首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recombination in circulating enteroviruses   总被引:7,自引:0,他引:7       下载免费PDF全文
Recombination is a well-known phenomenon for enteroviruses. However, the actual extent of recombination in circulating nonpoliovirus enteroviruses is not known. We have analyzed the phylogenetic relationships in four genome regions, VP1, 2A, 3D, and the 5' nontranslated region (NTR), of 40 enterovirus B strains (coxsackie B viruses and echoviruses) representing 11 serotypes and isolated in 1981 to 2002 in the former Soviet Union states. In the VP1 region, strains of the same serotype expectedly grouped with their prototype strain. However, as early as the 2A region, phylogenetic grouping differed significantly from that in the VP1 region and indicated recombination within the 2A region. Moreover, in the 5' NTR and 3D region, only 1 strain of 40 grouped with its prototype strain. Instead, we observed a major group in both the 5' NTR and the 3D region that united most (in the 5' NTR) or all (in the 3D region) of the strains studied, regardless of the serotype. Subdivision within that major group in the 3D region correlated with the time of virus isolation but not with the serotype. Therefore, we conclude that a majority, if not all, circulating enterovirus B strains are recombinants relative to the prototype strains, isolated mostly in the 1950s. Moreover, the ubiquitous recombination has allowed different regions of the enterovirus genome to evolve independently. Thus, a novel model of enterovirus genetics is proposed: the enterovirus genome is a stable symbiosis of genes, and enterovirus species consist of a finite set of capsid genes responsible for different serotypes and a continuum of nonstructural protein genes that seem to evolve in a relatively independent manner.  相似文献   

2.
Recombination between two strains is a known phenomenon for enteroviruses replicating within a single cell. We describe a recombinant strain recovered from human stools, typed as coxsackievirus B4 (CV-B4) and CV-B3 after partial sequencing of the VP1 and VP2 coding regions, respectively. The strain was neutralized by a polyclonal CV-B3-specific antiserum but not by a CV-B4-specific antiserum. The nucleotide sequence analysis of the whole structural genomic region showed the occurrence of a recombination event at position 1950 within the VP3 capsid gene, in a region coding for the 2b antigenic site previously described for CV-B3. This observation evidences for the first time the occurrence of an interserotypic recombination within the VP2-VP3-VP1 capsid region between two nonpoliovirus enterovirus strains. The neutralization pattern suggests that the major antigenic site is located within the VP2 protein.  相似文献   

3.
The epidemiology and molecular characteristics of human enterovirus B (HEV-B) associated with hand, foot and mouth disease (HFMD) outbreaks in China are not well known. In the present study, we tested 201 HEV isolates from 233 clinical specimens from patients with severe HFMD during 2010–2011 in Linyi, Shandong, China. Of the 201 isolates, 189 were fully typed and 18 corresponded to HEV-B species (six serotypes CVA9, CVB1, CVB4, Echo 6, Echo 25 and Echo 30) using sensitive semi-nested polymerase chain reaction analysis of VP1 gene sequences. Phylogenetic analysis based on the VP1 region showed that eight E30SD belonged to a novel sub-genogroup D2; E25SD belonged to a novel sub-genogroup D6; E6SD belonged to sub-lineage C6 and five CVB1SD belonged to subgroup 4C; and B4SD belonged sub-lineage D2. The full viral genomes of the CVB1SD, E6SD, E25SD and E30SD isolates were sequenced. Analysis of phylogenetic and similarity plots indicated that E25SD recombined with E25-HN-2, E30FDJS03 and E4AUS250 at noncontiguous P2A–P3D regions, while E30SD, E30FDJ03, E25-HN-2 and E9 DM had shared sequences in discrete regions of P2 and P3. Both E6SD and B1SD shared sequences with E1-HN, B4/GX/10, B5-HN, and A9-Alberta in contiguous regions of most of P2 and P3. Genetic algorithm recombination detection analysis further confirmed the existence of multiple potential recombination points. In conclusion, analysis of the complete genomes of E25SD, E30SD, CVB1SD and E6SD isolated from HFMD patients revealed that they formed novel subgenogroup. Given the prevalence and recombination of these viruses in outbreaks of HFMD, persistent surveillance of HFMD-associated HEV-B pathogens is required to predict potential emerging viruses and related disease outbreaks.  相似文献   

