首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phosphorylation of Simian Virus 40 Proteins in a Cell-Free System   总被引:8,自引:8,他引:0       下载免费PDF全文
We have shown previously that all the structural proteins of simian virus 40 (SV40) are phosphoproteins. Virus phosphorylated in vivo could be further phosphorylated with exogenous cellular protein kinases in a cell-free system containing gamma-(32)P-ATP as phosphate donor. In intact infectious virus only polypeptides 1 and 2 (mol wt 49,000 and 40,800, respectively) were further phosphorylated in vitro. However, when infectious SV40 was partially disrupted, treated with nucleases, and then phosphorylated in vitro, all five structural polypeptides accepted additional phosphate groups. Similarly, all polypeptides of intact empty capsids, derived from infected cells, were further phosphorylated in vitro. Phosphorylation of empty capsids and infectious SV40 in vitro was enhanced from 4- to 11-fold after prior treatment of virus with alkali. The phosphate group was linked only to serine residues of the viral polypeptides phosphorylated both in vitro and in vivo.  相似文献   

2.
An electrophoretic analysis of radioactively labeled, purified, "empty" and DNA-containing infectious bovine rhinotracheitis virions revealed the presence of 25 to 33 structural (virion) polypeptides. A total of 11 of these polypeptides could be labeled with [3H]glucosamine and were identified as glycoproteins. In addition to the 25 structural polypeptides, infectious bovine rhinotracheitis virus infected cells also contained at least 15 nonstructural (nonvirion) polypeptides that were not present in purified virions. Expression of the viral polypeptides in infected cells was controlled temporally. Thus, most viral polypeptides could be categorized as "alpha" (immediate early), "beta" (early), or "gamma" (late) on the basis of their order of appearance in infected cells and whether their syntheses were dependent upon prior viral protein or DNA synthesis. None of the glycoproteins belongs to the alpha class, although at least one (GVP11) was synthesized in the absence of viral DNA synthesis. Serum from a cow in which infectious bovine rhinotracheitis virus lesions were reactivated by dexamethasone precipitated both structural and nonstructural polypeptides.  相似文献   

3.
It has previously been shown that infectious bursal disease virus is a naked icosahedral particle with a diameter of about 60 nm and a genome consisting of two segments of double-stranded RNA (Müller et al., J. Virol. 31:584-589, 1979). One of the two major structural polypeptides (molecular weight, 40,000) of this virus could not be found in lysates of infected cells; it is derived from a precursor polypeptide demonstrable inside the cells in relatively large quantities and seems to be processed during virus assembly or later. The precursor molecule is regularly present in the infectious virus particle (buoyant density, 1.33 g/ml) in minor proportions, but it represents an outstanding structural element of incomplete noninfectious particles ("top components"; buoyant density, 1.29 g/ml) which contain viral RNA. This type of incomplete particles is mainly produced by chicken embryo fibroblasts in contrast to lymphoid cells from the bursa of Fabricius. Precursor-product relationships also seem to exist in the biosynthesis of the other viral polypeptides. In contrast to some other viruses with a segmented double-stranded RNA genome, none of the structural proteins of infectious bursal disease virus is appreciably glycosylated.  相似文献   

