首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 996 毫秒
1.
The skin of adult hairless dogs is clinically nonpigmented, clinically lightly pigmented, or clinically hyperpigmented (spotty pigmented). The pigment noted clinically is attributable to melanin granules in the epidermis. Spotty pigmentation in the skin of adult hairless dogs was treated by administration of the depigmenting agent (3% hydroquinone, HQ) for 1 month. Depigmenting effects were examined by use of three methods: skin color, dihydroxyphenylalanine (DOPA)-positive melanocyte count, and histologic evaluation. The treated skin of hairless dogs began to become depigmented after application of HQ for 1 week. After 1 month of treatment with HQ, depigmentation spread over a quarter of the body. The number of DOPA-positive melanocytes in the HQ-treated sites decreased to less than approximately a fifth of that before treatment. In HQ-treated skin, histologic staining by use of Fontana-Masson's (FM) method revealed complete absence of melanin pigment. These results suggested that hairless dogs should be a useful animal model for investigating the effects and cutaneous toxicity of depigmenting agents.  相似文献   

2.
The polyquinoid nature of eumelanin(s) enables them to couple oxidation of electron donors with the reduction of electron acceptors. We have studied the ability of synthetic (Sigma) and “biological” (cuttlefish sepia) melanins to mediate electron transfer between hydroxybenzene donors (tyrosine, dopa, chemical depigmenters) and model acceptors (ferricyanide, tyrosinase). 1) Depending on the reductant, melanin either retards or accelerates ferricyanide reduction. Reaction kinetics are consistent with a mechanism involving non-interactive binding of both hydroxybenzene and ferricyanide to melanin prior to coupled electron transfer. 2) Melanins also act as an electron conduit in markedly accelerating the tyrosinase-catalyzed oxygenation of p-hydroxyanisole (MMEH). The active species appears to be a complex between melanin and MMEH. The magnitude of both effects depend on the type of melanin as well as its oxidation state. Sepia (eu)melanin appears to protect against UV-induced damage to acid-soluble collagen, as judged by irreversible loss of intrinsic collagen fluorescence. Photoprotection against this type of damage appears primarily to involve optical absorption/scattering by the pigment.  相似文献   

3.
The production of melanin in the hair and skin is tightly regulated by the melanocortin 1 receptor (MC1R) whose activation is controlled by two secreted ligands, alpha-melanocyte stimulating hormone (alphaMSH) and agouti signal protein (ASP). As melanin is extremely stable, lasting years in biological tissues, the mechanism underlying the relatively rapid decrease in visible pigmentation elicited by ASP is of obvious interest. In this study, the effects of ASP and alphaMSH on the regulation of melanin synthesis and on visible pigmentation were assessed in normal murine melanocytes and were compared with the quick depigmenting effect of the tyrosinase inhibitor, phenylthiourea (PTU). alphaMSH increased pheomelanin levels prior to increasing eumelanin content over 4 days of treatment. Conversely, ASP switched off the pigment synthesis pathway, reducing eu- and pheo-melanin synthesis within 1 day of treatment that was proportional to the decrease in tyrosinase protein level and activity. These results demonstrate that the visible depigmentation of melanocytes induced by ASP does not require the degradation of existing melanin but rather is due to the dilution of existing melanin by melanocyte turnover, which emphasizes the importance of pigment distribution to visible color.  相似文献   

4.
Melanin synthesized from mushroom tyrosinase and 3,4-dihydroxyphenylalanine has been shown to oxidize NADH and NADPH, reduce ferricyanide, oxidized forms of cytochrome c and dichlorophenolindophenol, and catalyze the coupled oxidation of NADH and reduction of ferricyanide. Kinetic studies involving the determination of initial velocity at various concentrations of substrates and product inhibition measurements have been carried out on the NADH-ferricyanide-melanin reaction. The results are consistent with a ping-pong mechanism in which one product is formed prior to the reaction of melanin with the second substrate involving the reversible oxidation and reduction of melanin during the reaction. It may be concluded that melanin is capable of acting as an electron transfer agent in several reduction-oxidation systems.  相似文献   

