首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Activation of adenylate cyclase by guanine nucleotide and catecholamines was examined in plasma membranes prepared from rabbit skeletal muscle. The GTP analog, 5′-guanylyl imidodiphosphate caused a time and temperature-dependent activation of the enzyme which was persistent, the Ka was 0.05 μM. 5′-Guanylyl imidodiphosphate binding to the membranes was time and temperature dependent, KD 0.07 μM. Beta adrenergic amines accelerated the rate of 5′-guanylyl imidodiphosphate activation of the enzyme with an order of potency isoproterenol ≈ soterenol ≈ salbutamol > epinephrine ? norepinephrine. Catecholamine activation was antagonized by propranolol and the β2 antagonist butoxamine; the β1 antagonist practolol was inactive. [3H]Dihydroalprenolol bound to the membranes and binding was antagonized by β adrenergic agonists with an order of potency similar to the activation of adenylate cyclase and was antagonized by butoxamine but not by practolol. The data are consistent with the idea that adenylate cyclase in skeletal muscle plasma membranes is coupled to adrenergic receptors of the β2 type.  相似文献   

2.
The role of cyclic nucleotides in the regulation of lymphocyte growth and differentiation remains controversial, as an adequate characterization of the key enzymes, adenylate cyclase and guanylate cyclase, in the plasma membrane of lymphocytes is still lacking. In this study, calf thymus lymphocytes were disrupted by nitrogen cavitation and various cellular fractions were isolated by differential centrifugation and subsequent sucrose density ultracentrifugation. As revealed by the chemical composition and the activities of some marker enzymes, the plasma membrane fraction proved to be highly purified. Nucleotide cyclases were present in the plasma membranes in high specific activities, basal activities of adenylate cyclase being 13.7 pmol/mg protein per min and 34.0 pmol/mg protein per min for the guanylate cyclase, respectively. Adenylate cyclase could be stimulated by various effectors added directly to the enzyme assay, including NaF, GTP, 5'-guanylyl imidodiphosphate, Mn2+ and molybdate. Addition of beta-adrenergic agonists only showed small stimulating effects on the enzyme activity in isolated plasma membranes. Basal activity of adenylate cyclase as well as activities stimulated by NaF or 5'-guanylyl imidodiphosphate exhibited regular Michaelis-Menten kinetics. Activation by both agents only marginally affected the Km values, but largely increased Vmax. The activity of the plasma membrane-bound guanylate cyclase was about 10-fold enhanced by the nonionic detergent Triton X-100 and high concentrations of lysophosphatidylcholine, but was slightly decreased upon addition of the alpha-cholinergic agonist carbachol. Basal guanylate cyclase indicated to be an allosteric enzyme, as analyzed by the Hill equation with an apparent Hill coefficient close to 2. In contrast, Triton X-100 solubilized enzyme showed regular substrate kinetics with increasing Vmax but unaffected Km values. Thus the lymphocyte plasma membrane contains both adenylate cyclase and guanylate cyclase at high specific activities, with properties characteristic for hormonally stimulated enzymes.  相似文献   

3.
In mouse parotid membranes forskolin activated adenylate cyclase four-fold; maximal activation of the enzyme occurred with 10 microM forskolin. Activation was not dependent on the guanyl nucleotide GTP nor on the inhibitory guanine nucleotide 5'-0-(2-Thiodiphosphate), GDP beta S. In contrast, stimulation of adenylate cyclase by isoproterenol required GTP and was antagonized by GDP beta S in a dose-dependent manner. These results indicate that the guanyl-binding protein of mouse parotid adenylate cyclase is not a requisite for forskolin activation and lends support for direct interaction of forskolin at the catalytic subunit.  相似文献   

4.
In order to characterize the beta-adrenoceptors coupled to the human fat cell adenylate cyclase more extensively the effects of the beta 2-selective agonist salbutamol on basal and isoproterenol-stimulated rates of cAMP-accumulation were studied. Although exhibiting only low intrinsic activity salbutamol displayed only slightly lower affinity towards the beta-adrenoceptors linked to the human fat cell adenylate cyclase than isoproterenol. In addition, the beta 2-selective antagonist butoxamine was slightly more potent in inhibiting the isoproterenol-stimulated fat cell enzyme than the cardioselective beta-blocking agent practolol. These results further emphasize the difficulties in classifying the lipolytic response of adipose tissue to beta-adrenergic agonists and antagonists within a uniform beta-receptor theory.  相似文献   

