首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A 12-residue marinostatin [MST(1-12): (1)FATMRYPSDSDE(12)] which contains two ester linkages of Thr(3)-Asp(9) and Ser(8)-Asp(11) strongly inhibits subtilisin. In order to study the relationship between the inhibitory activity, structure, and stability of MST, MST analogs were prepared by changing ester linkages to a disulfide linkages. The analogs without the disulfide linkage between 3 and 9 positions lost their inhibitory activity. The K(i) value of 1SS(C(3)-C(9)) ((1)FACMRYPSCSDE(12)), which has a single disulfide linkage of Cys(3)-Cys(9) was comparable with those of MST(1-12) and MST-2SS ((1)FACMRYPCCSCE(12)), a doubly linked analog of Cys(3)-Cys(9) and Cys(8)-Cys(11). However, 1SS(C(3)-C(9)) and MST-2SS showed temporary inhibition, but not MST(1-12): These analogs were inactivated after incubation with subtilisin for 30 min, and were specifically hydrolyzed at the reactive site. (1)H NMR study showed that 1SS(C(3)-C(9)) has two conformations, which contain a cis- (70%) or trans- (30%) Pro residue, while MST-2SS as well as MST(1-12) takes a single conformation containing only a cis-Pro residue. Hydrogen-deuterium exchange rate of the Arg(5) (P1') NH proton of the MST analogs was about 100 times faster than that of MST(1-12). These results indicate that the linkage between the positions 8 and 11 plays a role for fixing the cis-conformation of the Pro(7) residue, and that the linkage between 3 and 9 is indispensable for the inhibition, but not enough for stable protease-inhibitor complex.  相似文献   

2.
The bifunctional enzyme 6-phosphofructo-2-kinase/fructose-2, 6-bisphosphatase plays an essential role in the regulation of glucose metabolism by both producing and degrading Fru-2,6-P(2) via its distinct catalytic activities. The 6-PF-2-K and Fru-2,6-P(2)ase active sites are located in separate domains of the enzyme. The kinase domain is structurally related to the superfamily of mononucleotide binding proteins that includes adenylate kinase and the G-proteins. We have determined three new structures of the enzymatic monomer, each with a different ligand in the ATP binding site of the 6-PF-2-K domain (AMP-PNP, PO(4), and water). A comparison of these three new structures with the ATPgammaS-bound 6-PF-2-K domain reveals a rearrangement of a helix that is dependent on the ligand bound in the ATP binding site of the enzyme. This helix motion dramatically alters the position of a catalytic residue (Lys172). This catalytic cation is analogous to the Arg residue donated by the rasGAP protein, and the Arg residue at the core of the GTP or GDP sensing switch motion seen in the heterotrimeric G-proteins. In addition, a succinate molecule is observed in the Fru-6-P binding site. Kinetic analysis of succinate inhibition of the 6-PF-2-K reaction is consistent with the structural findings, and suggests a mechanism for feedback inhibition of glycolysis by citric acid cycle intermediates. Alterations in the 6-PF-2-K kinetics of several proteins mutated near both the switch and the succinate binding site suggest a mode of communication between the ATP- and F6P binding sites. Together with these kinetic data, these new structures provide insights into the mechanism of the 6-PF-2-K activity of this important bifunctional enzyme.  相似文献   

3.
Tissue factor pathway inhibitor (TFPI) inhibits the activity of coagulation factor VIIa and Xa through its K1 and K2 domain, respectively, and the inhibitory activity is enhanced by heparin. The function of the K3 domain of TFPI has not been established, but the domain probably harbors a heparin binding site (HBS-2). We determined the three-dimensional solution structure of the TFPI K3 domain (Glu182-Gly242) by heteronuclear multidimensional NMR. The results showed that the molecule is composed of one antiparallel beta-sheet and one alpha-helix, and in overall structure is very similar to the K2 domain, with the rms deviation of 1.55 A for the 58 defined C(alpha) positions. However, the surface electrostatic properties of both domains are different each other. The lack of inhibitory activity of the K3 domain is explained by the absence of electrostatic interaction with factor Xa over a large surface area. A titration experiment with size-fractionated heparin showed that a heparin binding site was located in the vicinity of the alpha-helix. In this region, a positively charged cluster is formed by Lys213, Lys232, and Lys240, and the negatively charged sulfate groups of heparin bind there. The enhancement of inhibitory activity by heparin probably was not due to a conformational change to TFPI itself. It is likely that heparin simply increases the local concentration of TFPI on the cell surface and stabilizes the initial complex that forms.  相似文献   