4.
Type 1 wild-vaccine recombinant polioviruses sharing a 367-nucleotide (nt) block of Sabin 1-derived sequence spanning the VP1 and 2A genes circulated widely in China from 1991 to 1993. We surveyed the sequence relationships among 34 wild-vaccine recombinants by comparing six genomic intervals: the conserved 5'-untranslated region (5'-UTR) (nt 186 to 639), the hypervariable portion of the 5'-UTR (nt 640 to 742), the VP4 and partial VP2 genes (nt 743 to 1176), the VP1 gene (nt 2480 to 3385), the 2A gene (nt 3386 to 3832), and the partial 3D gene (nt 6011 to 6544). The 5'-UTR, capsid (VP4-VP2 and VP1), and 2A sequence intervals had similar phylogenies. By contrast, the partial 3D sequences could be distributed into five divergent genetic classes. Most (25 of 34) of the wild-vaccine recombinant isolates showed no evidence of additional recombination beyond the initial wild-Sabin recombination event. Eight isolates from 1992 to 1993, however, appear to be derived from three independent additional recombination events, and one 1993 isolate was derived from two consecutive events. Complete genomic sequences of a representative isolate for each 3D sequence class demonstrated that these exchanges had occurred in the 2B, 2C, and 3D genes. The 3D gene sequences were not closely related to those of the Sabin strains or 53 diverse contemporary wild poliovirus isolates from China, but all were related to the 3D genes of species C enteroviruses. The appearance within approximately 2.5 years of five recombinant classes derived from a single ancestral infection illustrates the rapid emergence of new recombinants among circulating wild polioviruses.  相似文献   

5.
The species Human enterovirus B (HEV-B) in the family Picornaviridae consists of coxsackievirus A9; coxsackieviruses B1 to B6; echoviruses 1 to 7, 9, 11 to 21, 24 to 27, and 29 to 33; and enteroviruses 69 and 73. We have determined complete genome sequences for the remaining 22 HEV-B serotypes whose sequences were not represented in public databases and analyzed these in conjunction with previously available complete sequences in GenBank. Members of HEV-B were monophyletic relative to all other human enterovirus species in all regions of the genome except in the 5'-nontranslated region (NTR), where they are known to cluster with members of HEV-A. Within HEV-B, phylogenies constructed from the structural (P1) and nonstructural regions of the genome (P2 and P3) are incongruent, suggesting that recombination had occurred. Similarity plots and bootscanning analysis across the complete genome identified multiple sites at which the phylogeny of a given strain's sequence shifted, indicating potential recombination points. These points are distributed in the 5'-NTR and throughout P2 and P3, but no sites with >80% bootstrap support were identified within the capsid. Individual sequence comparisons and phylogenetic analyses suggest that members of HEV-B have recombined with one another on multiple occasions, resulting in a complex mosaic of sequences derived from multiple parental viruses in the nonstructural regions of the genome. We conclude that RNA recombination is a common mechanism for enterovirus evolution and that recombination within the nonstructural regions of the genome (P2 and P3) has been observed only among members of the same species.  相似文献   

6.
Enteroviruses are members of the family Picornaviridae that cause widespread infections in human and other mammalian populations. Enteroviruses are genetically and antigenically highly variable, and recombination within and between serotypes contributes to their genetic diversity. To investigate the dynamics of the recombination process, sequence phylogenies between three regions of the genome (VP4, VP1, and 3Dpol) were compared among species A and B enterovirus variants detected in a human population-based survey in Scotland between 2000 and 2001, along with contemporary virus isolates collected in the same geographical region. This analysis used novel bioinformatic methods to quantify phylogenetic compatibility and correlations with serotype assignments of evolutionary trees constructed for different regions of the enterovirus genome. Species B enteroviruses showed much more frequent, time-correlated recombination events than those found for species A, despite the equivalence in population sampling, concordant with a linkage analysis of previously characterized enterovirus sequences obtained over longer collection periods. An analysis of recombination among complete genome sequences by computation of a phylogenetic compatibility matrix (PCM) demonstrated sharply defined boundaries between the VP2/VP3/VP1 block and sequences to either side in phylogenetic compatibility. The PCM also revealed equivalent or frequently greater degrees of incompatibility between different parts within the nonstructural region (2A-3D), indicating the occurrence of extensive recombination events in the past evolution of this part of the genome. Together, these findings provide new insights into the dynamics of species A and B enterovirus recombination and evolution and into the contribution of structured sampling to documenting reservoirs, emergence, and spread of novel recombinant forms in human populations.  相似文献   

