首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lipopolysaccharide (LPS) induces hepatocellular down-regulation and endocytic retrieval of multidrug resistance protein 2 (Mrp2, Abcc2). Basolateral Mrp isoforms may compensate for the intracellular metabolic changes in cholestasis. Therefore, the effect of LPS on the zonal localization of Mrp2 and Mrp3 and the expression of Mrp3, Mrp4, Mrp5, and Mrp6 mRNA were investigated in rat liver. In normal rat liver Mrp3 was found in pericentral hepatocytes also expressing glutamine synthetase. In LPS-treated rat liver the decrease in Mrp2 protein was most pronounced in pericentral hepatocytes, with only minor down-regulation in periportal hepatocytes. Conversely, induction of Mrp3 was found in pericentral hepatocytes with a low expression of Mrp2. Furthermore, we found a strong induction of Mrp5 mRNA. Likewise, Mrp6 mRNA was up-regulated, however Mrp6 protein expression was not significantly altered. It is concluded that Mrp3 is inversely regulated to Mrp2 in a zonal pattern and may compensate for the LPS-induced loss of Mrp2 in the perivenous area. Induction of pericentral Mrp3 and up-regulation of Mrp5 mRNA may play an important role in the hepatocellular clearance of cholephilic substances and cyclic nucleotides accumulating after LPS treatment.  相似文献   

2.
3.
4.
A new subfamily of structurally related human F-box proteins   总被引:3,自引:0,他引:3  
F-box proteins, a critical component of the evolutionary conserved ubiquitin-protein ligase complex SCF (Skp1/Cdc53-Cullin1/F-box), recruit substrates for ubiquitination and consequent degradation through their specific protein-protein interaction domains. Here, we report the identification of full-length cDNAs encoding three novel human F-box proteins named FBG3, FBG4 and FBG5 which display similarity with previously identified NFB42 (FBX2) and FBG2 (FBX6) proteins. All five proteins are characterized by an approximately 180-amino-acid (aa) conserved C-terminal domain and thus constitute a third subfamily of mammalian F-box proteins. Analysis of genomic organization of the five FBG genes revealed that all of them consist of six exons and five introns. FBG1, FBG2 and FBG3 genes are located in tandem on chromosome 1p36, and FBG4 and FBG5 are mapped to chromosome 19q13. FBG genes are expressed in a limited number of human tissues including kidney, liver, brain and muscle tissues. Expression of rat FBG2 gene was found related to differentiation/proliferation status of hepatocytes. Specifically, FBG2 mRNA was expressed in foetal liver, decreased after birth and re-accumulated in adult liver. Expression of FBG2 was strongly inhibited in hepatoma cells by okadaic acid.  相似文献   

5.
We used in situ nucleic acid hybridization cytochemistry to examine cell types and subcellular sites expressing albumin (alb) or pro alpha 2 collagen (col) mRNA in livers from normal and analbuminemic rodents. Biotinylated cDNA or RNA probes were applied to aldehyde-fixed, non-frozen sections and the resulting DNA-RNA or RNA-RNA hybrids were subsequently visualized by enzymatic detection of either peroxidase or alkaline phosphatase conjugated to anti-biotin IgG or streptavidin. In normal rat liver, alb mRNA was expressed in all hepatocytes and was localized to discrete subcellular structures distributed as aggregates in the cytoplasm and in specific structures encircling the nucleus; these subcellular structures most likely represent the endoplasmic reticulum and nuclear envelope. In mouse liver, pro alpha 2 col mRNA was identified in a subpopulation of sinusoidal lining cells which have the morphological appearance of lipocytes. In liver from analbuminemic rats, a small number of hepatocytes, distributed throughout the hepatic lobule, expressed alb mRNA at high levels; the subcellular distribution of this alb mRNA was essentially identical to that observed in normal rat hepatocytes. Since non-radioactive in situ hybridization detected mRNA within the boundaries of individual cells and showed its precise subcellular location under conditions in which there was excellent preservation of tissue morphology, this procedure should be useful for a wide variety of histopathologic studies.  相似文献   

