首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Non-aseptic production of biosurfactant from molasses by a mixed culture was investigated in stirred batch reactors. Biosurfactant production was quantified by surface tension reduction, critical micelle dilution (CMD), and emulsification capacity (EC). Biosurfactant production was directly correlated with biomass production, and was improved by pH control and addition of yeast extract. Centrifugation of the whole broth increased emulsifying capacity and reduced surface tension. Acidification of the whole broth increased the emulsification capacity but reduced the apparent biosurfactant concentration (CMD), without affecting the surface tension. The emulsification capacity of the cell-free broth was equivalent to that of a 100 mg/L solution of sodium dodecyl sulfate. The emulsification capacity of the whole broth and cell-free broth were reduced by about 50% at and above NaCl concentrations of 100mM. Preliminary characterization suggests that the biosurfactant activity is primarily associated with one or more protease-sensitive species, released from cells in larger quantities after more vigorous centrifugation.  相似文献   

2.
We formulated a full lifecycle bioenergetic model for bluefin tuna relying on the principles of Dynamic Energy Budget theory. Traditional bioenergetic models in fish research deduce energy input and utilization from observed growth and reproduction. In contrast, our model predicts growth and reproduction from food availability and temperature in the environment. We calibrated the model to emulate physiological characteristics of Pacific bluefin tuna (Thunnus orientalis, hereafter PBT), a species which has received considerable scientific attention due to its high economic value. Computer simulations suggest that (i) the main cause of different growth rates between cultivated and wild PBT is the difference in average body temperature of approximately 6.5°C, (ii) a well-fed PBT individual can spawn an average number of 9 batches per spawning season, (iii) food abundance experienced by wild PBT is rather constant and sufficiently high to provide energy for yearly reproductive cycle, (iv) energy in reserve is exceptionally small, causing the weight-length relationship of cultivated and wild PBT to be practically indistinguishable and suggesting that these fish are poorly equipped to deal with starvation, (v) accelerated growth rate of PBT larvae is connected to morphological changes prior to metamorphosis, while (vi) deceleration of growth rate in the early juvenile stage is related to efficiency of internal heat production. Based on these results, we discuss a number of physiological and ecological traits of PBT, including the reasons for high Feed Conversion Ratio recorded in bluefin tuna aquaculture.  相似文献   

3.
Ammonia-treated bagasse with 80%(w/w) moisture content was subjected to mixed-culture solid-substrate fermentation (SSF) with Trichoderma reesei LM-UC4 and Aspergillus phoenicis QM 329, in flask or pot fermenters, for cellulase production. Significantly higher activities of all the enzymes of the cellulase complex were achieved in 4 days of mixed-culture SSF than in single-culture (T. reesei) SSF. The highest filter-paper-cellulase and -glucosidase activities seen in mixed-culture SSF were 18.7 and 38.6 IU/g dry wt, respectively, representing approx. 3- and 6-fold increases over the activities attained in single-culture SSF. The mixed-culture SSF process also converted about 46% of the cellulose and hemicellulose to reducing sugars and enriched the product with 13% fungal protein. The biomass productivity, 0.29 gl-1.h, and enzyme productivity, 28.0 IU I-1.h, were about twice as high in the mixed-culture than in the single-culture.R. Dueñas is with the Departamento de Biologia, Universidad Nacional San Antonio Abad, Cusco, Peru. R. Tengerdy is with the Department of Microbiology, Colorado State University, Fort Collins, CO 80523, USA. M. Gutierrez-Correa is with the Laboratorio de Micologia y Biotecnologia, Universidad Nacional Agraria La Molina, Apdo. Postal 456, Lima 1. Peru;  相似文献   