7.
Nucleotide sequencing and phylogenetic analysis of 10 recognized prototype strains of the porcine enterovirus (PEV) cytopathic effect (CPE) group I reveals a close relationship of the viral genomes to the previously sequenced strain F65, supporting the concept of a reclassification of this virus group into a new picornavirus genus. Also, nucleotide sequences of the polyprotein-encoding genome region or the P1 region of 28 historic strains and recent field isolates were determined. The data suggest that several closely related but antigenically and molecular distinct serotypes constitute one species within the proposed genus Teschovirus. Based on sequence data and serological data, we propose a new serotype with strain Dresden as prototype. This hitherto unrecognized serotype is closely related to porcine teschovirus 1 (PTV-1, former PEV-1), but induces type-specific neutralizing antibodies. Sequencing of field isolates collected from animals presenting with neurological disorders prove that other serotypes than PTV-1 may also cause polioencephalomyelitis of swine.  相似文献   

8.
Human enteroviruses consist of more than 60 serotypes, reflecting a wide range of evolutionary divergence. They have been genetically classified into four clusters on the basis of sequence homology in the coding region of the single-stranded RNA genome. To explore further the genetic relationships between human enteroviruses and to characterize the evolutionary mechanisms responsible for variation, previously sequenced genomes were subjected to detailed comparison. Bootstrap and genetic similarity analyses were used to systematically scan the alignments of complete genomic sequences. Bootstrap analysis provided evidence from an early recombination event at the junction of the 5' noncoding and coding regions of the progenitors of the current clusters. Analysis within the genetic clusters indicated that enterovirus prototype strains include intraspecies recombinants. Recombination breakpoints were detected in all genomic regions except the capsid protein coding region. Our results suggest that recombination is a significant and relatively frequent mechanism in the evolution of enterovirus genomes.  相似文献   

9.
The nucleotide sequence of coxsackievirus B6 (CVB6) has been determined, and the nucleotides encoding the 5' nontranslated region (5' NTR) and virion polypeptides (VP4, 2, 3 and 1) were compared with other serotype CVBs. An Unweighted Pair-Group Method Analysis (UPGMA) of phylogenetic trees indicated that the 5' NTR of CVB6 locates on an independent branch from the other CVBs. The tree based on the amino acid sequences showed that CVB6 has close correlation with CVB4 in the VP4 and VP2 regions, with CVB1 and CVB5 in the VP3 region, and with CVB5 in the VP1 region. Amino acid sequences of variable regions within the VP2, VP3, and VP1 of CVB6 were unique among CVBs. Thus, by comparison of the nucleotide and amino acid sequences of these variable regions, CVB6 can be easily distinguished from other serotypes. In addition, serine, instead of glycine, was found to locate at the amino-terminus of the VP1 region of CVB6, indicating that CVB6 has a unique cleavage site (i.e., glutamine/serine instead of glutamine/glycine) for proteinase 3C of Picornaviridae.  相似文献   

10.
Bluetongue virus (BTV), a member of genus Orbivirus, family Reoviridae, is non-enveloped with double shelled structure and 10 segmented double stranded RNA genome. The RNA segment L2 encodes an outer capsid serotype specific viral protein VP2. BTV serotype 1 (BTV-1) specific novel primer pair, forward primer (1240-1271 bp) and reverse primer (1844-1813 bp), was designed using VP2 gene sequences available in GenBank to amplify 1240-1844 bp region because two hypervariable and three conserved regions have been reported within these 604 nucleotides. This primer pair successfully amplified cell culture adapted six Indian isolates of BTV-1. The 604 bp PCR product of VP2 gene of BTV-1 Avikanagar (A), Chennai (C) and Sirsa 3 (S3) Indian isolates were cloned in pPCR-Script Amp SK (+) vector and transformed into XL10-Gold Kan ultracompetent Epicurian coli cells. The positive clones selected by blue-white screening and colony touch PCR were sequenced. BTV-1A, C and S3 isolates revealed 99% nucleotide sequence identity within 1304-1844 bp region of VP2 gene. The partial VP2 gene sequences (1240-1844 bp region) revealed that BTV-1 Indian isolates were 89% identical with Australian (AUS) BTV-1 isolates while the identity with South African (SA) BTV-1 isolate was 75%. Phylogenetically, three BTV-1 Indian isolates formed one group which is closely related to BTV-1AUS isolates followed by BTV-1SA, BTV-2, 9, 23, 13, 17, 10 and 11 isolates from different parts of world. Based on partial VP2 gene sequences, it is concluded that Indian isolates of BTV-1 are closely related to BTV-1AUS isolates than BTV-1SA and other serotypes.  相似文献   

