherapeutic drugs from the cells. Two proteins, P-glycoprotein (P-gp) and multidrug-resistance associated protein-1 (MRP-1) efflux chemotherapeutic agents out of the cancer cell that decrease intracellular drug accumulation, thereby decreasing the effectiveness of many chemotherapeutic agents. In the present study, the ethanolic extract of the roots of Stemona curtisii Hook. was tested for the potential ability to modulate the MDR phenotype and function of P-gp and MRP-1. The S. curtisii extract reversed the resistance to putative chemotherapeutic agents, including vinblastine, paclitaxel and colchicine of KB-V1 cells (MDR human cervical carcinoma with high P-gp expression) in a dose-dependent manner, but not in KB-3-1 cells (drug sensitive human cervical carcinoma, which lack P-gp expression). The root extract also increased the intracellular uptake and retention of (3)[H]-vinblastine in KB-V1 cells dose dependently. The extract did not influence MDR phenotype-mediated MRP-1 in MRP1-HEK293 (human embryonic kidney cells stably transfected with pcDNA3.1-MRP1-H10 which show high MRP-1 expression) and pcDNA3.1-HEK293 (wild type). In summary, the S. curtisii root extract modulated P-gp activity but not MRP-1 activity. The result obtained from this study strongly indicated that S. curtisii extract may play an important role as a P-gp modulator as used in vitro and may be effective in the treatment of multidrug-resistant cancers. The purified form of the active components of S. curtisii extract should be investigated in more details in order to explain the molecular mechanisms involved in P-gp modulation. This is the first report of new biological activity in this plant, which could be a potential source of a new chemosensitizer.  相似文献   

6.
《Phytomedicine》2014,21(8-9):1110-1119
The overexpression of ABC transporters is a common reason for multidrug resistance (MDR) in cancer cells. In this study, we found that the isoquinoline alkaloids tetrandrine and fangchinoline from Stephania tetrandra showed a significant synergistic cytotoxic effect in MDR Caco-2 and CEM/ADR5000 cancer cells in combination with doxorubicin, a common cancer chemotherapeutic agent. Furthermore, tetrandrine and fangchinoline increased the intracellular accumulation of the fluorescent P-glycoprotein (P-gp) substrate rhodamine 123 (Rho123) and inhibited its efflux in Caco-2 and CEM/ADR5000 cells. In addition, tetrandrine and fangchinoline significantly reduced P-gp expression in a concentration-dependent manner. These results suggest that tetrandrine and fangchinoline can reverse MDR by increasing the intracellular concentration of anticancer drugs, and thus they could serve as a lead for developing new drugs to overcome P-gp mediated drug resistance in clinic cancer therapy.  相似文献   

7.
线粒体DNA缺失细胞(ρ~0细胞)拮抗化疗药物诱导的凋亡,但其确切机制尚不明确。本研究探讨P-gp线粒体转位与人肝癌细胞(SK-Hepl)mtDNA缺失细胞(ρ~0SK-Hep1)多药耐药产生的关系。以SK-Hep1、ρ~0SK-Hep1和转线粒体细胞SK-Hep1Cyb为研究对象,CCK-8方法检测细胞对药物敏感性;AnnexinV/PI双染法及DAPI染色法检测细胞凋亡;Westernblot检测P-gp表达;激光共聚焦显微镜结合免疫荧光检测P-gP细胞内分布。结果显示,SK-Hep1、ρ~0SK-Hep1和SK-Hep1Cyb细胞对多柔比星(DOX)的IC_(50)分别为0.62±0.02μg/ml、4.93±0.17μg/ml和0.57±0.02μg/ml。SK-Hep1、ρ~0SK-Hep1和SK-Hep1Cyb细胞凋亡率分别为1 1.25%±1.36%、4.75%±0.98%和14.50%±1.57%,ρ~0SK-Hep1对细胞凋亡有明显抗性。Western blot检测发现ρ~0细胞内P-gP、Bax、Bcl-2表达增加,Bcl-2/Bax比值增加。免疫荧光共定位显示,ρ~0细胞线粒体内P-gP...  相似文献   