4.
Solution methods, using N-hydroxysuccinimide esters, were used to synthesize [Glu(NHNH2)4] oxytocin and [Glu(NHNH2)4, Lys8] vasopressin. In these analogs of neurohypophyseal hormones, the side-chain carboxamide function of a glutamine residue is formally replaced by a hydrazide group at position 4. The hormone analogs were assayed for uterototonic activity, milk ejection activity, antidiuretic activity, and rat pressor activity. The specific biological activities of the oxytocin and vasopressin analogs were decreased compared to the respective parent hormones in all assay systems.  相似文献   

5.
In this study, a series of mastoparan analogs were engineered based on the strategies of Ala and Lys scanning in relation to the sequences of classical mastoparans. Ten analog mastoparans, presenting from zero to six Lys residues in their sequences were synthesized and assayed for some typical biological activities for this group of peptide: mast cell degranulation, hemolysis, and antibiosis. In relation to mast cell degranulation, the apparent structural requirement to optimize this activity was the existence of one or two Lys residues at positions 8 and/or 9. In relation to hemolysis, one structural feature that strongly correlated with the potency of this activity was the number of amino acid residues from the C-terminus of each peptide continuously embedded into the zwitterionic membrane of erythrocytes-mimicking liposomes, probably due to the contribution of this structural feature to the membrane perturbation. The antibiotic activity of mastoparan analogs was directly dependent on the apparent extension of their hydrophilic surface, i.e., their molecules must have from four to six Lys residues between positions 4 and 11 of the peptide chain to achieve activities comparable to or higher than the reference antibiotic compounds. The optimization of the antibacterial activity of the mastoparans must consider Lys residues at the positions 4, 5, 7, 8, 9, and 11 of the tetradecapeptide chain, with the other positions occupied by hydrophobic residues, and with the C-terminal residue in the amidated form. These requirements resulted in highly active AMPs with greatly reduced (or no) hemolytic and mast cell degranulating activities.  相似文献   

6.
Structural requirements for conserved arginine of parathyroid hormone   总被引:2,自引:0,他引:2  
Arg-20 is one of two residues conserved in all peptides known to activate the parathyroid hormone (PTH) receptor. Previous studies have failed to find any naturally encoded analogues of residue 20 that had any adenylyl cyclase (AC) stimulating activity. In this work we have studied substitutions of Arg-20 with nonencoded amino acids and conformationally constrained analogues with side chains mimicking that of Arg. No analogue had more than 20% of the AC-stimulating ability of the natural Arg-20-bearing peptide. In descending order of activity, the most active analogues had (S)-4-piperidyl-(N-amidino)glycine (PipGly), norleucine (Nle), citrulline (Cit), or ornithine (Orn) at residue 20. Analogues with Arg-20 substituted with L-4-piperidyl-(N-amidino)alanine, Lys, Glu, Ala, Gln, (S)-2-amino-4-[(2-amino)pyrimidinyl]butanoic acid, or L-(4-guanidino)phenylalanine had very low or negligible activity. Low or negligible activities of Lys or Orn analogues suggested ionic interactions play a minor role in the Arg interaction with the receptor. The conformational constraints imposed by the PipGly ring had a negative effect on its ability to substitute for Arg. The side-chain H-bonding potential of the Cit ureimido group was likely an important factor in its mimicry of Arg. The increase in amphiphilicity, as demonstrated by its greater high-performance liquid chromatographic retention, and increased alpha-helix, as shown by circular dichroic spectroscopy, likely contributed to the activity of the Nle-20 analogue. The data demonstrated that specific H-bonding, hydrophobicity of the side chain, stabilization of alpha-helix, and possibly specific cation positioning were all important in the interaction of Arg-20 with receptor groups.  相似文献   