5.
The Ca2+-dependent regulation of human platelet membrane adenylate cyclase has been studied. This enzyme exhibited a biphasic response to Ca2+ within a narrow range of Ca2+ concentrations (0.1-1.0 microM). At low Ca2+ (0.08-0.3 microM) adenylate cyclase was stimulated (Ka = 0.10 microM), whereas at higher Ca2+ (greater than 0.3 microM) the enzyme was inhibited to 70-80% control (Ki = 0.8 microM). Membrane fractions, prepared by washing in the presence of LaCl3 to remove endogenous calmodulin (approximately equal to 70-80% depletion), exhibited no stimulation of adenylate cyclase by Ca2+ but did show the inhibitory phase (Ki = 0.4 microM). The activation phase could be restored to La3+-washed membranes by addition of calmodulin (Ka = 3.0 nM). Under these conditions it was apparent that calmodulin reduced the sensitivity of adenylate cyclase to Ca2+ (Ki = 0.8 microM). Prostaglandin E1 (PGE1) did not alter Ki or Ka values for Ca2+. Calmodulin did not alter the EC50 for PGE1 stimulation of adenylate cyclase but increased the Vmax (1.5-fold). The calmodulin antagonist trifluoperazine potently inhibited adenylate cyclase in native membranes (80%) and to a much lesser extent in La3+-washed membranes (15%). This inhibition was due to interaction of trifluoperazine with endogenous calmodulin since trifluoperazine competitively antagonized the stimulatory effect of calmodulin on adenylate cyclase in La3+-washed membranes. We propose that biphasic Ca2+ regulation of platelet adenylate cyclase functions to both dampen (low Ca2+) and facilitate (high Ca2+) the haemostatic function of platelets.  相似文献   

6.
Eight weeks following streptozotocin-induced diabetes mellitus in rats, the sensitivity of adenylate cyclase to dopamine (DA) and norepinephrine (NE) was reduced in homogenates of retina. Furthermore, the activation of adenylate cyclase in cerebral microvessels (capillaries) by NE, 5'-guanylyl imidodiphosphate (alone or with NE) and forskolin was reduced in diabetic rats versus appropriate controls. In diabetic rats enzyme sensitivity to only NE was attenuated in homogenates of cerebral cortex and cortical piaarachnoid. No differences between controls and diabetics were noted with respect to guanylate cyclase or cyclic AMP phosphodiesterases. The damage observed in retina and microvessels may play an important pathogenic role in diabetes-induced blindness and stroke.  相似文献   

7.
Prostaglandin (PG) E2 synthesis elicited by adrenergic agonists in the guinea pig trachea has been shown to be mediated via activation of beta-adrenergic receptors. The purpose of this study was to examine arachidonic acid (AA) metabolism and to characterize the subtype of beta receptor involved in PG synthesis. [14C]AA was incubated with guinea pig tracheal rings, and the radiolabelled products were extracted from the medium. Thin layer chromatographic analysis and radioimmunoassay of the extract showed that [14C]AA was incorporated into guinea pig tracheal rings and metabolized mainly into radiolabeled and immunoreactive PGE2 (iPGE2) and smaller amounts into PGF2 alpha. Trace amounts of PGD2, TxB2 and 6-keto-PGF1 alpha but not LTB4 or LTC4 were detected by enzyme immunoassay. Incubation of guinea pig tracheal rings for 10 min with isoproterenol or salbutamol resulted in a significant increase in PGE2 synthesis (optimum concentration 0.1 microM for both compounds). In contrast, dobutamine, BRL 37344, BRL 28410, norepinephrine, phenylephrine, and xylazine (up to 1 microM) did not significantly increase PGE2 production. Isoproterenol-induced iPGE2 production was inhibited by the selective beta 2 receptor antagonist butoxamine (0.1-1.0 microM) and somewhat reduced by the beta 1 receptor antagonist practolol (1 microM). The increase in PGE2 synthesis was diminished with increasing concentrations of isoproterenol (0.5-5.0 microM) or salbutamol (0.5-1.0 microM); but it was reversed by pretreatment of tracheal rings with the protein synthesis inhibitors cycloheximide (0.9 microM) and actinomycin D (2 microM) but not by phenylisopropyl adenosine (0.1-1.0 microM), an inhibitor of adenylyl cyclase. These data suggest that isoproterenol-induced iPGE2 synthesis is primarily via activation of a beta 2 adrenergic receptor. Failure to enhance iPGE2 synthesis by a high concentration of isoproterenol is likely to be due to an induction of new inhibitory protein synthesis.  相似文献   