5.
Interaction of radicals from water radiolysis with melanin   总被引:2,自引:0,他引:2  
Melanins are considered to be natural photoprotectors in the melanocytes and keratinocytes of the skin. These pigments have also been suggested to play an important role in protection of melanin-containing cells against ionising radiation. Various mechanisms have been proposed to explain the protective role of melanin which invoke the radical scavenging properties of the polymer. In the present work the reactions of melanins with radicals generated in aqueous media by pulse radiolysis have been studied. Time-resolved changes in absorbance of the melanin or the radical species were recorded at selected wavelengths. Experiments were carried out on synthetic dopa- and 5-S-cysteinyldopa-melanins and a natural melanin in phosphate buffer (pH 7.4). Under the conditions employed, melanin reacted predominantly with either oxidising (OH., N3.) or reducing (eaq-, CO2-) species. We were also able to monitor the interaction of melanin with superoxide radical, which was reducing in this case. Detailed analysis of transient changes in melanin absorbance, detected at different wavelengths, was demonstrated to be a convenient method for studying redox processes of this substance, as shown by model experiments using ferricyanide and dithionite as oxidising and reducing agents, respectively. Among the radicals studied, OH. exhibited the strongest reactivity with melanins. Apparent rate constants for the reactions of radicals with autoxidative dopa-melanin (1.5 X 10(9) M-1 X s-1, 2.6 X 10(8) M-1 X s-1, 1.8 X 10(8) M-1 X s-1, 5 X 10(5) M-1 X s-1, 10(6)-10(7) M-1 X s-1 for OH., eaq-, N.3. O2- and CO2-, respectively) are reported. The reactivity of melanins with radicals from water radiolysis and their effect on pigment properties are discussed in terms of the structure and possible biological role of the pigments.  相似文献   

6.
Chemical and instrumental approaches to treat hyperpigmentation   总被引:6,自引:0,他引:6  
Many modalities of treatment for acquired skin hyperpigmentation are available including chemical agents or physical therapies, but none are completely satisfactory. Depigmenting compounds should act selectively on hyperactivated melanocytes, without short- or long-term side-effects, and induce a permanent removal of undesired pigment. Since 1961 hydroquinone, a tyrosinase inhibitor, has been introduced and its therapeutic efficacy demonstrated, and other whitening agents specifically acting on tyrosinase by different mechanisms have been proposed. Compounds with depigmenting activity are now numerous and the classification of molecules, based on their mechanism of action, has become difficult. Systematic studies to assess both the efficacy and the safety of such molecules are necessary. Moreover, the evidence that bleaching compounds are fairly ineffective on dermal accumulation of melanin has prompted investigations on the effectiveness of physical therapies, such as lasers. This review which describes the different approaches to obtain depigmentation, suggests a classification of whitening molecules on the basis of the mechanism by which they interfere with melanogenesis, and confirms the necessity to apply standardized protocols to evaluate depigmenting treatments.  相似文献   

7.
Adrenodoxin reductase, the flavoprotein moiety of the adrenal cortex mitochondrial steroid hydroxylating system, participates in adrenodoxin-dependent cytochrome c and adrenodoxin-independent ferricyanide reduction, with NADPH as electron donor for both of these 1-electron reductions. For ferricyanide reduction, adrenodoxin reductase cycles between oxidized and 2-electron-reduced forms, reoxidation proceeding via the neutral flavin (FAD) semiquinone form (Fig. 9). Addition of adrenodoxin has no effect upon the kinetic parameters of flavoprotein-catalyzed ferricyanide reduction. For cytochrome c reduction, the adrenodoxin reductase-adrenodoxin 1:1 complex has been shown to be the catalytically active species (Lambeth, J. D., McCaslin, D. R., and Kamin, H. (1976) J. Biol. Chem. 251, 7545-7550). Present studies, using stopped flow techniques, have shown that the 2-electron-reduced form of the complex (produced by reaction with 1 eq of NADPH) reacts rapidly with 1 eq of cytochrome c (k approximately or equal to 4.6 s-1), but only slowly with a second cytochrome c (k = 0.1 to 0.3 s-1). However, when a second NADPH is included, two more equivalents of cytochrome are reduced rapidly. Thus, the adrenodoxin reductase-adrenodoxin complex appears to cycle between 1- and 3-electron reduced states, via an intermediate 2-electron-containing form produced by reoxidation by cytochrome (Fig. 10). For ferricyanide reduction by adrenodoxin reductase, the fully reduced and semiquinone forms of flavin each transfer 1 electron at oxidation-reduction potentials which differ by approximately 130 mV. However, adrenodoxin in a complex with adrenodoxin reductase allows electrons of constant potential to be delivered from flavin to cytochrome c via the iron sulfur center...  相似文献   

