首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Urea is one of the most commonly used denaturants of proteins. However, herein we report that enzymes lyophilized from denaturing concentrations of aqueous urea exhibited much higher activity in organic solvents than their native counterparts. Thus, instead of causing deactivation, urea effected unexpected activation of enzymes suspended in organic media. Activation of subtilisin Carlsberg (SC) in the organic solvents (hexane, tetrahydrofuran, and acetone) increased with increasing urea concentrations up to 8 M. Active-site titration results and activity assays indicated the presence of partially unfolded but catalytically active SC in 8 M urea; however, the urea-modified enzyme retained high enantioselectivity and was ca. 80 times more active than the native enzyme in anhydrous hexane. Likewise, the activity of horseradish peroxidase (HRP) lyophilized from 8 M urea was ca. 56 times and 350 times higher in 97% acetone and water-saturated hexane, respectively, than the activity of HRP lyophilized from aqueous buffer. Compared with the native enzyme, the partially unfolded enzyme may have a more pliant and less rigid conformation in organic solvents, thus enabling it to retain higher catalytic activity. However, no substantial activation was observed for alpha-chymotrypsin lyophilized from urea solutions in which the enzyme retained some activity, illustrating that the activation effect is not completely general.  相似文献   

2.
The employment of enzymes as catalysts within organic media has traditionally been hampered by the reduced enzymatic activities when compared to catalysis in aqueous solution. Although several complementary hypotheses have provided mechanistic insights into the causes of diminished activity, further development of biocatalysts would greatly benefit from effective chemical strategies (e.g., PEGylation) to ameliorate this event. Herein we explore the effects of altering the solvent composition from aqueous buffer to 1,4-dioxane on structural, dynamical, and catalytic properties of the model enzyme subtilisin Carlsberg (SBc). Furthermore, we also investigate the effects of dissolving the enzyme in 1,4-dioxane through chemical modification with poly(ethylene)-glycol (PEG, M(W) = 20 kDa) on these enzyme properties. In 1,4-dioxane a 10(4)-fold decrease in the enzyme's catalytic activity was observed for the hydrolysis reaction of vinyl butyrate with D(2)O and a 50% decrease in enzyme structural dynamics as evidenced by reduced amide H/D exchange kinetics occurred. Attaching increasing amounts of PEG to the enzyme reversed some of the activity loss. Evaluation of the structural dynamic behavior of the PEGylated enzyme within the organic solvent revealed an increase in structural dynamics at increased PEGylation. Correlation analysis between the catalytic and structural dynamic parameters revealed that the enzyme's catalytic activity and enantioselectivity depended on the changes in protein structural dynamics within 1,4-dioxane. These results demonstrate the importance of protein structural dynamics towards regulating the catalytic behavior of enzymes within organic media.  相似文献   

3.
Lipase from Pseudomonas cepacia showed poor activity and moderate enantioselectivity (E) in pure aqueous systems for hydrolysis of a racemic mixture (+/-)-1-chloro-2-acetoxy-3-(1-naphthyloxy)-propane, which is a potential intermediate for beta-blocker synthesis. However, addition of polar organic solvents to the reaction can change both the activity and the enantioselectivity for this chiral reaction significantly. It was observed, in general, that the activity increases and the enantioselectivity decreases with the increase in the polarity of the organic solvent added to the medium. Among the six solvents chosen (i.e., dimethylsulfoxide [DMSO], 1, 4-dioxane, dimethylformamide [DMF], acetone, 1-propanol, and tetrahydrofuran [THF]), maximum activity and minimum enantioselectivity was obtained with DMSO, whereas minimum activity and maximum enantioselectivity was obtained with THF as the cosolvents. In the subsequent studies, native or polyethylene glycol (PEG)-modified lipase was immobilized by entrapping in Caalginate gel beads. In a fixed-bed continuous reactor containing these catalyst beads, the enzyme was found to be at least three times more enantioselective than the native form in a batch reactor. This fixed-bed reactor with the beads could be operated with high concentration of acetone (33% v/v) for about 1 month without a significant loss of enzyme activity and enantioselectivity.  相似文献   