8.
9.
One of the underlying mechanisms of multidrug resistance (MDR) is cellular overproduction of P-glycoprotein (P-gp), which acts as an efflux pump for various anti-cancer drugs. P-gp is encoded by a group of related genes termed MDR; only MDR1 is known to confer the drug resistance, and its overexpression in cancer cells has been a therapeutic target to circumvent the resistance. To overcome P-gp-mediated drug resistance, we have developed six anti-MDR1 hammerhead ribozymes and delivered them to P-gp-overproducing human leukemia cell line by a retroviral vector containing RNA polymerase III promoter. These ribozyme-transduced cells became vincristine-sensitive, concomitant with the decreases in MDR1 expression, P-gp amount and efflux pump function. Among the ribozymes tested, the anti-MDR1 ribozyme against the translation-initiation site exhibited the highest efficacy. The retrovirus-mediated transfer of this most potent anti-MDR1 ribozyme into a human lymphoma cell line, which was made resistant by infection of pHaMDR1/A retroviral vector and thus possessed a low degree of MDR due to P-gp expression relevant to clinical MDR, resulted in a complete reversal of MDR phenotype. In addition to retrovirus-mediated transfer of ribozymes, we evaluated the efficacy of cationic liposome-mediated transfer of ribozyme. Treatment of a P-gp-producing human breast cancer cell line with the liposome-ribozyme complex resulted in reversal of resistance, concomitant with the decreases in both MDR1 expression and P-gp amount. Confocal microscopic imaging of the cells after treatment with liposome/FITC-dextran showed cytoplasmic fluorescence that was abolished by cytochalasin B, indicating a high endocytotic activity in these cells. The endocytotic activity was well correlated with the success of cationic liposome-mediated transfer of MDR1 ribozyme. These distinct approaches using either retrovirus- or liposome-mediated transfer of anti-MDR1 ribozyme may be selectively applicable to the treatment of MDR cells with different properties such as endocytotic activity as a specific means to reverse resistance.  相似文献   

10.
Regulation of MDR-1 (P-glycoprotein) by cyclooxygenase-2   总被引:39,自引:0,他引:39  
  相似文献   

11.
Cullen K  Davey R  Davey M 《Cytometry》2001,43(3):189-194
BACKGROUND: Multidrug resistance (MDR) is mediated by the drug resistance proteins, the multidrug resistance-associated protein (MRP) and P-glycoprotein, both of which confer resistance by the active efflux of chemotherapeutic drugs from the cell. Reduced Fas (CD95/APO-1) expression and resistance to Fas-mediated apoptosis have also been correlated with P-glycoprotein-mediated MDR. METHODS: We investigated cell surface Fas expression (using anti-Fas monoclonal antibody DX2.1) in a series of MRP-expressing drug-resistant leukemia sublines, and P-glycoprotein-expressing leukemia sublines, and their susceptibility to apoptosis induced by anti-Fas treatment (CH-11 monoclonal antibody). Caspase-3 activation was detected by Western blot and apoptosis was determined by flow cytometry with 7-aminoactinomycin D (7-AAD) staining of cells. RESULTS: Fas expression was not reduced in either the MRP- or P-glycoprotein-expressing drug-resistant cell lines, although expression was reduced by 15% in one low-level drug-resistant subline. Expression of MRP or P-glycoprotein did not confer resistance to caspase-3 activation or to anti-Fas-induced cell death. CONCLUSIONS: MDR mediated by the drug transport proteins MRP and P-glycoprotein does not correlate with resistance to Fas-mediated cell death or resistance to caspase-3 activation.  相似文献   

12.
The human MDR3 gene is a member of the multidrug resistance (MDR) gene family. The MDR3 P-glycoprotein is a transmembrane protein that translocates phosphatidylcholine. The MDR1 P-glycoprotein related transports cytotoxic drugs. Its overexpression can make cells resistant to a variety of drugs. Attempts to show that MDR3 P-glycoprotein can cause MDR have been unsuccessful thus far. Here, we report an increased directional transport of several MDR1 P-glycoprotein substrates, such as digoxin, paclitaxel, and vinblastine, through polarized monolayers of MDR3-transfected cells. Transport of other good MDR1 P-glycoprotein substrates, including cyclosporin A and dexamethasone, was not detectably increased. MDR3 P-glycoprotein-dependent transport of a short-chain phosphatidylcholine analog and drugs was inhibited by several MDR reversal agents and other drugs, indicating an interaction between these compounds and MDR3 P-gp. Insect cell membranes from Sf9 cells overexpressing MDR3 showed specific MgATP binding and a vanadate-dependent, N-ethylmaleimide-sensitive nucleotide trapping activity, visualized by covalent binding with [alpha-(32)P]8-azido-ATP. Nucleotide trapping was (nearly) abolished by paclitaxel, vinblastine, and the MDR reversal agents verapamil, cyclosporin A, and PSC 833. We conclude that MDR3 P-glycoprotein can bind and transport a subset of MDR1 P-glycoprotein substrates. The rate of MDR3 P-glycoprotein-mediated transport is low for most drugs, explaining why this protein is not detectably involved in multidrug resistance. It remains possible, however, that drug binding to MDR3 P-glycoprotein could adversely affect phospholipid or toxin secretion under conditions of stress (e.g. in pregnant heterozygotes with one MDR3 null allele).  相似文献   