8.
Close association exists between melanocytes, the pigment melanin-producing cells in the body, and their neighboring keratinocytes. Keratinocytes are the pigment recipients and skin pigmentation is the result of this interaction. While the chemical basis of melanin production (melanogenesis) is well documented, the molecular mechanism of melanosome transfer needs to be elucidated. We are now providing first evidence that the protease-activated receptor 2 (PAR-2) expressed on keratinocytes, but not on melanocytes, is involved in melanosome transfer and therefore may regulate pigmentation. Activation of PAR-2 with trypsin or with the peptide agonist SLIGRL induced pigmentation in both two- and three-dimensional cocultures of keratinocytes and melanocytes, but not in cocultures that were spatially separated, indicating the need for intimate cell-cell contact. Topical application of SLIGRL on human skin transplanted on SCID mice resulted in a visible skin darkening. Histological examination revealed increased deposits of melanin in the keratinocytes. Inhibition of PAR-2 activation by RWJ-50353, a serine protease inhibitor, resulted in depigmentation and changes in expression of melanogenic-specific genes. Keratinocyte-melanocyte contact was essential for this depigmenting effect. Topical application of this inhibitor induced lightening of the dark skin Yucatan swine, which was confirmed by histochemical analysis. The results presented here suggest a novel mechanism for the regulation of pigmentation, mediated by the activation or inhibition of the keratinocyte receptor PAR-2.  相似文献   

9.
Aims: The aim of the study is to isolate and characterize a melanin pigment from a new strain of Aspergillus bridgeri isolated from rhizosphere soil of Eucalyptus tree and to investigate its antioxidant activity. Methods and Results: The extracellular pigment was alkali soluble, acid‐resistant and insoluble in organic solvents and water. The pigment was precipitated on treatment with FeCl3, ammoniacal AgNO3 and potassium ferricyanide and was bleached in the presence of oxidants and reductants. It was confirmed as melanin based on the Fourier transform infrared and electron paramagnetic resonance spectroscopy techniques apart from chemical analysis. Inhibition of melanin production by inhibitors like tricyclazole, 6‐hydroxyflavanone, 4‐hydroxy‐7‐methoxy‐3‐phenyl‐coumarin, 7‐hydroxy‐4‐phenyl‐coumarin and 7‐hydroxy‐3,4,8‐trimethylcoumarin confirmed that melanin produced by A. bridgeri is synthesized by 1,8‐dihydroxynaphthalene (DHN)‐melanin pathway. The melanin showed good free radical scavenging activity by DPPH method with an EC50 of 54·12 μg ml?1. Conclusions: The results of the study indicate that the melanin produced by the newly isolated A. bridgeri strain is a member of DHN melanin family and exhibited significant free radical scavenging activity. Significance and Impact of the Study: This is the first report on characterization of DHN melanin produced by a novel strain of A. bridgeri and may find potential application as a natural antioxidant in the cosmetic and pharmaceutical industries.  相似文献   