4.
A unique nanoporous sol-gel glass possessing a highly ordered porous structure (with a pore size of 153 A in diameter) was examined for use as a support material for enzyme immobilization. A model enzyme, alpha-chymotrypsin, was efficiently bound onto the glass via a bifunctional ligand, trimethoxysilylpropanal, with an active enzyme loading of 0.54 wt%. The glass-bound chymotrypsin exhibited greatly enhanced stability both in aqueous solution and organic solvents. The half-life of the glass-bound alpha-chymotrypsin was >1000-fold higher than that of the native enzyme, as measured either in aqueous buffer or anhydrous methanol. The enhanced stability in methanol, which excludes the possibility of enzyme autolysis, particularly reflected that the covalent binding provides effective protection against enzyme inactivation caused by structural denaturation. In addition, the activity of the immobilized alpha-chymotrypsin was also much higher than that of the native enzyme in various organic solvents. From these results, it appears that the glass-enzyme complex developed in the present work can be used as a high-performance biocatalyst for various chemical processing applications, particularly in organic media. Published by John Wiley & Sons  相似文献   

5.
The serine proteases alpha-chymotrypsin, trypsin, and subtilisin Carlsberg were immobilized in a sol-gel matrix and the effects on the enzyme activity in organic media are evaluated. The percentage of immobilized enzyme is 90% in the case of alpha-chymotrypsin and the resulting specific enzyme activity in the transesterification of N-acetyl-L-phenylalanine ethyl ester with 1-propanol in cyclohexane is 43 times higher than that of a nonimmobilized lyophilized alpha-chymotrypsin. The activities of trypsin and subtilisin Carlsberg are enhanced with 437 and 31 times, respectively. The effect of immobilization on the enzyme activity is highest in hydrophobic solvents.  相似文献   

6.
The effects of polyethylene glycol (PEG) of different molecular weights (400, 2000, 6000, 12,000, 20,000, and 35,000) on the conformational stability and catalytic activity of alpha-chymotrypsin in 60% ethanol were studied. The inactivation caused by the organic solvent was not influenced by PEG 400. However, the PEGs with higher molecular weights up to 35,000 increased the stability of the enzyme, but this alpha-chymotrypsin stabilizing effect was molecular weight-independent. With increase of the molecular weight of PEG, a more stable tertiary structure of the enzyme was observed.  相似文献   

7.
A protein solubilization method has been developed to directly solubilize protein clusters into organic solvents containing small quantities of surfactant and trace amounts of water. Termed "direct solubilization," this technique was shown to solubilize three distinct proteins - subtilisin Carlsberg, lipase B from Candida antarctica, and soybean peroxidase - with much greater efficiencies than extraction of the protein from aqueous solution into surfactant-containing organic solvents (referred to as extraction). More significant, however, was the dramatic increase in directly solubilized enzyme activity relative to extracted enzyme activity, particularly for subtilisin and lipase in polar organic solvents. For example, in THF the initial rate towards bergenin transesterification was ca. 70 times higher for directly solubilized subtilisin than for the extracted enzyme. Furthermore, unlike their extracted counterparts, the directly solubilized enzymes yielded high product conversions across a spectrum of non-polar and polar solvents. Structural characterization of the solubilized enzymes via light scattering and atomic force microscopy revealed soluble proteins consisting of active enzyme aggregates containing approximately 60 and 100 protein molecules, respectively, for subtilisin and lipase. Formation of such clusters appears to provide a microenvironment conducive to catalysis and, in polar organic solvents at least, may protect the enzyme from solvent-induced inactivation.  相似文献   

8.
Catalytic activity and adsorption of Pa-hydroxynitrile lyase (Pa-Hnl) was investigated at various organic solvent/water interfaces. We focused on the role of solvent polarity in promoting activity and stability in two-phase systems, specifically for the solvents heptane, dibutyl ether (DBE), diisopropyl ether (DIPE), butylmethyl ether (BME), and methyl tert-butyl ether (MTBE). Enzyme activity towards mandelonitrile cleavage was determined in a recycle reactor with a well-defined interfacial area as described by Hickel, et al. 1999. Here the recycle reactor was modified to permit exchange of the aqueous phase. With this modification, irreversibility of enzyme adsorption was determined as a function of the adsorption time at the interface. Irreversibility of enzyme adsorption was also investigated by measuring the surface pressure of a sessile-drop upon washout. We find that Pa-Hnl exhibits the highest stability but the lowest initial catalytic activity at the aqueous/organic solvent interface with the most polar organic solvents. Thus, DIPE and MTBE display no loss in enzyme activity over a period of several hours. However, the more apolar the solvent is the higher the initial Pa-Hnl activity, but the faster the loss of activity. Dynamic tensiometry reveals that Pa-Hnl adsorbs more strongly at the interface of the more apolar solvents. Surprisingly, Pa-Hnl develops some irreversible adsorption after 30 min at the DIPE/water interface, but does not lose catalytic activity.  相似文献   