4.
F3 and F4 strains of Aspergillus niger were screened from five strains of fungi to produce multienzyme preparations (containing cellulase, hemicellulase, glucoamylase, pectinase, and acidic proteinase) as dietary supplementation. Enzyme activities indicated that 1:4 (F3 to F4) was the optimum mixture proportion, and 0.3% (W/W) was the preferable pitching rate. In bran mash containing 54.5% (W/W) water, F3 and F4 could produce the supplementation better when cultured 30 to 36 h at 30 °C. Monofactorial and orthogonal experiments were performed to optimize media. Results of the variance and range analysis showed that the optimum medium contained 80 g of bran, 20 g of cottonseed powder, 1 g of (NH4)2SO4, and 0.1 g of KH2PO4. When F3 and F4 strains were cultured in the optimum medium containing 54.5% (W/W) water, the activity of cellulase, hemicellulase, glucoamylase, pectinase, and acidic proteinase reached 996; 15,863; 13,378; 7,621; and 5,583 U/g, respectively.  相似文献   

5.
The biological sludge from an animal wastewater treatment plant was treated to enrich hydrogen-producing mixed bacteria, and effects on hydrogen yield were investigated during anaerobic fermentation at 55 degrees C. Enrichment of hydrogen-producing bacteria was conducted at pH adjustment of inocula to 3 and 5 with and without additional heat treatment (NHT and HT). The enriched mixed bacteria were cultivated at initial pHs of 5, 6, and 7 with synthetic organic wastewater containing different levels of nitrogen (2.0 and 0.8 g/l as total nitrogen) under static batch conditions. The main effects of heat treatment and enrichment pH were significant on hydrogen production. There was no significant effect of different nitrogen concentrations on hydrogen production. The methane-free biogas contained hydrogen levels of up to 64% for a fermentative condition that showed maximum hydrogen evolution (at culture pH 5 after enrichment at pH 5 with HT). The dominating intermediate metabolites were acetate, n-butyrate, and ethanol. Yields of produced hydrogen were significantly dependent upon levels of n-butyrate.  相似文献   

6.
Mitochondrial permeability transition (MPT) is a highly regulated complex phenomenon that is a type of ischemia/reperfusion injury that can lead to cell death and ultimately organ dysfunction. A novel population transition and detailed permeability transition pore regulation model were integrated with an existing bioenergetics model to describe MPT induction under a variety of conditions. The framework of the MPT induction model includes the potential states of the mitochondria (aggregated, orthodox and post-transition), their transitions from one state to another as well as their interaction with the extra-mitochondrial environment. The model encodes the three basic necessary conditions for MPT: a high calcium load, alkaline matrix pH and circumstances which favor de-energization. The MPT induction model was able to reproduce the expected bioenergetic trends observed in a population of mitochondria subjected to conditions that favor MPT. The model was corroborated and used to predict that MPT in an acidic environment is mitigated by an increase in activity of the mitochondrial potassium/hydrogen exchanger. The model was also used to present the beneficial impact of reducing the duration mitochondria spend in the orthodox state on preserving the extra-mitochondrial ATP levels. The model serves as a tool for investigators to use to understand the MPT induction phenomenon, explore alternative hypotheses for PTP regulation, as well as identify endogenous pharmacological targets and evaluate potential therapeutics for MPT mitigation.  相似文献   

7.
Simulating factors affecting human athletic performance, including fatigue, requires a dynamic model of the bioenergetic capabilities of the athlete. To address general cases, the model needs inputs, outputs, and states with a set of differential equations describing how the inputs affect the states and outputs as functions of time. We improve an existing phenomenological muscle model, removing unnecessarily fast dynamic behavior, adding force–velocity dependence, and generalizing it to task level activities. This makes it more suitable for simulating and calculating optimal strategies of athletic events of medium duration (longer than a sprint but shorter than a marathon). To examine the validity and limitations of the model, parameters have been identified from numerical fits to published experimental data.  相似文献   