13.
Multidrug resistance (MDR) mediated by overexpression of MDR1 P-glycoprotein (P-gp) is one of the best characterized transporter-mediated barriers to successful chemotherapy in cancer patients. Chemosensitizers are the agents that increase the sensitivity of multidrug-resistant cells to the toxic influence of previously less effective drugs. In an attempt to find such vital chemosensitizers, a series of N(10)-substituted-2-chloroacridone analogous (1-17) have been synthesized. Compound 1 was prepared by the Ullmann condensation of o-chlorobenzoic acid and p-chloroaniline followed by cyclization. The N-(omega-chloroalkyl) analogues were found to undergo iodide catalyzed nucleophilic substitution reaction with secondary amines and the resultant products were characterized by spectral methods. The lipophilicity expressed in log(10)P and pK(a) of compounds has been determined. All compounds were examined for their ability to increase the uptake of vinblastine (VLB) in MDR KBCh(R)-8-5 cells and the results showed that the compounds 6, 8, 11-14, 16, and 17 at their respective IC(50) concentrations caused a 1.0- to 1.7-fold greater accumulation of VLB than did a similar concentration of the standard modulator, verapamil (VRP). Results of the efflux experiment showed that VRP and each of the modulators significantly inhibited the efflux of VLB, suggesting that they may be competitors for P-gp. All modulators effectively competing with [(3)H]azidopine for binding to P-gp pointed out this transport membrane protein as their likely site of action. Compounds at IC(10) were evaluated for their efficacy to modulate the cytotoxicity of VLB and the results showed that modulators 11, 13, 14, 16, and 17 were able to completely reverse the 25-fold resistance of KBCh(R)-8-5 cells to VLB. Examination of the relationship between lipophilicity and antagonism of MDR showed a reasonable correlation suggesting that hydrophobicity is one of the determinants of potency for anti-MDR activity of 2-chloroacridones. The results allowed us to draw preliminary conclusions about structural features of 2-chloroacridones important for MDR modulation.  相似文献   

14.
15.
Resistance to multiple chemotherapeutic agents is a common clinical problem which can arise during cancer treatment. Drug resistance often involves overexpression of the multidrug resistance MDR1 gene, encoding P-glycoprotein (P-gp), a 170-kDa glycoprotein belonging to the ATP-binding cassette superfamily of membrane transporters. We have recently demonstrated apoptosis-induced, caspase-3-dependent P-gp cleavage in human T-lymphoblastoid CEM-R VBL100 cells. However, P-gp contain many aspartate residues which could be targeted by caspases other than caspase-3. To test whether other caspases could cleave P-gp in vivo, we investigated the fate of P-gp during roscovitine- and sangivamycin- induced apoptosis in MCF7 human breast cancer cells, as they lack functional caspase-3. MCF7 cells were stably transfected with human cDNA encoding P-gp. P-gp was cleaved in vitro by purified recombinant caspase-3, -6 and -7. However, P-gp cleavage was not detected in vivo in MCF7 cells induced to undergoing apoptosis by either roscovitine or sangivamycin, despite activation of both caspase-6 and -7. Interestingly, P-gp overexpressing MCF7 cells were more sensitive to either roscovitine or sangivamycin than wild-type cells, suggesting a novel potential therapeutic strategy against P-gp overexpressing cells. Taken together, our results support the concept that caspase-3 is the only caspase responsible for in vivo cleavage of P-gp and also highlight small molecules which could be effective in treating P-gp overexpressing cancers.  相似文献   