4.
5.
The protein kinase associated with purified herpes simplex virus 1 and 2 virions partitioned with the capsid-tegument structures and was not solubilized by non-ionic detergents and low, non-inhibitory concentrations of urea. The enzyme required Mg2+ or Mn2+ and utilized ATP or GTP. The activity was enhanced by non-ionic detergents and by Na+ even in the presence of high concentrations of of Mg2+, but not by cyclic nucleotides. The enzyme associated with capsid-tegument structures phosphorylated virion polypeptides only; exogenously added substrates (acidic and basic histones, casein, phosphovitin, protamine, and bovine serum albumin) were not phosphorylated. The major phosphorylated species were virion polypeptides (VP) 1-2, 4, 11-12, 13-14, 18.7, 18.8 and 23. VP 18.7 and VP 18.8 have not been previously detected, but may be phosphorylated forms of polypeptides co-migrating with VP 19. Of the remainder, only VP 23 has been previously identified as a capsid protein; the others are constituents of the tegument or of the under surface of the virion envelope. The distribution of the phosphate bound to viral polypeptides varied depending on the Mg2+ concentration and pH. In the absence of dithiothreitol, in vitro phosphate exchange was demonstrable in VP 23 and to a lesser extent in two other polypeptides on sequential phosphorylation frist with saturating amounts off unlabeled ATP and then with [gamma-32P]ATP. Analysis of the virion polypeptides specified by herpes simplex virus 1 X herpes simplex virus 2 recombinants indicates that the genes specifying the polypeptides which serve as a substrate for the protein kinase map in the unique sequences near the left and right reinterated DNA sequences of the L component.  相似文献   

6.
A new iridovirus has been detected from diseased southern mole crickets, Scapteriscus acletus, collected in Brazil during the spring of 1986. This icosahedral virus measuring 146 nm (side-side) to 172 nm (apex-apex) has been purified via Ficoll gradient centrifugation and demonstrated to be infectious to 1st instar Scapteriscus vicinus nymphs. The cytopathology of this virus is typical of the pattern documented for other iridovirus isolates. Characterization of the structural polypeptides by SDS-polyacrylamide gel electrophoresis revealed an array of 3 major and 17 minor polypeptides ranging in molecular weight from 15.1 to 152.0 kDa. Electrophoresis in agarose gels of purified DNA revealed a single band of high molecular weight. Analysis of various restriction endonuclease (REN) digests of this DNA demonstrated it to have an approximate molecular weight of 144 kilobase pairs. Based on differences in the polypeptide profile and REN profiles we believe this virus is distinct from previously characterized invertebrate iridovirus isolates.  相似文献   

7.
Measles virus does not turn off host cell polypeptide synthesis, making it difficult to precisely identify the polypeptides specified by the virus during the infectious cycle. By using the technique of immune precipitation with measles-specific antisera, the host cell background has been eliminated, and new observations have been made concerning measles virus polypeptides H, P, NP, F, and M. The H polypeptide is first synthesized as a monomer which is processed by further glycosylation and by the formation of disulfide-bonded dimers. Polypeptide P (70,000 daltons) has been found to occur also as a 65,000-dalton molecule, P2, and both forms of the molecule are equally phosphorylated. Polypeptide NP is processed from a cleavage-sensitive form (which undergoes cleavage during the process of isolation to form polypeptide 6 [41,000 daltons]) to a form which is resistant to this cleavage. The fusion and hemolysin polypeptide is first found in the cells as a 55,000-dalton precursor, F0, which is clearly resolved from the NP polypeptide on gel electrophoresis. The measles virus F0 protein identified in previous reports had not been resolved from the 60,000-dalton NP polypeptide. The M protein occurs in the infected cells as two distinct bands, and, as in the case of Sendai virus, one of these two M protein bands represents a phosphorylated form of the other.  相似文献   

8.
The major phosphoprotein common to woolly monkey sarcoma virus, gibbon ape lymphosarcoma virus, and type C viruses of the lower mammalian species (mouse, rat, cat), with the exception of the endogenous cat virus (RD-114), is the polypeptide of about 12,000 molecular weight. The protein-phosphate bond in this polypeptide of several viruses is of the phosphoserine variety excepting gibbon ape virus, which contains both phosphoserine and phosphothreonine. The primary phosphoprotein of RD-114 virus and the endogenous baboon type C virus, on the other hand, is the polypeptide of about 15,000 molecular weight which contains phosphothreonine as its phosphoamino acid. A second major phosphoprotein of molecular weight of 10,000 is detected only in viruses genetically related to rat species including those derived from the RPL cell line, from Sprague-Dawley rat embryo cells, and the Kirsten mouse sarcoma virus which was recovered from a mouse erythroblastosis virus after in vivo propagation through rat. These phosphorylated polypeptides of molecular weight 15,000, 12,000, or 10,000 are present in the virion structure in several different but nonrandom phosphorylated states.  相似文献   