8.
Extractive fermentation is a technique that can be used to reduce the effect of end product inhibition through the use of a water-immiscible phase that removes fermentation products in situ. This has the beneficial effect of not only removing inhibitory products as they are formed (thus keeping reaction rates high) but also has the potential for reducing product recovery costs. We have chosen to examine the ethanol fermentation as a model system for end product inhibition and extractive fermentation and have developed a computer model predicting the productivity enhancement possible with this technique together with other key parameters such as extraction efficiency and residual glucose concentration. The model accommodates variable liquid flowrates entering and leaving the system, since it was found that the aqueous outlet flowrate could be up to 35% lower than the inlet flowrate during extractive fermentation of concentrated glucose feeds due to the continuous removal of ethanol from the fermentation broth by solvent extraction. The model predicts a total ethanol productivity of 82.6 g/L h if a glucose feed of 750 g/L is fermented with a solvent having a distribution coefficient of 0.5 at a solvent dilution rate of 5.0 h(-1). This is more than 10 times higher than for a conventional chemostat fermentation of a 250 g/L glucose feed. The model has furthermore illustrated the possible trade-offs that exist between obtaining a high extraction efficiency and a low residual glucose concentration.  相似文献   

9.
10.
The kinetics of growth, acid and solvent production in batch culture of Clostridium pasteurianum DSMZ 525 were examined in mixed or mono-substrate fermentations. In pH-uncontrolled batch cultures, the addition of butyric acid or glucose significantly enhanced n-butanol production and the ratio of butanol/1,3-propanediol. In pH-controlled batch culture at pH?=?6, butyric acid addition had a negative effect on growth and did not lead to a higher n-butanol productivity. On the other hand, mixed substrate fermentation using glucose and glycerol enhanced the growth and acid production significantly. Glucose limitation in the mixed substrate fermentation led to the reduction or inhibition of the glycerol consumption by the growing bacteria. Therefore, for the optimal growth and n-butanol production by C. pasteurianum, a limitation of either substrate should be avoided. Under optimized batch conditions, n-butanol concentration and maximum productivity achieved were 21 g/L, and 0.96 g/L?×?h, respectively. In comparison, mixed substrate fermentation using biomass hydrolysate and glycerol gave a n-butanol concentration of 17 g/L with a maximum productivity of 1.1 g/L?×?h. In terms of productivity and final n-butanol concentration, the results demonstrated that C. pasteurianum DSMZ 525 is well suitable for n-butanol production from mixed substrates of biomass hydrolysate and glycerol and represents an alternative promising production strain.  相似文献   

11.
A bioenergetics model was developed from observed consumption, respiration and growth rates for zebrafish Danio rerio across a range (18–32° C) of water temperatures, and evaluated with a 50 day laboratory trial at 28° C. No significant bias in variable estimates was found during the validation trial; namely, predicted zebrafish mass generally agreed with observed mass.  相似文献   

12.
Production of biphenomycin A by Streptomyces griseorubiginosus 43708 was stimulated by a mixed culture with a partner strain, Pseudomonas maltophilia 1928. This stimulatory effect on biphenomycin A accumulation by the mixed culture was caused by the enzyme activity which strain 1928 possessed. It is suggested that in a mixed culture strain 43708 produces a precursor of biphenomycin A in culture broth and that strain 1928 converts the precursor to biphenomycin A.  相似文献   

13.
Production of biphenomycin A by Streptomyces griseorubiginosus 43708 was stimulated by a mixed culture with a partner strain, Pseudomonas maltophilia 1928. This stimulatory effect on biphenomycin A accumulation by the mixed culture was caused by the enzyme activity which strain 1928 possessed. It is suggested that in a mixed culture strain 43708 produces a precursor of biphenomycin A in culture broth and that strain 1928 converts the precursor to biphenomycin A.  相似文献   

14.
Summary The batch fermentation of whey permeate to lactic acid was improved by supplementing the broth with enzyme-hydrolyzed whey protein. A mathematical model based on laboratory results predicts to a 99% confidence limit the kinetics of this fermentation. Cell growth, acid production and protein and sugar use rates are defined in quantifiable terms related to the state of cell metabolism. The model shows that the constants of the Leudeking-Piret model are not true constants, but must vary with the medium composition, and especially the peptide average molecular weight. The kinetic mechanism on which the model is based also is presented.Nomenclature K i lactic acid inhibition constant (g/l) - K pr protein saturation constant during cell growth (g/l) - K pr protein saturation constant during maintenance (g/l) - K s lactose saturation constant (g/l) - [LA] lactic acid concentration (g/l) - [PR] protein concentration (g/l) - [S] lactose concentration (g/l) - t time (h) - [X] cell mass concentration (g/l) - , fermentation constants of Leudeking and Piret - specific growth rate (l/h) - Y g, LA/S acid yield during cell growth (g acid/g sugar) - Y m, LA/S acid yield during maintenance (g acid/g sugar) - Y x/pr yield (g cells/g protein) - specific sugar use rate during cell growth (g sugar/h·g cell) - specific sugar use rate during maintenance (g sugar/h·cell)  相似文献   