6.
Zonal expression of hepatocytic marker enzymes during liver repopulation   总被引:1,自引:1,他引:0  
Hepatocytes are metabolically specialised cells displaying distinctive gene expression patterns within the liver lobule. Here, we investigate whether pre-cultured adult rat hepatocytes adopt periportal and pericentral enzyme expression following their transplantation into the regenerating rat liver. Isolated primary rat hepatocytes, representing a mixture of both periportal and pericentral origin, lost expression of carbamoyl phosphate synthetase I (CPS I) and cytochrome P450 subtype 2B1 (CYP2B1) in culture as shown by immunofluorescence and Western blot analysis. Accordingly, urea synthesis and CYP2B1 enzyme activity decreased. Hepatocytes from DPPIV (CD26) wild type rats were cultured for 4 and 7 days, and then transplanted into the livers of CD26 deficient rats following prior treatment with retrorsine and partial hepatectomy to drive selective donor cell proliferation. CD26 positive donor cells engrafted in the periportal regions and grew in clusters expanding into the parenchyma as time proceeded. Ten weeks after transplantation, cells derived from donors surrounding the portal veins expressed CPS I, but not CYP2B1. The reverse was true for CD26 positive cells in close proximity to the central veins displaying immunoreactivity to CYP2B1, but no longer to CPS I. Hepatocytes lose their specific marker enzyme expression in culture. After transplantation, donor hepatocytes proliferate in the host parenchyma whilst acquiring the position-specific enzyme expression of the surrounding periportal and pericentral host hepatocytes. These results indicate the high degree of plasticity of gene expression in hepatocytes subjected to a change in microenvironment.  相似文献   

7.
Summary The expression patterns of the mRNAs for the ammonia-metabolizing enzymes carbamoylphosphate synthetase (CPS), glutamine synthetase (GS) and glutamate dehydrogenase (GDH) were studied in developing pre- and neonatal rat liver byin situ hybridization.In the period of 11 to 14 embryonic days (ED) the concentrations of GS and GDH mRNA increases rapidly in the liver, whereas a substantial rise of CPS mRNA in the liver does not occur until ED 18. Hepatocyte heterogeneity related to the vascular architecture can first be observed at ED 18 for GS mRNA, at ED 20 for GDH mRNA and three days after birth for CPS mRNA. The adult phenotype is gradually established during the second neonatal week, i.e. GS mRNA becomes confined to a pericentral compartment of one to two hepatocytes thickness, CPS mRNA to a large periportal compartment being no longer expressed in the pericentral compartment and GDH mRNA is expressed over the entire porto-central distance, decreasing in concentration going from central to portal. Comparison of the observed mRNA distribution patterns in the perinatal liver, with published data on the distribution of the respective proteins, points to the occurrence of posttranslational, in addition to pretranslational control mechanisms in the period of ontogenesis of hepatocyte heterogeneity.Interestingly, during development all three mRNAS are expressed outside the liver to a considerable extent and in a highly specific way, indicating that several organs are involved in the developmentally regulated expression of the mRNAs for the ammonia-metabolizing enzymes, that were hitherto not recognized as such.  相似文献   

8.
mRNA differential display RT-PCR has been extensively used for the isolation of genes differentially expressed between RNA populations. We have assessed its utility for the identification of developmentally regulated genes in plasmid cDNA libraries derived from individual tissues dissected from early mouse embryos. Using plasmid Southern blot hybridisation as a secondary screen, we are able to identify such genes and show by whole-mount in situ hybridisation that their expression pattern is that expected from the differential display profile.  相似文献   

9.
We previously described the identification of the 3'end of an unknown gene CDK7 using differential display which appeared to be up-regulated in diabetic kidneys [R.A. Page, C.A. Morris, J.D. Williams, C.J. von Ruhland, A.N. Malik, Isolation of diabetes-associated kidney genes using differential display, Biochem. Biophys. Res. Commun. 232 (1997) 49-53]. Here we show that CDK7 is a putative thiol related gene which is regulated by glucose in human and rat renal cells. CDK7 mRNA increased by >threefold in cultured human mesangial cells grown in high glucose for 4 days. In the kidneys of the GK rat, a model of type II diabetes, CDK7 showed a steady age-related increase in mRNA, increasing to >sixfold in 40 week GK rats compared to normoglycemic age-matched Wistar rat kidneys, this increase correlates with progressive hyperglycemia. CDK7 mRNA is widely expressed, showing particularly high levels of expression in rat and human liver, and encodes a putative 338 amino acids highly conserved peptide with several conserved domains, including a cys-pro-arg-cys domain conserved in 15 diverse species which is similar to the catalytic centre of thioredoxin, suggesting a role in oxidative stress.  相似文献   