9.
Measles virus protein synthesis has been analyzed in acutely and persistently infected cells. To assess the role of measles in subacute sclerosing panencephalitis (SSPE), measles viral proteins synthesized in vivo or in vitro were tested for reactivity with serum from a guinea pig(s) immunized with measles virus and sera from patients with SSPE. Guinea pig antimeasles virus serum immunoprecipitates the viral polypeptides of 78,000 molecular weight (glycosylated [G]), 70,000 molecular weight (phosphorylated [P]), 60,000 molecular weight (nucleocapsid [N]), and 35,000 molecular weight (matrix [M]) from cells acutely infected with measles virus as well as from chronically infected cells, but in the latter case, immunoprecipitated M protein has a reduced electrophoretic migration. Sera of SSPE patients immunoprecipitated all but the G protein in acutely infected cells and only the P and N proteins from chronically infected cells. In immunoprecipitates of viral polypeptides synthesized in a reticulocyte cell-free translation system, in response to mRNA from acutely or persistently infected cells, the 78,000-molecular-weight form of the G protein was not detected among the cell-free products of either mRNA. Guinea pig antimeasles virus serum immunoprecipitated P, N, and M polypeptides from the products of either form of mRNA, whereas SSPE serum immunoprecipitated the P and N polypeptides but not the M polypeptide. The differences in immunoreactivity of the antimeasles virus antiserum and the SSPE serum are discussed in terms of possible modifications of measles virus proteins in SSPE.  相似文献   

10.
Incubation of purified vaccinia virus with gamma-(32)P-adenosine triphosphate resulted in the incorporation of (32)P into hot trichloroacetic acid-insoluble material. Enzymatic activity was completely dependent on the addition of divalent cations and was stimulated by nonionic detergents and dithiothreitol. Chemical studies demonstrated that serine and threonine residues of 15,000 molecular weight viral polypeptides were phosphorylated. In contrast, the major structural proteins were not phosphorylated or were phosphorylated to a much lesser extent. Added histones and protamine, but not serum albumin, casein, or phosvitin were phosphorylated by the partially disrupted vaccinia virus preparations. The protein kinase was tightly associated with vaccinia virus particles since the specific enzymatic activity remained constant during the final steps of virus purification, the specific activities of many different preparations of virus were similar, and the enzymatic activity cosedimented with vaccinia virus during rate zonal sucrose gradient and potassium tartrate gradient equilibrium centrifugations. Controlled degradation of vaccinia virus, with nonionic detergents and dithiothreitol, indicated that both the protein kinase and the specific phosphate acceptor proteins were located in the virus core.  相似文献   

11.
The infectious bursal disease virus is not enveloped and has a diameter of 60 nm and a density of about 1.32 g/ml. It contains two pieces of single-stranded RNA with molecular weights close to 2 X 10(6). The capsid is made up of four major polypeptides with molecular weights of 110,000, 50,000, 35,000, and 25,000. The virus replicates in chicken embryo fibroblasts rather than in epitheloid cells. After an eclipse period of 4 h, virus production reaches a maximum about 12 h later. The virus has no structural or biological similarities with defined avian reoviruses, and it cannot be classified in one of the established taxonomic groups.  相似文献   