7.
Oh D  Shin SY  Lee S  Kang JH  Kim SD  Ryu PD  Hahm KS  Kim Y 《Biochemistry》2000,39(39):11855-11864
A 20-residue hybrid peptide CA(1-8)-MA(1-12) (CA-MA), incorporating residues 1-8 of cecropin A (CA) and residues 1-12 of magainin 2 (MA), has potent antimicrobial activity without toxicity against human erythrocytes. To investigate the effects of the Gly-Ile-Gly hinge sequence of CA-MA on the antibacterial and antitumor activities, two analogues in which the Gly-Ile-Gly sequence of CA-MA is either deleted (P1) or substituted with Pro (P2) were synthesized. The role of the tryptophan residue at position 2 of CA-MA on its antibiotic activity was also investigated using two analogues, in which the Trp2 residue of CA-MA is replaced with either Ala (P3) or Leu (P4). The tertiary structures of CA-MA, P2, and P4 in DPC micelles, as determined by NMR spectroscopy, have a short amphiphilic helix in the N-terminus and about three turns of alpha-helix in the C-terminus, with the flexible hinge region between them. The P1 analogue has an alpha-helix from Leu4 to Ala14 without any hinge structure. P1 has significantly decreased lytic activities against bacterial and tumor cells and PC/PS vesicles (3:1, w/w), and reduced pore-forming activity on lipid bilayers, while P2 retained effective lytic activities and pore-forming activity. The N-terminal region of P3 has a flexible structure without any specific secondary structure. The P3 modification caused a drastic decrease in the antibiotic activities, whereas P4, with the hydrophobic Leu side chain at position 2, retained its activities. On the basis of the tertiary structures, antibiotic activities, vesicle-disrupting activities, and pore-forming activities, the structure-function relationships can be summarized as follows. The partial insertion of the Trp2 of CA-MA into the membrane, as well as the electrostatic interactions between the positively charged Lys residues at the N-terminus of the CA-MA and the anionic phospholipid headgroups, leads to the primary binding to the cell membrane. Then, the flexibility or bending potential induced by the Gly-Ile-Gly hinge sequence or the Pro residue in the central part of the peptides may allow the alpha-helix in the C-terminus to span the lipid bilayer. These structural features are crucial for the potent antibiotic activities of CA-MA.  相似文献   

8.
By means of amino acid sequence alignment with class A beta-lactamases, the residues essential for the catalytic activity of the peptidoglycan transpeptidase of penicillin-binding protein 2 (PBP2) have been predicted to be Lys333, Asp447, and Lys544, in addition to the acylation site residue for the acyl-enzyme mechanism, Ser330. Accordingly, these residues were replaced by site-directed mutagenesis, and the resultant mutants were examined as to penicillin-binding activity and genetic complementation, which represent only the acylation step and the total reaction during transpeptidation, respectively. All the mutants at position 333 showed the complete loss of both the binding and complementation activities. Most of the mutants at position 447 retained the binding activity but lost the complementation activity, the exception being the D447E mutant, which retained both. The binding rates for various penicillins of the D447N mutant, which had lost the complementation activity, were almost identical to those of the wild type. The binding of the mutants at position 544 tended to require a higher penicillin concentration, and that of the K544H mutant required a lower pH. When the roles of the counterpart residues, Lys73, Glu166, and Lys234, in class A beta-lactamases were considered, the results suggested that Lys333 and Asp447 are essential for the acylation and acyl-transfer steps, respectively, and that Lys544 stabilizes the Michaelis complex through its side-chain positive charge.  相似文献   