16.
P-glycoprotein (P-gp) is an ATP-dependent drug pump that confers multidrug resistance (MDR). In addition to its ability to efflux toxins, P-gp can also inhibit apoptosis induced by a wide array of cell death stimuli that rely on activation of intracellular caspases for full function. We therefore hypothesized that P-gp may have additional functions in addition to its role in effluxing xenotoxins that could provide protection to tumor cells against a host response. There have been a number of contradictory reports concerning the role of P-gp in regulating complement activation. Given the disparate results obtained by different laboratories and our published results demonstrating that P-gp does not affect cell death induced by another membranolytic protein, perforin, we decided to assess the role of P-gp in regulating cell lysis induced by a number of different pore-forming proteins. Testing a variety of different P-gp-expressing MDR cell lines produced following exposure of cells to chemotherapeutic agents or by retroviral gene transduction in the complete absence of any drug selection, we found no difference in sensitivity of P-gp(+ve) or P-gp(-ve) cells to the pore-forming proteins complement, perforin, or pneumolysin. Based on these results, we conclude that P-gp does not affect cell lysis induced by pore-forming proteins.  相似文献   

17.
Multidrug resistance (MDR) has emerged as the main problem in anti-cancer therapy. Although MDR involves complex factors and processes, the main pivot is the expression of multidrug efflux pumps. P-glycoprotein (P-gp) belongs to the family of adenosine triphosphate (ATP)-binding cassette (ABC) transporters. It functions in cellular detoxification, pumping a wide range of xenobiotic compounds out of the cell. An attractive therapeutic strategy for overcoming MDR is to inhibit the transport function of P-gp and thus, increase intracellular concentration of drugs. Recently, various types of P-gp inhibitors have been found and used in experiments. However, none of them has passed clinical trials due to their high side-effects. Hence, the search for alternatives, such as plant-based P-gp inhibitors have gained attention recently. Therefore, we give an overview of the source, function, structure and mechanism of plant-based P-gp inhibitors and give more attention to cancer-related studies. These products could be the future potential drug candidates for further research as P-gp inhibitors.  相似文献   

18.
Two decades ago, the overexpression of P-glycoprotein (Pgp) was first demonstrated to mediate the energy-dependent efflux of a variety of chemotherapeutic agents from tumor cells, resulting in the development of multidrug resistance (MDR). Not surprisingly, this discovery triggered an ongoing search for agents that would inhibit Pgp function, with the hope that by doing so the MDR phenotype could be reversed. As our understanding of Pgp function and pharmacokinetics has increased, this quest has become more urgent, as well as more complex.  相似文献   

19.

Background

Multi drug resistance (MDR) or cross-resistance to multiple classes of chemotherapeutic agents is a major obstacle to successful application of chemotherapy and a basic problem in cancer biology. The multidrug resistance gene, MDR1, and its gene product P-glycoprotein (P-gp) are an important determinant of MDR. Therefore, there is an urgent need for development of novel compounds that are not substrates of P-glycoprotein and are effective against drug-resistant cancer.

Methodology/Principal Findings

In this present study, we have synthesized a novel, redox active Fe (II) complex (chelate), iron N- (2-hydroxy acetophenone) glycinate (FeNG). The structure of the complex has been determined by spectroscopic means. To evaluate the cytotoxic effect of FeNG we used doxorubicin resistant and/or sensitive T lymphoblastic leukemia cells and show that FeNG kills both the cell types irrespective of their MDR phenotype. Moreover, FeNG induces apoptosis in doxorubicin resistance T lymphoblastic leukemia cell through mitochondrial pathway via generation reactive oxygen species (ROS). This is substantiated by the fact that the antioxidant N-acetyle-cysteine (NAC) could completely block ROS generation and, subsequently, abrogated FeNG induced apoptosis. Therefore, FeNG induces the doxorubicin resistant T lymphoblastic leukemia cells to undergo apoptosis and thus overcome MDR.

Conclusion/Significance

Our study provides evidence that FeNG, a redox active metal chelate may be a promising new therapeutic agent against drug resistance cancers.  相似文献   

20.
《Phytomedicine》2008,15(9):754-758
Multidrug resistance (MDR) can limit efficacy of chemotherapy. The best studied mechanism involves P-gp (P-glycoprotein) mediated drug efflux. This study focuses on MDR reversal agents from medicinal plants, which can interfere with P-gp. Rhodamine 123 accumulation assay and flow cytometry analysis were employed to screen for P-gp dependant efflux inhibitors. Lobeline, a piperidine alkaloid from Lobelia inflata and several other Lobelia species, inhibited P-gp activity. MDR reversal potential of lobeline could be demonstrated in cells treated with doxorubicin in that lobeline can sensitize resistant tumor cells at non-toxic concentrations. However, lobeline cannot block BCRP (Breast Cancer Resistance Protein) dependent mitoxantrone efflux. Lobeline could be a good candidate for the development of new MDR reversal agents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号