12.
Low molecular weight polypeptides of several mammalian type C RNA tumor viruses were purified by sequential ion exchange chromatography and molecular sizing techniques. These included a polypeptide with a molecular weight of 10,000 to 11,000, p 10, from two type C viruses of mouse origin. Rauscher- and Moloney-murine leukemia virus (MuL virus), and from an infectious type C virus isolate of the woolly monkey. The p12 structural polypeptides of these viruses as well as Rauscher-MuL virus p15 were also purified. By using radioimmunoassays developed for each polypeptide, it was possible to demonstrate that all three low molecular weight polypeptides, p15, p12, and p10, were immunologically unique. Among type C viral structural polypeptides, p10 has been least well characterized immunologically. The results of the present study indicate that p10 is virus-coded and possesses strong group-specific antigenic determinants. By use of appropriate immunoassays, broadly reactive interspecies determinants shared by mammalian type C virus isolates of murine, feline, and primate origin, were also demonstrated. The interspecies antigenic determinants of p10 were shown to be as broadly cross-reactive as those exhibited by the major type C virus structural polypeptide, p30.  相似文献   

13.
14.
Using sodium dodecyl sulfate-polyacrylamide slab gel electrophoresis of [35S]methionine-labeled adenovirus type 2-infected KB cell extracts, a total of 23 virus-induced polypeptides was detected. This technique was applied to the analysis of the temperature-sensitive mutant, ts 1, which has previously been shown to be defective in a late function. By means of pulse-chase experiments, ts 1 was shown to be defective in the processing of the precursor polypeptide (Pre VII) to the major core protein VII. Two other putative precursor polypeptides, Va (27K) and Vb (24K), were also not processed. Thus, the ts 1 mutation blocked the appearance of six post-translational clevage products, i. e., polypeptides VI, VII, VIII, X, XI, and XII. All of these polypeptides are virion components. Processing was temperature sensitive in a shift-up experiment, whereas it was normal in a shift-down experiment. The kinetics of the temperature-shift experiments suggested that infectious virus could be recovered if enough time is provided for processing to take place. Processing was not inhibited by cycloheximide. The analysis of purified virus particles and empty shells (TCs) revealed the presence of the precursor and putative precursor polypeptides Pre-VII, Va and Vb, instead of their cleavage products, in both types of particles. Based on these results we propose that the ts 1 gene codes for or regulates an endoprotease which is responsible for the completion of the last step in virus maturation, that is, the conversion of "young virions" into mature infectious virions by a series of maturation cleavages.  相似文献   

15.
Synthesis and Cleavage of Influenza Virus Proteins   总被引:5,自引:2,他引:3       下载免费PDF全文
The NWS strain of influenza virus grows rapidly in and kills the MDCK dog kidney cell strain. Within 1 to 2 hr, the virus inhibits host cell protein synthesis and for 3 to 4 hr more it directs the synthesis of influenza virus proteins at a rate about twice that of uninfected cell synthesis. The rates of virus ribonucleic acid (RNA) and protein synthesis reach a maximum within the first few hours after infection and then drop. Plaque assays exhibit a linear dose-response, indicating that only one virion is necessary for productive infection. We have confirmed earlier reports regarding the fragmented nature of the RNA genome of purified influenza virions. However, high resolution gel electrophoresis indicated that each size class of viral RNA is heterogenous, so that there are at least 10 and probably more fragment sizes of RNA in these virions. Repeated attempts to detect infectivity in preparations of extracted viral RNA were completely negative (over a 10(8)-fold loss of infectivity after extraction). Even infection of the "infectious" RNA-treated cells with intact, related, influenza viruses failed to support infectivity of the isolated RNA or to rescue a host range genetic marker of the RNA. Purified influenza virions exhibit only three major protein peaks based on separation according to molecular weights. These three major virion proteins are the only major virion proteins synthesized in infected cells. This is true throughout the infectious cycle from several hours after infection until the cells are dying. However, the molecular weight of these virion proteins differs slightly depending upon the cell type in which the virus is grown. No host membrane proteins are incorporated into the virions as they bud through the cell membrane. Pulse-chase labeling early after infection or prolonged chase experiments indicate that influenza virus proteins are cleaved from one or more precursor polypeptides. In fact, each of the three major peaks seems to be a heterogeneous mixture of polypeptides in various stages of cleavage. Peptide analysis confirms that the three major peaks share common peptides, but the exact precursor product relationships are not clear. There may be one or several precursor proteins. Also there could be overlapping messenger RNA molecules of varying length giving rise to polypeptides of various sizes and overlapping sequences. Late in infection, amino acid labeling shows a preponderance of internal nucleocapsid protein synthesis, indicating that either this protein is much more stable to cleavage in infection or it is made from a more stable messenger. There is no obvious relationship between virion RNA fragments and viral protein sizes, so these fragments may be artifacts.  相似文献   