9.
One of middle molecular substances (H-His-Pro-Ala-Glu-Asn-Gly-Lys-OH) and its two analogs, in which the proline residue in position 2 was replaced by glycine and the alanine residue in position 3 was replaced by valine exert a inhibition effect on in vitro E-rosette formation. Its synthetic two analogs showed diminished biological activity compared to native heptapeptide.  相似文献   

10.
Piscidin-1 (Pis-1) is a linear antibacterial peptide derived from mast cells of aquacultured hybrid striped bass that comprises 22 amino acids with a phenylalanine-rich amino-terminus. Pis-1 exhibits potent antibacterial activity against pathogens but is not selective for distinguishing between bacterial and mammalian cells. To determine the key residues for its antibacterial activity and those for its cytotoxicity, we investigated the role of each Phe residue near the N-terminus as well as the Val10 residue located near the boundary of the hydrophobic and hydrophilic sectors of the helical wheel diagram. Fluorescence dye leakage and tryptophan fluorescence experiments were used to study peptide-lipid interactions, showing comparable depths of insertion of substituted peptides in different membranes. Phe2 was found to be the most deeply inserted phenylalanine in both bacterial- and mammalian-mimic membranes. Each Phe was substituted with Ala or Lys to investigate its functional role. Phe2 plays key roles in the cytotoxicity as well as the antibacterial activities of Pis-1, and Phe6 is essential for the antibacterial activities of Pis-1. We also designed and synthesized a piscidin analog, Pis-V10K, in which Lys was substituted for Val10, resulting in an elevated amphipathic α-helical structure. Pis-V10K showed similar antibacterial activity (average minimum inhibitory concentration (MIC)  = 1.6 µM) to Pis-1 (average MIC  = 1.5 µM). However, it exhibited much lower cytotoxicity than Pis-1. Lys10-substituted analogs, Pis-F1K/V10K, Pis-F2K/V10K, and Pis-F6K/V10K in which Lys was substituted for Phe retained antibacterial activity toward standard and drug-resistant bacterial strains with novel bacterial cell selectivity. They exert anti-inflammatory activities via inhibition of nitric oxide production, TNF-α secretion, and MIP-1 and MIP-2 production. They may disrupt the binding of LPS to toll-like receptors, eventually suppressing MAPKs-mediated signaling pathways. These peptides may be good candidates for the development of peptide antibiotics with potent antibacterial activity but without cytotoxicity.  相似文献   

11.
The substitution of each constituent amino acid residue of gratisin (GR) with Ala residue indicated that each side chain structure of the constituent amino acid residues affect largely the antibiotic and hemolytic activities of GR. Among them, the substitution of Pro residues at positions 5 and 5′ with a cationic amino acid residues (Lys and Arg) results the high antibiotic activity and the low toxicity against human blood cells. Thus, we have found a novel position on the scaffold of GR at Pro5,5′ residues whose modification will significantly lower the unwanted hemolytic activity and enhance the desired antibiotic activity.  相似文献   

12.
We examined the effects of Escherichia coli ribosomal protein S12 mutations on the efficiency of cell-free protein synthesis. By screening 150 spontaneous streptomycin-resistant isolates from E. coli BL21, we successfully obtained seven mutants of the S12 protein, including two streptomycin-dependent mutants. The mutations occurred at Lys42, Lys87, Pro90 and Gly91 of the 30S ribosomal protein S12. We prepared S30 extracts from mutant cells harvested in the mid-log phase. Their protein synthesis activities were compared by measuring the yields of the active chloramphenicol acetyltransferase. Higher protein production (1.3-fold) than the wild-type was observed with the mutant that replaced Lys42 with Thr (K42T). The K42R, K42N, and K42I strains showed lower activities, while the other mutant strains with Lys87, Pro90 and Pro91 did not show any significant difference from the wild-type. We also assessed the frequency of Leu misincorporation in poly(U)-dependent poly(Phe) synthesis. In this assay system, almost all mutants showed higher accuracy and lower activity than the wild-type. However, K42T offered higher activity, in addition to high accuracy. Furthermore, when 14 mouse cDNA sequences were used as test templates, the protein yields of nine templates in the K42T system were 1.2-2 times higher than that of the wild-type.  相似文献   