10.
The synthetic steroid, pregnenolone-16-alpha-carbonitrile (PCN), has served for decades as a probe for a postulated series of hepatic defenses activated under situations of environmental "stress". PCN, an antiglucocorticoid, and also such glucocorticoids as dexamethasone (Dex) appear to stimulate hepatic metabolism and elimination of xenobiotics by binding to the nuclear pregnane X receptor (PXR) which then interacts with a distinct DNA response element associated with induction of cytochrome P450 3A genes. To explore the full domain of genes controlled by PCN/PXR, we used differential display to detect rat liver mRNA species selectively induced by PCN or by Dex. Sequence analysis identified one of many PCN induced cDNA fragments as RT1.B(I)beta, a member of the major histocompatability class II (MHC) gene family usually found only in antigen presenting cells. Northern blot analysis of RNA from rat liver or from cultured hepatocytes confirmed that amounts of RT1.B(I)beta mRNA and also of its companion gene, RT1.B(I)alpha mRNA, became readily detectable within 3-6 hours following treatment with PCN or Dex, whereas no induction was observed in spleen RNA. Induction by PCN of RT1.B(I)beta immunoreactive protein was localized to the hepatocytes as judged by immunofluorescence. We conclude that ectopic expression of MHC II genes, an unprecedented effect of steroids or drugs, is rapidly evoked by PCN acting on the liver, directly. The concept of a set of genes coordinately controlled to maintain homeostasis in parenchymal tissues during toxic stress must now be extended to include the immune system.  相似文献   

11.
Hepatocytes situated at pericentral and periportal zones of the liver lobule show differences in the expression of several liver-specific genes, such as androgen-inducible alpha 2u globulin and androgen-repressible senescence marker protein-2 (SMP-2). A marked temporal difference in the expression of these two androgen-regulated genes has also been observed. The liver of the pre-pubertal male rat is insensitive to androgen, and during this period hepatocytes synthesize only SMP-2. During young adult life (greater than 40 days), the liver becomes androgen sensitive and concomitant synthesis of alpha 2u globulin and repression of SMP-2 occur. In the senescent male rat (greater than 750 days), the liver again becomes androgen insensitive when the decline in alpha 2u globulin is accompanied by an increase in SMP-2 synthesis. In this article we present results to show a correlation between the temporal and spatial (intralobular) changes in the expression of the androgen-inducible alpha 2u globulin and the androgen-repressible SMP-2 in rat hepatocytes. Results indicate that the temporal changes in hepatic androgen sensitivity are dictated by the intralobular location of the hepatocytes. Hepatocytes located around the central vein (pericentral/perivenous) may benefit from a paracrine advantage for the expression of a subset of genes, including the gene for the androgen receptor.  相似文献   

12.
13.
In rodent livers, integral tight junction (TJ) proteins claudin-1, -2, -3, -5 and -14 are detected and play crucial roles in the barrier to keep bile in bile canaculi away from the blood circulation. Claudin-2 shows a lobular gradient increasing from periportal to pericentral hepatocytes, whereas claudin-1 and -3 are expressed in the whole liver lobule. Although claudin-2 expression induces cation-selective channels in tight junctions of epithelial cells, the physiological functions and regulation of claudin-2 in hepatocytes remain unclear. Oncostatin M (OSM) is a multifunctional cytokine implicated in the differentiation of hepatocytes that induces formation of E-cadherin-based adherens junctions in fetal hepatocytes. In this study, we examined whether OSM could induce expression and function of claudin-2 in rodent hepatocytes, immortalized mouse and primary cultured proliferative rat hepatocytes. In the immortalized mouse and primary cultured proliferative rat hepatocytes, treatment with OSM markedly increased mRNA and protein of claudin-2 together with formation of developed networks of TJ strands. The increase of claudin-2 enhanced the paracellular barrier function which depended on molecular size. The increase of claudin-2 expression induced by OSM in rodent hepatocytes was regulated through distinct signaling pathways including PKC. These results suggest that expression of claudin-2 in rodent hepatocytes may play a specific role as controlling the size of paracellular permeability in the barrier to keep bile in bile canaculi.  相似文献   