15.
Applied Microbiology and Biotechnology - The mixed culture fermentation is an important environmental biotechnology that converts biodegradable organic wastes to valuable chemicals such as...  相似文献   

16.
17.
The objective of this study was to examine the applicability of mixed cultures for 1,3-propanediol (1,3-PDO) production from crude glycerol. Three different sources of mixed cultures were tested, where the mixed culture from a municipal wastewater treatment plant showed the best results. 1,3-PDO can be produced as the main product in this mixed culture with typical organic acids like acetic and butyric acids as by-products. The yield was in the range of 0.56–0.76 mol 1,3-PDO per mol glycerol consumed depending on the glycerol concentration. A final product concentration as high as 70 g/L was obtained in fed-batch cultivation with a productivity of 2.6 g/L h. 1,3-PDO can be kept in the culture several days after termination of the fermentation without being degraded. Degradation tests showed that 1,3-PDO is degraded much slower than other compounds in the fermentation broth. In comparison to 1,3-PDO production in typical pure cultures, the process developed in this work with a mixed culture achieved the same levels of product titer, yield and productivity, but has the decisive advantage of operation under complete non-sterile conditions. Moreover, a defined fermentation medium without yeast extract can be used and nitrogen gassing can be omitted during cultivation, leading to a strong reduction of investment and production costs.  相似文献   

18.
The present work aimed to characterize and optimize the submerged fermentation of broken rice for lactic acid (LA) production using undefined mixed culture from dewatered activated sludge. A microorganism with amylolytic activity, which also produces LA, Lactobacillus amylovorus, was used as a control to assess the extent of mixed culture on LA yield. Three level full factorial designs were performed to optimize and define the influence of fermentation temperature (20–50?°C), gelatinization time (30–60 min) and broken rice concentration in culture medium (40–80 g L?1) on LA production in pure and undefined mixed culture. LA production in mixed culture (9.76 g L?1) increased in sixfold respect to pure culture in optimal assessed experimental conditions. The optimal conditions for maximizing LA yield in mixed culture bioprocess were 31?°C temperature, 45 min gelatinization time and 79 g L?1 broken rice concentration in culture medium. This study demonstrated the positive effect of undefined mixed culture from dewatered activated sludge to produce LA from culture medium formulated with broken rice. In addition, this work establishes the basis for an efficient and low-cost bioprocess to manufacture LA from this booming agro-industrial by-product.  相似文献   

19.
为了提高有机酸的浓度,探讨污泥产酸工业化的可行性,考察了三种产气抑制剂对污泥和食 品废弃物混合发酵的VFA浓度及其组成、底物转化率、产气量及产甲烷势的影响.结果表明 ,采用BES、氯仿和碱(pH10)三种手段可以有效抑制发酵后期产气作用,提高底物产酸转化率,并且对有机酸组成也有一定影响.  相似文献   

20.
A bioenergetic model for Mysis growth and consumption is presentedand used to calculate seasonal patterns of food consumptionby Mysis mixta at two stations in a coastal area of the northernBaltic Sea. Calculated specific consumption rates ranged from19%/day in small juveniles during the spring to 2%/day in adultsduring the winter. Gross conversion efficiencies on an energybasis were 26–34% in the spring and summer, 9–10%in the fall, and negative during the winter. These values areconsistent with experimental results available in the literature.Changes in stomach content over the year and differences instomach content between the two stations were similar to theseasonal patterns of daily food intake indicated by the model.The estimated weight of the stomach content from animals caughtat night corresponded to 9% of modeled daily consumption duringthe summer and fall. This is consistent with gut passage timesreported in the literature for feeding mysids but not with gutpassage times from starving mysids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号