9.
The effects of organic solvents on the stabilities of bovine pancreas trypsin, chymotrypsin, carboxypeptidase A and porcine pancreas lipase were studied. Water-miscible solvents (ethanol, acetonitrile, 1,4-dioxane and dimethyl sulfoxide) and water-immiscible solvents (ethyl acetate and toluene) were used in 100 mM phosphate buffer (pH 7.0) or 100 mM Tris/HCl buffer (pH 7.0) in concentrations of 20–80% (v/v). All hydrolytic enzymes studied were inactivated by mixtures containing dimethyl sulfoxide at higher concentrations. Trypsin and carboxypeptidase A resisted solvent mixtures containing acetonitrile, 1,4-dioxane and ethanol. They preserved more than 80% of their starting activities during 20-min incubations. The activities of lipase and chymotrypsin decreased with increasing concentration of water-miscible polar organic solvents, but at higher concentrations (80%) 70–90% of the activity remained. In mixtures with water-immiscible solvents, the decrease in activity of carboxypeptidase A was pronounced. Trypsin and chymotrypsin underwent practically no loss in activity in the presence of toluene or ethyl acetate. In respect of stability, the polar solvent proved to be more favorable for lipase. These results suggest that the conformational stabilities of hydrolytic enzymes are highly dependent on the solvent-protein interactions and the enzyme structure.  相似文献   

10.
Inactivation of alpha-chymotrypsin in aqueous solutions of alcohols and diols proceeds both reversibly and irreversibly. Reversible loss of the specific enzyme activity results from conformational changes (unfolding) of the enzyme detected by fluorescence spectroscopy. Multipoint covalent attachment to the matrix of polyacryl-amide gel by copolymerization method stabilizes alpha-chymotrypsin from denaturation by alcohols, the stabilizing effect increasing with the number of bonds between the protein and the support. Immobilization protects the enzyme also from irreversible inactivation by organic solvents resulting from bimolecular aggregation and autolysis.  相似文献   

11.
The effects of different concentrations (20-95%) of organic solvents (ethanol, 1,4-dioxane and acetonitrile) were studied on alpha-chymotrypsin and trypsin from bovine pancreas. The changes in secondary structure were followed by CD measurements, and the apparent Michaelis constants (KMapp) and the stabilities of the enzymes were determined. Significant alterations in the CD spectra were found for both enzymes at the different organic solvent concentrations. The apparent KM values of trypsin and alpha-chymotrypsin decreased as the low solvent concentrations were elevated, but then increased in the presence of higher organic solvent concentrations. The stabilities of the enzymes changed on increase of the organic solvent concentration; trypsin exhibited a higher stability than that of alpha-chymotrypsin in all organic solvents. These results show that at an organic solvent content of 95% the manifestation of an enzyme activity similar to that measured in water can be attributed to the similar compositions of the secondary structural elements.  相似文献   

12.
The transesterification reaction of N-acetyl-L-phenylalanine ethyl ester with 1-propanol catalyzed by alpha-chymotrypsin was examined in the ionic liquids 1-butyl-3-methylimidazolium hexafluorophosphate ([bmim][PF(6)]) and 1-octyl-3-methylimidazolium hexafluorophosphate ([omim][PF(6)]), and in combination with supercritical carbon dioxide (SC-CO(2)). The activity of alpha-chymotrypsin was studied to determine whether trends in solvent polarity, water activity, and enzyme support properties, observed with this enzyme in conventional organic solvents, hold for the novel environment provided by ionic liquids. alpha-Chymotrypsin freeze-dried with K(2)HPO(4), KCl, or poly(ethylene glycol) demonstrated no activity in [bmim][PF(6)] or [omim][PF(6)] at very low water concentrations, but moderate transesterification rates were observed with the ionic liquids containing 0.25% water (v/v) and higher. However, the physical complexation of the enzyme with poly(ethylene glycol) or KCl did not substantially stimulate activity in the ionic liquids, unlike that observed in hexane or isooctane. Activities were considerably higher in [omim][PF(6)] than [bmim][PF(6)]. Added water was not necessary for enzyme activity when ionic liquids were combined with SC-CO(2). These results indicate that [bmim][PF(6)] and [omim][PF(6)] provide a relatively polar environment, which can be modified with nonpolar SC-CO(2) to optimize enzyme activity.  相似文献   