14.
Cytochrome P-450IIE1 is induced by a variety of agents, including acetone, ethanol and pyrazole. Recent studies employing immunohistochemical methods have shown that P-450IIE1 was expressed primarily in the pericentral zone of the liver. In order to evaluate whether catalytic activity of P-450IIE1 is preferentially localized in the pericentral zone of the liver acinus, the oxidation of aniline and p-nitrophenol, two effective substrates for P-450IIE1, by periportal and pericentral hepatocytes isolated from pyrazole-treated rats was determined. Periportal and pericentral hepatocytes were prepared by a digitonin-collagenase procedure; the marker enzymes glutamine synthetase and gamma-glutamyl transpeptidase indicated reasonable separation of the two cell populations. Viability, yield and total cytochrome P-450 content were similar for the periportal and pericentral hepatocytes. Pericentral hepatocytes oxidized aniline and p-nitrophenol at rates that were 2-4-fold greater than periportal hepatocytes under a variety of conditions. Carbon monoxide inhibited the oxidation of the substrates with both preparations and abolished the increased oxidation found with the pericentral hepatocytes. Pyrazole or 4-methylpyrazole, added in vitro, effectively inhibited the oxidation of aniline and p-nitrophenol and prevented the augmented rate of oxidation by the pericentral hepatocytes. Western blots carried out using isolated microsomes revealed a more than 2-fold increase in immunochemical staining with microsomes isolated from the pericentral hepatocytes, which correlated to the 2-4-fold increase in the rate of oxidation of aniline or p-nitrophenol by the pericentral hepatocytes. These results suggest that functional catalytic activity of cytochrome P-450IIE1 is preferentially localized in the pericentral zone of the liver acinus, and that most of the induction by pyrazole of P-450IIE1 appears to occur within the pericentral zone.  相似文献   

15.
Adult rat liver contains a minor population of hepatocytes called small hepatocytes (SHs) that are smaller in size and show a higher replicative potential than conventional parenchymal hepatocytes (PHs). However, SHs have been hitherto characterized using a "SH-fraction" that was contaminated with PHs. In the present study, we isolated a PH-free SH-fraction from the adult rat liver using fluorescence-activated cell sorter combined with centrifugal elutriation and characterized the hepatocytes in the fraction. These hepatocytes were designated R3Hs in this study. R3Hs were mononuclear and of lower ploidy. They expressed at high levels genes of Cdc2, connexin 26, hydroxysteroid sulfotransferase, pancreatic secretory trypsin inhibitor, and prostaglandin E2 receptor EP3 subtype. We conclude that SHs dominate the periportal zone in the adult liver, because mRNA or proteins of these genes were exclusively expressed by periportal hepatocytes.  相似文献   

16.
17.
During rat liver regeneration induced by carbon tetrachloride administration, the protein kinase C alpha subspecies was activated in a heterogeneous fashion, a higher number of hepatocytes expressing the protein kinase C alpha subspecies being detected in the pericentral zone than in the periportal zone. This zonal heterogeneity became maximal at 24 h after the treatment. The distribution of hepatocytes expressing the protein kinase C alpha subspecies was roughly coincident with that of hepatocytes exhibiting DNA synthesis. These results suggest that protein kinase C may play a crucial role in liver regeneration.  相似文献   

18.
19.
The mechanisms underlying hepatocellular damage after irradiation are obscure. We identified genes induced by radiation in isolated rat hepatocytes in vitro by cDNA array gene expression analysis and then screened in vivo experiments with those same genes using real-time PCR and Western blotting. Hepatocytes were irradiated and cDNA array analyses were performed 6 h after irradiation. The mRNA of differentially expressed genes was quantitatively analyzed by real-time PCR. cDNA array analyses showed an up-regulation of 10 genes in hepatocytes 6 h after irradiation; this was confirmed by real-time PCR. In vivo, rat livers were irradiated selectively. Treated and sham-irradiated controls were killed humanely 1, 3, 6, 12, 24 and 48 h after irradiation. Liver RNA was analyzed by real-time PCR; expression of in vivo altered genes was also analyzed at the protein level by Western blotting. Up-regulation was confirmed for three of the in vitro altered genes (multidrug resistance protein, proteasome component C3, eukaryotic translation initiation factor 2). Histologically, livers from irradiated animals were characterized by steatosis of hepatocytes. Thus we identified genes that may be involved in liver steatosis after irradiation. The methods shown in this work should help to further clarify the consequences of radiation exposure in the liver.  相似文献   

20.
Differential gene expression contributes to cell differentiation and underlies plant responses to hormonal and environmental factors. Most methods available to identify differentially expressed genes in plants are biased towards moderately or strongly expressed genes. RNA arbitrarily primed polymerase chain reaction (RAP-PCR) produces populations of amplicons from reverse transcribed RNA in a process similar to differential display, but with a higher degree of reproducibility and sensitivity, thus enabling the identification of low abundance mRNA. A detailed RAP-PCR protocol allowing the rapid identification of differentially expressed genes in scarce plant cells, such as stomatal guard cells, is presented here. In addition, a fast and reliable method for the semi-quantitative confirmation of gene expression patterns is described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号