11.
Complete nucleotide sequences which code for the capsid protein VP1 of two foot-and-mouth disease virus serotypes, O1Campos/Brazil/58 and C3Indaial/Brazil/71, have been determined. Ten available VP1 sequences (three serotype O, three serotype C, and four serotype A) were aligned and compared. Our evidence suggests that O1BFS/Britain/68 and O1K/Germany/66 are closely related to O1Campos/Brazil/58. Significant variations were observed between the nucleotide sequences of C3Indaial determined by two different laboratories. These differences are probably the result of virus adaptation and propagation in different laboratories. In one of the isolates (C3Biogen), a 13-base-pair stem and 13-base-pair loop structure is located in the 134-158 amino acid variable region. Isolates of different serotypes differ at two highly variable regions, amino acid positions 42-60 and 134-158, but isolates of the same serotype show major differences only in the variable region between amino acids 134 and 158. Since the remaining amino acid sequence of VP1 is highly conserved, we conclude that the 134-158 amino acid variable region is involved in subtype specificity, whereas both variable regions contribute to serotype differences.  相似文献   

12.
Bluetongue, an arthropod borne viral disease of wild and domestic ruminants, causes heavy economic losses throughout the world. In the present study, full-length VP7 gene of Indian bluetongue virus (BTV) serotype 23 was sequenced and compared with prototype strains of BTV reported from different countries. Nucleotide sequence analysis of VP7 gene revealed Indian BTV serotype 23 to have 1154 nucleotides with the deletion of two nucleotides at 3' non-coding region and a unique amino acid change 211S-N. The Indian virus also demonstrated a maximum similarity of 94.2% with Australian serotype 1 and a minimum similarity of 67.4% with Australian serotype 15. However, at deduced amino acid level, it had maximum similarity of 99.7% and a minimum of 82.5% with Chinese serotypes 1, 2 and 4 and Australian serotype 15, respectively. Deduced amino acid sequence analysis of putative receptor binding domain (121-249) revealed all the nine hydrophilic domains to be conserved across the serotypes. Functional motifs present in VP7 protein were also conserved in almost all the BTV serotypes including Indian serotype 23. Phylogenetic analysis based on VP7 gene sequence revealed Indian BTV serotype 23 segregating into a monophyletic group along with Australian serotype 1 and Chinese serotypes 1, 2 and 4, indicating its close evolutionary relationship with these Australian and Chinese serotypes.  相似文献   

13.
为明确源自急性弛缓性麻痹(AFP)病例的HEV-B组病毒山东地方株的基因型分布,探讨其优势基因型的变迁与疾病暴发之间的关系,本研究对山东省1994年~2008年AFP监测系统分离到的HEV-B组病毒进行了VP1区核酸扩增和序列测定。序列测定结果显示HEV-B山东地方株共包括29种基因型,其中CVA 1种(CVA9),CVB 5种(CVB1~5),ECHO 20种以及新型肠道病毒EV73、75、97。其中ECHO11、CVB3、ECHO6、ECHO14、ECHO25是AFP监测系统中最常分离到的B组病毒。同源性比较显示,相同血清型HEV-B山东地方株型内核苷酸同源性最小75.4%,最大99.6%,与原型株核苷酸同源性最小73.8%,最大85.2%,但氨基酸变异不大。研究表明,不同基因型病毒具有不同的时间循环模式,相同基因型毒株内部根据其遗传距离的远近又可划分为不同的基因亚型,从而帮助确定HEV的传播途径和传播范围。  相似文献   