16.
Structural proteins of equine infectious anemia virus.   总被引:3,自引:2,他引:1       下载免费PDF全文
Equine infectious anemia virus was found to be comprised of fourteen polypeptides of molecular weight ranging from 10,000 to 79,000. Eighty percent of the virion protein was accounted for by five polypeptides, including two non-glycosylated components (p29 and p13) comprising one-half of the virion protein and three glycoproteins (gp77/79, gp64, and gp40).  相似文献   

17.
Purification of egg-grown infectious bronchitis virus (IBV) by sucrose density gradient centrifugation alone, or sucrose density gradient centrifugation plus pH 8.0 treatment, concanavalin A precipitation or metrizamide density gradient centrifugation, failed to produce any differences in the virus polypeptide pattern following polyacrylamide gel electrophoresis in the presence of SDS(SDS-PAGE). SDS-PAGE of purified IBV on 7.5% acrylamide gels separated 16 polypeptides which were detectable by staining with Coomassie blue or measurement of radioactivity following electrophoresis of (3H)-leucine labelled IBV. The molecular weights of the polypeptides were within the range 15,000-135,000. The polypeptides of egg and chick kidney (CK) cell-grown IBV were identical in both size and number but quantitative differences were detected. In particular the relative proportion of the major 52,000 molecular weight polypeptide was greatly reduced in IBV grown in CK cells. SDS-PAGE of purified IBV and staining with Schiff's reagent to detect carbohydrate revealed four.bands with molecular weights of 128,000, 86,000, 67,500 and 37,000. The 128,000 band did not correspond to any of the detected polypeptides. Use of 5% acrylamide gels for SDS-PAGE of IBV failed to resolve all the minor polypeptides and only seven bands were detected.  相似文献   

18.
19.
A rapid approach for detecting tentative membrane proteins which are transiently phosphorylated/dephosphorylated is described. Cell fractionation is unnecessary, as are other manipulations of sample preparation during which artifactual modifications or sample loss might occur. The method is shown to be useful for the detection of such phosphorylation during cellular response to the binding of specific ligand. Two-dimensional sodium dodecyl sulfate polyacrylamide gel electrophoresis was performed successively through gels of different sieving sizes. These "primary" gels were then subjected to "detergent blotting," a variation of electroblotting in which polyacrylamide gel containing the nonionic detergent Nonidet-P40 (secondary gel) was inserted between the primary gel and a Zeta-Probe membrane. Phosphorylated interleukin 2 receptors were selectively retained in the secondary gel. Upon stimulation of human platelets with thrombin, at least 11 polypeptides were found to be rapidly phosphorylated/dephosphorylated using the method. Among them, five phosphorylated polypeptides were trapped in the secondary gel, suggesting that they might be membrane proteins. This technique should be useful to rapidly screen transiently phosphorylated/dephosphorylated membrane proteins which might be involved in membrane transductional signaling.  相似文献   

20.
An outer layer surrounding the capsid of infectious bursal disease virus was evident from electron micrographs of intact virus particles having diameters of 62 to 63 nm. The capsid was found to be composed of large morphological units or capsomeres, measuring about 12 nm in diameter. The architecture of the capsid appears to be that of T = 3 symmetry, with a probable 32 morphological units by rotational enhancement of image detail. Structural proteins of infectious bursal disease virus consist of seven species, two major and five minor polypeptides. These are P1 to P7, with molecular weights of 133 x 10(3), 124 x 10(3), 98 x 10(3), 51 x 10(3), 33 x 10(3), 26 x 10(3), and 23 x 10(3), respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号