13.
VmCT1 is a cationic antimicrobial peptide (AMP) from the venom of the scorpion Vaejovis mexicanus. VmCT1 and analogs were designed with single substitutions for verifying the influence of changes in physicochemical features described as important for AMPs antimicrobial and hemolytic activities, as well as their effect on VmCT1 analogs resistance against proteases action. The increase of the net positive charge by the introduction of an arginine residue in positions of the hydrophilic face of the helical structure affected directly the antimicrobial activity. Arg-substituted analogs presented activity against Gram-negative bacteria from the ESKAPE list of pathogens that were not observed for VmCT1. Additionally, peptides with higher net positive charge presented increased antimicrobial activity with values ranging from 0.39 to 12.5 μmol L−1 against Gram-positive and Gram-negative bacteria and fungi. The phenylalanine substitution by glycine (position 1), and the valine substitution by a proline residue (position 8) led to analogs with lower hemolytic activity (at concentrations 50 and 100 μmol L−1, respectively). These results revealed that it is possible to modulate the biological activities of VmCT1 derivatives by designing single substituted-analogs as prospective therapeutics against bacteria and fungi.  相似文献   

14.
Conantokin-R (con-R), a gamma-carboxyglutamate-containing 27-residue peptide, is a natural peptide inhibitor of the N-methyl-d-aspartate (NMDA) subtype glutamate receptor. Synthetic analogs of con-R were generated to evaluate the importance of the individual structural elements of this peptide in its NMDA receptor antagonist activity, measured by inhibition of the spermine-enhanced binding of the NMDA receptor-specific channel blocker, [(3)H]MK-801, to rat brain membranes. Progressive C-terminal truncations of the 27-residue peptide revealed stages of severe activity loss. These occurred at con-R[1-11] and con-R[1-7], corresponding to the deletions of Leu(12)-Pro(27) and Met(8)-Pro(27) respectively. A second set of analogs featured single Ala substitutions in the fully active con-R[1-17] fragment. The replacement of Met(8) and Leu(12) by Ala resulted in approximate 20- and 55-fold decreases of inhibitor potency, respectively. In addition to these two residues, the only other positions where a single Ala substitution led to substantial losses (from 11-fold to >1000-fold) of activity were those of the first five N-terminal amino acids. Based on the above findings, the binding epitope of con-R was localized to the N-terminal turn of the helix and other residues on one face along two subsequent turns. This contribution pattern of the side chains in activity closely resembles the results obtained with another member of this peptide family, conantokin-T. The secondary structure and metal ion binding properties of the con-R variants were also evaluated using circular dichroism spectroscopy. Divalent cation-dependent increases of alpha-helix content were observed in most analogs. However, analogs with replacement of Gla(11) and Gla(15), as well as truncation fragments shorter than 15 residues, lost the ability to be stabilized by metal ions. These results confirmed the location of the primary divalent cation binding locus at Gla(11) and Gla(15). Additional interactions were indicated by the reduced alpha-helix stability in the Ala analogs of Gla(4), Lys(7), and Arg(14).  相似文献   