13.
A novel method for the immobilization of penicillin G acylase (penicillin amidohydrolase, E.C. 3.5.1.11) is reported. It involves the physical aggregation of the enzyme, followed by chemical cross-linking to form insoluble cross-linked enzyme aggregates (CLEAs). Compared with conventionally immobilized penicillin G acylases, these CLEAs possess a high specific activity as well as a high productivity and synthesis/hydrolysis (S/H) ratio in the synthesis of semi-synthetic antibiotics in aqueous media. Moreover, they are active in a broad range of polar and apolar organic solvents.  相似文献   

14.
We studied the effect of organic solvents on the kinetics of porcine pancreatic lipase (pp) for the resolution of racemic glycidol through esterification with butyric acid. We quantified ppl hydration by measuring water sorption isotherms for the enzyme in the solvents/mixtures tested. The determination of initial rates as a function of enzyme hydration revealed that the enzyme exhibits maximum apparent activity in the solvents/mixtures at the same water content (9% to 11% w/w) within the associated experimental error. The maximum initial rates are different in all the media and correlate well with the logarithm of the molar solubility of water in the media, higher initial rates being observed in the solvents/mixtures with lower water solubilities. The data for the mixtures indicate that ppl apparent activity responds to bulk property of the solvent. Measurements of enzyme particle sizes in five of the solvents, as function of enzyme hydration, revealed that mean particle sizes increased with enzyme hydration in all the solvents, differences between solvents being more pronounced at enzyme hydration levels close to 10%. At this hydration level, solvents having a higher water content lead to lower reaction rates; these are the solvents where the mean enzyme particle sizes are greater. Calculation of the observable modulus indicates there are no internal diffusion limitations. The observed correlation between changes in initial rates and changes in external surface area of the enzyme particles suggests that interfacial activation of ppl is only effective at the external surface of the particles. Data obtained for the mixtures indicate that ppl enantioselectivity depends on specific solvent-enzyme interactions. We make reference to ppl hydration and activity in supercritical carbon dioxide. (c) 1994 John Wiley & Sons, Inc.  相似文献   

15.
Chemical coupling of polyethylene glycol (PEG) to therapeutic proteins reduces their immunogenicity and prolongs their circulating half-life. The limitation of this approach is the number and distribution of sites on proteins available for PEGylation (the N terminus and the -amino group of lysines). To increase the extent of PEGylation, we have developed a method to increase the number of PEGylation sites in a model protein, recombinant methionine alpha,gamma-lyase (recombinant methioninase; rMETase), an enzyme cancer therapeutic cloned from Pseudomonas putida. rMETase was first PEGylated with methoxypolyethylene glycol succinimidyl glutarate-5000 with a molar ratio of PEG:rMETase of 15:1. The carboxyl groups of the initially PEGylated protein were then conjugated with diaminobutane, resulting in carboxyl amidation. This reaction was catalyzed by 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide, a water-soluble carbodiimide. The steric hindrance provided by the PEG chains already coupled to the protein prevented cross-linking between rMETase molecules during the carboxyl amidation reaction. The carboxyl-amidated PEGylated rMETase was hyper-PEGylated at a molar ratio of PEG to PEG-rMETase of 60:1. Biochemical analysis indicated that 13 PEG chains were coupled to each subunit of rMETase after hyper-PEGylation compared with 6-8 PEG chains attached to the non-carboxyl-amidated PEG-rMETase. Approximately 15-20% of the non-PEGylated rMETase activity was retained in the hyper-PEGylated molecule. Immunogenicity of the hyper-PEG-rMETase was significantly reduced relative to PEG-rMETase and rMETase. Initial results suggest that hyper-PEGylation may become a new strategy for PEGylation of protein biologics.  相似文献   