10.
One- and two-electron reduction of quinones by glutathione reductase   总被引:1,自引:0,他引:1  
Yeast glutathione reductase (E.C. 1.6.4.2) catalyzes the oxidation of NADPH by p-quinones and ferricyanide with a maximal turnover number (TNmax) of 4-5 s-1.NADP+ stimulates the reaction and the TNmax/Km value of acceptors is reached at NADP+/NADPH greater than or equal to 100. TNmax is increased up to 30-33 s-1. The stimulatory effect of NADP+ may be associated with its complexation with the NADPH-binding site in the reduced enzyme (Kd = 40-60 microM). It is suggested that NADP+ shifts the electron density towards FAD in the two-electron-reduced enzyme and, evidently, changes its one-electron-reduction potentials, while quinones oxidize an equilibrium form of glutathione reductase containing reduced FAD. In the absence of NADP+ the reduction of quinones by glutathione reductase proceeds mainly in a two-electron manner. At NADP+/NADPH = 100 a one-electron reduction makes up 44% of the total process. At pH 6.0-7.0 the reduced forms of naphthoquinones undergo cyclic redox conversions. A hyperbolic dependence exists of the log TN/Km of quinones on their one-electron-reduction potentials.  相似文献   

11.
Novel 3,4-dihydroquinazoline-2(1H)-thiones (QNTs) 1 were found to be potent inhibitors of α-MSH-induced melanin production. The effect of QNTs to inhibit melanin formation in B16 melanoma cells was screened in the presence of α-MSH. In defining the mechanism of activity, the effects on tyrosinase activity, on tyrosinase synthesis and on the depigmentation of melanin were evaluated. QNTs did not affect the catalytic activity of tyrosinase, but rather acted as an inhibitor of tyrosinase synthesis.  相似文献   

12.
V I Mitashov 《Ontogenez》1978,9(2):183-188
It was concluded that the newly synthesized melanin granules were replaced in the pigmented tissues of the newt eye on the basis of redistribution of the cells of pigment epithelium of retina and iris labelled by 3H-DOPA 2.5 and 6.5 months after the isotope injection. The replacement of melanin granules and, correspondingly, melanin synthesis proceed more actively in the peripheral zones of the pigment epithelium of retina. The depigmentation of cells preceding the melanin synthesis appears to be realized with the participation of macrophages.  相似文献   

13.
The oxidation of reduced cytochrome c by ferricyanide has been studied over a wide range of ferricyanide concentrations using a continuous-flow apparatus. The formation of a ferrocytochrome c-ferricyanide complex has been demonstrated and the binding and electron transfer processes separated to give both the oxidation electron transfer rate and the binding rate parameters. The electron transfer rate has been found to be 1.86 . 10(3) s-1 in H2O buffer and 1.36 . 10(3) s-1 in 2H2O demonstrating that a deuterium isotope effect of similar magnitude (R = 1.37) to that found in the cytochrome reactions in photosynthetic bacteria [18] is also found in the reaction studied here. The binding association rate parameters also show a similar deuterium isotope effect suggesting that water rotation may be involved in both the binding of ferricyanide to reduced cytochrome c and the subsequent oxidation electron transfer.  相似文献   

14.
The catalytic efficiency (kcat/Km) of Escherichia coli flavin pyruvate oxidase can be stimulated 450-fold either by the addition of lipid activators or by limited proteolytic hydrolysis. Previous studies have shown that a functional lipid binding site is a mandatory prerequisite for the in vivo functioning of this enzyme (Grabau, C., and Cronan, J. E., Jr. (1986) Biochemistry 25, 3748-3751). The effect of activation on the transient state kinetics of partial reactions in the overall oxidative conversion of pyruvate to acetate and CO2 has now been examined. The rate of decarboxylation of pyruvate to form CO2 and hydroxyethylthiamin pyrophosphate for both activated and unactivated forms of the enzyme is identical within experimental error. The decarboxylation step was measured using substrate concentrations of the enzyme in the absence of an electron acceptor. The pseudo-first order rate constant for the decarboxylation step is 60-80 s-1. The rate of oxidation of hydroxyethylthiamin pyrophosphate and concomitant enzyme-bound flavin reduction was analyzed by stopped-flow methods utilizing synthetic hydroxyethylthiamin pyrophosphate. The pseudo-first order rate for this step with unactivated enzyme was 2.85 s-1 and increased 145-fold for lipid-activated enzyme to 413 s-1 and 61-fold for the proteolytically activated enzyme to 173 s-1. The analysis of a third reaction step, the reoxidation of enzyme-bound FADH, was also investigated by stopped-flow techniques utilizing ferricyanide as the electron acceptor. The rate of oxidation of enzyme.FADH is very fast for both unactivated (1041 s-1) and activated enzyme (645 s-1). The data indicate that the FAD reduction step is the rate-limiting step in the overall reaction for unactivated enzyme. Alternatively, the rate-limiting step in the overall reaction with the activated enzyme shifts to one of the partial steps in the decarboxylation reaction.  相似文献   