14.
The 65 human enterovirus serotypes are currently classified into five species: Poliovirus (3 serotypes), Human enterovirus A (HEV-A) (12 serotypes), HEV-B (37 serotypes), HEV-C (11 serotypes), and HEV-D (2 serotypes). Coxsackie A virus (CAV) serotypes 1, 11, 13, 15, 17, 18, 19, 20, 21, 22, and 24 constitute HEV-C. We have determined the complete genome sequences for the remaining nine HEV-C serotypes and compared them with the complete sequences of CAV21, CAV24, and the polioviruses. The viruses were most diverse in the capsid region (4 to 36% amino acid difference). A high degree of capsid sequence conservation (96% amino acid identity) suggests that CAV15 and CAV18 should be classified as strains of CAV11 and CAV13, respectively. In the 3CD region, CAV1, CAV19, and CAV22 differed from one another by only 1.2 to 1.4% and CAV11, CAV13, CAV17, CAV20, CAV21, CAV24, and the polioviruses differed from one another by only 1.2 to 3.6%. The two groups, however, differed from one another by 14.6 to 16.2%. The polioviruses as a group were monophyletic only in the capsid region. Only one group of serotypes (CAV1, CAV19, and CAV22) was consistently monophyletic in multiple genome regions. Incongruities among phylogenetic trees based on different genome regions strongly suggest that recombination has occurred between the polioviruses, CAV11, CAV13, CAV17, and CAV20. The close relationship among the polioviruses and CAV11, CAV13, CAV17, CAV20, CAV21, and CAV24 and the uniqueness of CAV1, CAV19, and CAV22 suggest that revisions should be made to the classification of these viruses.  相似文献   

15.
Group A human rotaviruses (HRVs) are the major cause of severe viral gastroenteritis in infants and young children. To gain insight into the level of genetic variation among HRVs, we determined the genome sequences for 10 strains belonging to different VP7 serotypes (G types). The HRVs chosen for this study, D, DS-1, P, ST3, IAL28, Se584, 69M, WI61, A64, and L26, were isolated from infected persons and adapted to cell culture to use as serotype references. Our sequencing results revealed that most of the individual proteins from each HRV belong to one of three genotypes (1, 2, or 3) based on their similarities to proteins of genogroup strains (Wa, DS-1, or AU-1, respectively). Strains D, P, ST3, IAL28, and WI61 encode genotype 1 (Wa-like) proteins, whereas strains DS-1 and 69M encode genotype 2 (DS-1-like) proteins. Of the 10 HRVs sequenced, 3 of them (Se584, A64, and L26) encode proteins belonging to more than one genotype, indicating that they are intergenogroup reassortants. We used amino acid sequence alignments to identify residues that distinguish proteins belonging to HRV genotype 1, 2, or 3. These genotype-specific changes cluster in definitive regions within each viral protein, many of which are sites of known protein-protein interactions. For the intermediate viral capsid protein (VP6), the changes map onto the atomic structure at the VP2-VP6, VP4-VP6, and VP7-VP6 interfaces. The results of this study provide evidence that group A HRV gene constellations exist and may be influenced by interactions among viral proteins during replication.  相似文献   

16.
The coxsackieviruses type B3 (CVB3) are members of the genus Enterovirus of the family Picornaviridae. They are the commonest cause of chronic myocarditis and dilated cardiomyopathy. However, there is still no effective method for diagnosing CVB3 infection in humans. Here, a fast and accurate system that uses a capsid‐protein‐specific peptide sequence to detect CVB3 in the sera of patients with viral myocarditis was established. The peptide sequence was selected from the whole CVB3 capsid protein sequence by computationally predicting fragments with high antigenicity and low hydrophobicity. Two of eight possible peptide sequences were selected and commercially synthesized. The synthesized peptides encoded either the VP2 or VP1 capsid protein and induced immunoglobulin G antibody expression in immunized rabbits. Anti‐VP2 and anti‐VP1 sera detected the viral proteins extracted from CVB3‐infected HeLa cells. The newly synthesized peptides successfully induced antibody production. These peptides, applied in an ELISA system, detected anti‐CVB3 antibodies in virus‐infected mouse serum. Moreover, an ELISA system based on the VP2 peptide detected CVB3 infection in patients with positively identified CVB3‐induced fulminant myocarditis. These results indicate that these new peptides specifically interact with anti‐CVB3 IgG antibodies in mouse and human sera. This ELISA system should be useful for the clinical diagnosis of enterovirus‐induced myocarditis.  相似文献   

17.
Enterovirus 80 (EV80) is a newly identified serotype of the species Human enterovirus B. An EV80 strain designated HZ01/SD/CHN/2004 was isolated from an acute flaccid paralysis case in Shandong, China, in 2004. Complete genome comparison revealed 79.5% similarity with the prototype strain and an insertion of 36 nucleotides in the 3′ end of the VP1 coding region. Intertypic recombination with other serotypes was observed. This is the first report of the complete genome of EV80 in China.  相似文献   