15.
Bordetella adenylate cyclase toxin-hemolysin (CyaA, AC-Hly, or ACT) permeabilizes cell membranes by forming small cation-selective (hemolytic) pores and subverts cellular signaling by delivering into host cells an adenylate cyclase (AC) enzyme that converts ATP to cAMP. Both AC delivery and pore formation were previously shown to involve a predicted amphipathic alpha-helix(502-522) containing a pair of negatively charged Glu(509) and Glu(516) residues. Another predicted transmembrane alpha-helix(565-591) comprises a Glu(570) and Glu(581) pair. We examined the roles of these glutamates in the activity of CyaA. Substitutions of Glu(516) increased specific hemolytic activity of CyaA by two different molecular mechanisms. Replacement of Glu(516) by positively charged lysine residue (E516K) increased the propensity of CyaA to form pores, whereas proline (E516P) or glutamine (E516Q) substitutions extended the lifetime of open single pore units. All three substitutions also caused a drop of pore selectivity for cations. Substitutions of Glu(570) and Glu(581) by helix-breaking proline or positively charged lysine residue reduced (E570K, E581P) or ablated (E570P, E581K) AC membrane translocation. Moreover, E570P, E570K, and E581P substitutions down-modulated also the specific hemolytic activity of CyaA. In contrast, the E581K substitution enhanced the hemolytic activity of CyaA 4 times, increasing both the frequency of formation and lifetime of toxin pores. Negative charge at position 570, but not at position 581, was found to be essential for cation selectivity of the pore, suggesting a role of Glu(570) in ion filtering inside or close to pore mouth. The pairs of glutamate residues in the predicted transmembrane segments of CyaA thus appear to play a key functional role in membrane translocation and pore-forming activities of CyaA.  相似文献   

16.
To determine whether or not the CNS inhibitory activity of eel calcitonin (eCT) on adenylyl cyclase is the endocellular mechanism underlying the antinociceptive effect of the peptide, as shown for morphine analgesia, we administered Bordetella pertussis toxin (PTX) by intracerebroventricular (ICV) injection (0.5 microgram/rat) to block the receptor-mediated inhibition of adenylyl cyclase. In PTX-treated rats there was no change in eCT (2.5 micrograms/rat, ICV)-induced antinociceptive activity (hot-plate test) nor in eCT (100 ng/rat, ICV) inhibition of gastric acid secretion (Shay test) whereas morphine (5 micrograms/rat, ICV) analgesia was significantly reduced. In vitro studies showed no reduction of eCT binding in the CNS of rats treated with PTX in vivo. Moreover, PTX treatment did not change the inhibitory effect of eCT on adenylyl cyclase in isolated membranes from rat striatum in contrast with opiates (DAME and morphine) whose effects were lost. As PTX is known to inactivate the guanidine binding inhibitory protein Gi, these data suggest that a G protein, distinct from the Gi protein involved in the coupling of opiate receptors into a functional response, could be responsible for regulating the intracellular pathways resulting in eCT-induced antinociceptive effect and inhibition of gastric acid secretion.  相似文献   

17.
Gonadal function is controlled by lutropins and follitropins, heterodimeric cystine knot proteins that have nearly identical alpha-subunits. These heterodimeric proteins are stabilized by a portion of the hormone-specific beta-subunit termed the "seatbelt" that is wrapped around alpha-subunit loop 2 (alpha 2). Here we show that replacing human chorionic gonadotropin (hCG) alpha 2 residue Lys51 with cysteine or alanine nearly abolished its lutropin activity, an observation that implies that alpha Lys51 has a key role in hormone activity. The activity of the heterodimer containing alpha K51C, but not that containing alpha K51A, was increased substantially when beta-subunit seatbelt residue beta Asp99 was converted to cysteine. As had been reported by others, heterodimers containing alpha K51C and beta D99C were crosslinked by a disulfide. The finding that an intersubunit disulfide restored some of the activity lost by replacing alpha Lys51 suggests that this residue is not crucial for receptor binding or signaling and also that hCG and related hormones may be particularly sensitive to mutations that alter interactions between their subunits. We propose the unique structures of hCG and related family members may permit some subunit movement in the heterodimer, making it difficult to deduce key residues involved in receptor contacts simply by correlating the activities of hormone analogs with their amino acid sequences.  相似文献   