16.
Formation of noncovalent complexes between alpha-chymotrypsin (CT) and a polyelectrolyte, polybrene (PB), has been shown to produce two major effects on enzymatic reactions in binary mixtures of polar organic cosolvents with water. (i) At moderate concentrations of organic cosolvents (10% to 30% v/v), enzymatic activity of CT is higher than in aqueous solutions, and this activation effect is more significant for CT in complex with PB (5- to 7-fold) than for free enzyme (1.5- to 2.5-fold). (ii) The range of cosolvent concentrations that the enzyme tolerates without complete loss of catalytic activity is much broader. For enhancement of enzyme stability in the complex with the polycation, the number of negatively charged groups in the protein has been artificially increased by using chemical modification with pyromellitic and succinic anhydrides. Additional activation effect at moderate concentrations of ethanol and enhanced resistance of the enzyme toward inactivation at high concentrations of the organic solvent have been observed for the modified preparations of CT in the complex with PB as compared with an analogous complex of the native enzyme. Structural changes behind alterations in enzyme activity in water-ethanol mixtures have been studied by the method of circular dichroism (CD). Protein conformation of all CT preparations has not changed significantly up to 30% v/v of ethanol where activation effects in enzymatic catalysis were most pronounced. At higher concentrations of ethanol, structural changes in the protein have been observed for different forms of CT that were well correlated with a decrease in enzymatic activity. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 55: 267-277, 1997.  相似文献   

17.
A simple one step process for the preparation of free alpha-chymotrypsin, using an organic solvent to precipitate the enzyme from a buffered solution, followed by washing with organic solvents, is described. This preparation gave 132 times greater esterification activity than lyophilized powder.  相似文献   

18.
The synthesis of N-acetyl tryptophan phenylethyl ester in organic media is catalyzed by suspended agarose beads with multipoint covalently attached chymotrypsin. A dilute aqueous phase is trapped within the gel beads and may be manipulated separately from the organic phase. The equilibrium position becomes more favorable as the solvent polarity decreases, with K(eq) increasing 38 times between 2-butanone and 1,1,1-trichloroethane. The more apolar solvents also give faster kinetics. Addition of cosolvents (up to 10% dimethylformamide or 20% acetonitrile) does not affect the rate but does substantially reduce the equilibrium yield, presumably also by making the organic phase more polar. With trichloroethane as solvent the enzyme appears to be kinetically saturated with 1M phenylethanol. Doubling this concentration also does not cause the expected increase in equilibrium conversion, probably again because K(eq) is reduced in the more polar organic phase. Increased temperature raises the reaction rate as expected but has little effect on the equilibrium. (c) 1992 John Wiley & Sons, Inc.  相似文献   

19.
Including excess salt during lyophilization has been shown to increase the activity of freeze-dried subtilisin Carlsberg (SC) in anhydrous media by over 20,000-fold [Ru et al. (1999) Biotechnol Bioeng 63:233-241]. In the present study, salt-activated SC (KCl-SC) showed a 30% enhancement in enantioselectivity compared to the salt-free enzyme in a variety of organic solvents. Activity toward both enantiomers of N-acetyl-phenylalanine methyl ester (APME) increased in tandem by 2-3 orders of magnitude in all solvents, indicating that the mechanism of salt activation is inherent to the enzyme and does not strongly favor one enantiomer over the other. However, activity and enantioselectivity of salt-activated SC could be manipulated through changes in the lyophilization conditions. Variations in lyophilization time, initial KCl concentration, and initial lyophilization volume altered enantioselectivity over 2-fold. The changes in enantioselectivity reflected the activity for the L enantiomer, while the activity toward the D enantiomer was mostly unaffected. The results indicate that the lyophilization time and final water content of the KCl-SC are important determinants of enzyme activity for the L enantiomer, suggesting that the favored reaction is more sensitive to the structural integrity of the salt-activated enzyme.  相似文献   

20.
In this study we explored the efficiency of the additive methyl-beta-cyclodextrin (M beta CD) to enhance the activity and enantioselectivity of the serine protease subtilisin Carlsberg in organic solvents. These two parameters, measured for different transesterification reactions and in several solvents, are compared with results obtained by using two additional preparations of the same enzyme: lyophilized powder and cross-linked enzyme crystals (CLEC). The results suggest that co-lyophilization of subtilisin with M beta CD preserves the enzyme's active site tertiary structure rendering a highly active and enantioselective catalyst.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号