15.
The reductant dependence of iron mobilization from isolated rabbit reticulocyte endosomes containing diferric transferrin is reported. The kinetic effects of acidification by a H(+)-ATPase are eliminated by incubating the endosomes at pH 6.0 in the presence of 15 microM FCCP to acidify the intravesicular milieu and to dissociate 59Fe(III) from transferrin. In the absence of reductants, iron is not released from the vesicles, and iron leakage is negligible. The second-order dependence of rate constants and amounts of 59Fe mobilized from endosomes using ascorbate, ferrocyanide, or NADH are consistent with reversible mechanisms. The estimated apparent first-order rate constant for mobilization by ascorbate is (2.7 +/- 0.4) x 10(-3) s-1 in contrast to (3.2 +/- 0.1) x 10(-4) s-1 for NADH and (3.5 +/- 0.6) x 10(-4) s-1 for ferrocyanide. These results support models where multiple reactions are involved in complex processes leading to iron transfer and membrane translocation. A type II NADH dehydrogenase (diaphorase) is present on the endosome outer membrane. The kinetics of extravesicular ferricyanide reduction indicate a bimolecular-bimolecular steady-state mechanism with substrate inhibition. Ferricyanide inhibition of 59Fe mobilization is not detected. Significant differences between mobilization and ferricyanide reduction kinetics indicate that the diaphorase is not involved in 59Fe(III) reduction. Sequential additions of NADH followed by ascorbate or vice versa indicate a minimum of two sites of 59Fe(III) residence; one site available to reducing equivalents from ascorbate and a different site available to NADH. Sequential additions using ferrocyanide and the other reductants suggest interactions among sites available for reduction. Inhibition of ascorbate-mediated mobilization by DCCD and enhancement of ferrocyanide and NADH-mediated mobilization suggest a role for a moiety with characteristics of a proton pore similar to that of the H(+)-ATPase. These data provide significant constraints on models of iron reduction, translocation, and mobilization by endocytic vesicles.  相似文献   

16.
The electron transfer reaction between ferrocyanide ion and the blue copper protein, stellacyanin, has been investigated by means of 13C NMR line broadening of the inorganic oxidant. The temperature dependence of the ferrocyanide line broadening gives an activation energy for the electron transfer reaction of 17 +/- 3 kJ. The apparent rate constant decreases with increasing concentration of K4Fe(CN)6, a result which can be explained either by formation of a strong precursor ferrocyanide--stellacyanin [Cu(II)] complex or by increased formation of KFe(CN)3-6 ion pairs. The direct electron transfer between ferrocyanide and ferricyanide has also been studied by 13C NMR line broadening of the former species. The ferricyanide concentration dependence of the exchange line broadening yields a value for the apparent second-order rate constant at 25 degrees C of k = 1.65 . 10(3) M-1 . s-1, in agreement with previously reported values derived from 14N NMR and isotope exchange studies. This rate constant shows a linear dependence on the K+ concentration, independent of ionic strength, a result which confirms the importance of ion pair species such as KFe(CN)3-6 and KFe(CN)2-6 in the direct electron transfer mechanism. The general applications of the method are discussed, including the considerations which suggest that a wide range of electron transfer rates, from about 1 s-1 to 4 . 10(3) s-1, are, in principle, accessible to this technique. The potential utility of ferrocyanide 13C spin--lattice relaxation time measurements is decreasing the lower limit of this range is also discussed.  相似文献   