18.
The Bordetella adenylate cyclase toxin-hemolysin (CyaA, ACT, or AC-Hly) forms cation-selective membrane channels and delivers into the cytosol of target cells an adenylate cyclase domain (AC) that catalyzes uncontrolled conversion of cellular ATP to cAMP. Both toxin activities were previously shown to depend on post-translational activation of proCyaA to CyaA by covalent palmitoylation of the internal Lys983 residue (K983). CyaA, however, harbors a second RTX acylation site at residue Lys860 (K860), and the role of K860 acylation in toxin activity is unclear. We produced in E. coli the CyaA-K860R and CyaA-K983R toxin variants having the Lys860 and Lys983 acylation sites individually ablated by arginine substitutions. When examined for capacity to form membrane channels and to penetrate sheep erythrocytes, the CyaA-K860R acylated on Lys983 was about 1 order of magnitude more active than CyaA-K983R acylated on Lys860, although, in comparison to intact CyaA, both monoacylated constructs exhibited markedly reduced activities in erythrocytes. Channels formed in lipid bilayers by CyaA-K983R were importantly less selective for cations than channels formed by CyaA-K860R, intact CyaA, or proCyaA, showing that, independent of its acylation status, the Lys983 residue may play a role in toxin structures that determine the distribution of charged residues at the entry or inside of the CyaA channel. While necessary for activity on erythrocytes, acylation of Lys983 was also sufficient for the full activity of CyaA on CD11b+ J774A.1 monocytes. In turn, acylation of Lys860 alone did not permit toxin activity on erythrocytes, while it fully supported the high-affinity binding of CyaA-K983R to the toxin receptor CD11b/CD18 and conferred on CyaA-K983R a reduced but substantial capacity to penetrate and kill the CD11b+ cells. This is the first evidence that acylation of Lys860 may play a role in the biological activity of CyaA, even if redundant to the acylation of Lys983.  相似文献   

19.
Nociceptin is an endogenous ligand that activates a G protein-coupled receptor ORL1 and contains two indispensable Arg-Lys (RK) dipeptide units at positions 8-9 and 12-13. By replacing an additional RK unit at positions 6-7, 10-11, 14-15, or 16-17, of the peptide we have identified the analog, [RK(14-15)]nociceptin as a superagonist. In fact, this peptide exhibits 3-fold higher binding affinity and 17-fold greater potency in a functional GTPgammaS-binding assay compared to wild-type nociceptin. Here, we have further investigated the role of basic residues in position 14-15. The replacement of three other possible basic dipeptides, KR, RR, and KK, into nociceptin at positions 14-15 resulted in similar enhancements of binding affinity (3-5-fold) and biological potency (10-12-fold in the GTPgammaS assay). However, when only a single basic residue (Arg or Lys) was replaced in either position 14 or 15, all the resulting analogs showed moderate enhancements of binding and biological activity (2-4-fold in both). These results indicate that the addition of basic charges in positions 14 and 15 enhance in a synergistic fashion the interaction of nociceptin with the receptor and only the simultaneous presence of two adjacent basic residues yields an optimal effect. This suggests that specific electrostatic interactions between both amino acids present in 14-15 and corresponding residues in the receptor are responsible for the enhancement of nociceptin activity.  相似文献   

20.
Recent functional studies have suggested that position 19 in PTH interacts with the portion of the PTH-1 receptor (P1R) that contains the extracellular loops and seven transmembrance helices (TMs) (the J domain). We tested this hypothesis using the photoaffinity cross-linking approach. A PTHrP(1-36) analog and a conformationally constrained PTH(1-21) analog, each containing para-benzoyl-l-phenylalanine (Bpa) at position 19, each cross-linked efficiently to the P1R expressed in COS-7 cells, and digestive mapping analysis localized the cross-linked site to the interval (Leu232-Lys240) at the extracellular end of TM2. Point mutation analysis identified Ala234, Val235, and Lys240 as determinants of cross-linking efficiency, and the Lys240-->Ala mutation selectively impaired the binding of PTH(1-21) and PTH(1-19) analogs, relative to that of PTH(1-15) analogs. The findings support the hypothesis that residue 19 of the receptor-bound ligand contacts, or is close to, the P1R J domain-specifically, Lys240 at the extracellular end of TM2. The findings also support a molecular model in which the 1-21 region of PTH binds to the extracellular face of the P1R J domain as an alpha-helix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号