18.
Bluetongue virus (BTV), a member of genus Orbivirus, a family Reoviridae, is a non-enveloped with double shelled structure and ten segmented double stranded (ds) RNA genome. The RNA segment S7 encodes an inner capsid serogroup specific viral protein VP7. To amplify coding region of VP7 gene of BTV, new primers, forward primer (18-38 bp) and reverse primer (1156-1136 bp), were designed using VP7 gene sequences available in GenBank. This primer pair successfully amplified cell culture adapted Indian isolates of BTV belonging to two different serotypes 1 and 18. The coding sequences of two Indian isolates of BTV (BTV-1H and BTV-18B) were cloned into pPCR Script-Amp SK (+) plasmid vector and transformed into XL10-Gold Kan ultracompetent E. coli cells. The positive clones selected by blue-white screening and colony touch PCR were sequenced. The sequence analysis revealed that there was 93-97% nucleotide sequence identity in VP7 gene of three different Indian serotypes of BTV. The VP7 gene sequences of Indian isolates have comparatively less sequence homology (< 80%) with American (US), and French isolates compared to South African (SA), Australian (AUS) and Chinese (PRC) isolates. In silico restriction enzyme profile analysis of VP7 gene sequences revealed that Indian isolates of BTV-1 can be differentiated from other BTV-1 isolates reported from SA, AUS and PRC using TaqI. Similarly the Indian isolates of BTV belonging to three different serotypes can be differentiated using EcoRI, Hae III and TaqI restriction enzymes.  相似文献   

19.
将编码柯萨奇B3病毒(CVB3)衣壳蛋白VP1和VP2的基因,分别克隆到具有7.5k启动子的痘苗病毒表达载体pGJP5上;将CVB3衣壳蛋白全基因克隆到具有T7启动子的痘苗表达载体pTM1上,并筛先到相应的重组痘苗病毒VVP1、VVP2和VVP/4/2/3/1。VVP1和VVP2稳定表达产物为CVB3衣壳蛋白VP1和VP2,而VVP4/2/3/1为一无分泌性的多聚蛋白,且这三种表达产物均属无分泌性  相似文献   

20.
Aquatic birnaviruses, such as infectious pancreatic necrosis virus (IPNV), cause serious diseases in a variety of fish species used worldwide in aquaculture and have also been isolated from a variety of healthy fish and shellfish species. These viruses exhibit a high degree of antigenic heterogeneity and variation in biological properties such as pathogenicity, host range, and temperature of replication. To better understand genetic and biological diversity among these viruses, the nucleotide and deduced amino acid sequences were determined from cDNA of the large open reading frame (ORF) of genome segment A of the 9 type strains of Serogroup A and 4 other representative strains of Serotype A1, the predominant serotype in the United States. In addition, nucleotide and deduced amino acid sequences were determined for the VP2 coding region of a variety of isolates representing 5 of the 9 serotypes. VP2 is the major outer capsid protein of aquatic birnaviruses. RT-PCR was used to amplify a 2904 bp cDNA fragment including all but a few bp of the large ORF of genome segment A or a 1611 bp fragment representing the entire VP2 coding region. Nucleotide and deduced amino acid sequences were determined from the PCR products. Pairwise comparisons were made among our data and 2 other aquatic birnavirus sequences previously published. Several hypervariable regions were identified within the large ORF. The most divergent pair of viruses exhibited a similarity of 80.1% in the deduced amino acid sequence encoded by the large ORF. Genomic relationships revealed in a phylogenetic tree constructed from comparison of the deduced amino acid sequences of the large ORF demonstrated that these viruses were clustered into several genogroups. Phylogenetic comparison of the deduced amino acid sequences of the VP2 coding region of 28 aquatic birnavirus isolates, including the type strains of all 9 serotypes, demonstrated 6 genogroups, some of which were comprised of several genotypes. The most divergent pair of viruses exhibited a similarity of 81.2% in the deduced amino acid sequence from the VP2 coding region. In contrast to previous studies of much shorter genomic sequences within the C-terminus-pVP2/NS junction coding region, these genogroups based on the entire large ORF or the VP2 coding region generally correlated with geographical origin and serological classification. Isolates from the major Canadian serotypes were more closely related to the European isolates than to isolates from the United States.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号