17.
Stopped-flow kinetics were made of the reaction between ascorbate-reduced Pseudomonas cytochrome oxidase and potassium ferricyanide under both N2 and CO atmospheres. Under N2 three kinetic processes were observed, two being dependent on ferricyanide concentration, with second-order rate constants of 9.6 X 10(4)M-1.s-1 and 1.5 X 10(4)M-1.s-1, whereas the other was concentration-independent, with a first-order rate constant of 0.17 +/- 0.03s-1. Measurements of their kinetic difference spectra have allowed the fastest and second-fastest phases of the reaction to be assigned to direct bimolecular reactions of ferricyanide with the haem c and haem d, moieties of the enzyme respectively. Under CO, the second-order rate constant for the reaction of the haem c was, at 1.3 X 10(5)M-1.s-1, slightly enhanced over the rate in a N2 atmosphere, but the reaction velocity of the haem d1 component was greatly decreased, being apparently limited to that of the rates of CO dissociation from the molecule (0.15s-1 and 0.03s-1). The results are compared with those obtained during a previous study of the reaction of reduced Pseudomonas cytochrome oxidase with oxidized azurin.  相似文献   

18.
Tyrosinase catalyzes in mammals the first and rate-limiting step in the biosynthesis of the melanin, the main pigment of the skin. Pterins, heterocyclic compounds able to photoinduce oxidation of DNA and its components, accumulate in the skin of patients suffering from vitiligo, a chronic depigmentation disorder in which the protection against UV radiation fails due to the lack of melanin. Aqueous solutions of tyrosinase were exposed to UV-A irradiation (350nm) in the presence of pterin, the parent compound of oxidized pterins, under different experimental conditions. The enzyme activity in the irradiated solutions was determined by spectrophotometry and HPLC. In this work, we present data that demonstrate unequivocally that the enzyme is photoinactivated by pterin. The mechanism of the photosensitized process involves an electron transfer from tyrosinase to the triplet excited state of pterin, formed after UV-A excitation of pterin. The biological implications of the results are discussed.  相似文献   

19.
The reoxidation of reduced cytochrome c1 by potassium ferricyanide follows pseudo-first order kinetics with k = 4 x 10(4) M-1 s-1. However, the reoxidation of this cytochrome in two-electron reduced Complex III does not follow any simple rate law although the overall rate of reaction is essentially unchanged. The observed kinetics can be well fitted with a model in which ferricyanide reacts exclusively with cytochrome c1 together with very rapid electron transfer from the reduced iron-sulfur center to cytochrome c1. Neither removal of coenzyme Q from the complex nor prior incubation with antimycin A had any effect on the observed kinetics of reoxidation.  相似文献   

20.
This work describes cell associated and extracellular synthesis of nanoparticles by the yeast, Williopsis saturnus. The yeast was able to grow in the absence and presence of sodium chloride (NaCl) and form nanoparticles in a cell associated manner. The content of melanin, a stress-associated pigment was found to be progressively greater in the presence of increasing concentrations of NaCl. With higher quantities of melanin (extracted from yeast cells grown in the presence of 4% of NaCl), smaller sized nanoparticles were obtained. This is the first report on understanding the relationship between halotolerance, production of a stress-related pigment (melanin) and synthesis of nanoparticles with antioxidant properties by using W. saturnus as a model system. The cell free extracts derived from cultures grown in the absence of NaCl were able to mediate extracellular synthesis of gold and silver nanoparticles and the biomolecule mediating nanoparticle synthesis was identified to be a glycolipid. Extracellularly synthesized gold nanoparticles displayed good catalytic activity and rapidly mediated the reduction of 4-nitrophenol to 4-aminophenol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号