8.
Inhibition of basal adenylate cyclase by GTP or guanyl-5'-yl imidodiphosphate was abolished in membranes isolated from rat adipocytes previously incubated with pertussis toxin. Forskolin (0.1 microM) stimulated adenylate cyclase about 4-fold and inhibition of cyclase by GTP or guanyl-5'-yl imidodiphosphate was also abolished by pertussis toxin treatment of rat adipocytes. Forskolin (1 microM) increased adenylate cyclase activity at least ten-fold and the inhibitory effect of GppNHp was reduced but not abolished by pertussis toxin. In rabbit adipocytes, pertussis toxin reversed the inhibition of adenylate cyclase activity by GppNHp to the same extent as that by GTP in the presence of 1 microM forskolin. The present results indicate that pertussis toxin can reverse the inhibition of adipocyte adenylate cyclase by nonhydrolyzable GTP analogs as well as that by GTP.  相似文献   

9.
Adenylate cyclase was measured in skeletal muscle plasma membranes incubated with subtilisin. Under specific conditions the protease preferentially inactivated fluoride and guanylnucleotide sensitivity. Following protease treatment, membranes were solubilized with Lubrol 12A9 and subjected to ion-exchange chromatography. Adenylate cyclase was eluted with 200 mM NaCl; the enzyme recovered was completely unresponsive to either NaF or guanylyl imidodiphosphate. Responsiveness to the two ligands was restored by adding a heart fraction in which basal activity had been destroyed by heating at 40 degrees C or by adding a soluble skeletal muscle fraction in which basal activity had been largely destroyed by N-ethylmaleimide. The solubilized subtilisin-treated skeletal muscle preparation may serve as a source of catalytic activity for the study and purification of regulatory factors for adenylate cyclase.  相似文献   

10.
Inhibition of receptor-coupled adenylate cyclase by hormones is proposed to be associated with GTP hydrolysis. Since adenosine inhibits cerebral-cortical adenylate cyclase via A1 adenosine receptors, the present study attempts to verify this mechanism for A1-selective adenosine derivatives. In guinea-pig cortical membranes N6-(phenylisopropyl)adenosine (PIA) increased the Vmax. of the low-Km GTPase, with an EC50 (concentration causing 50% of maximal stimulation) of about 0.1 microM, and the stimulatory effect was competitively antagonized by 5 microM-8-phenyltheophylline. The rank order of potency of the stereoisomers of PIA and of 5-(N-ethylcarboxamido)adenosine (NECA) to stimulate GTPase correlated with their ability to inhibit adenylate cyclase activity (R-PIA greater than NECA greater than S-PIA). Competition binding studies with (-)-N6- ([125I]iodo-4-hydroxyphenylisopropyl)adenosine suggest that adenylyl imidodiphosphate (p[NH]ppA), an essential component of the GTPase assay system, is a more potent A1-receptor agonist than ATP, with an IC50 (concentration giving half-maximal displacement of radioligand binding) of 7.9 microM. On the basis of the p[NH]ppA concentration used in the GTPase assay (1.25 mM), enzyme stimulation by adenosine seems to be highly underestimated. Nevertheless, adenosine-induced GTP hydrolysis reflects an increased turnover of guanine nucleotides at the Ni regulatory site and appears to be a crucial step in the sequence of events processing the inhibitory signal to adenylate cyclase.  相似文献   

11.
The mechanism of receptor-induced activation of adenylate cyclase has been proposed to involve an enhanced exchange of GDP for GTP. The kinetics of this process have not been investigated so far in the brain due to a spontaneous activation of the enzyme by guanyl nucleotides, which precludes the ability to follow receptor-dependent events. We show that it is possible to investigate the mechanism of receptor action in such systems by using a combination of guanosine 5'-(beta-gamma-imino)triphosphate (Gpp(NH)p) and guanosine 5'-(2-O-thio)diphosphate (GDP beta S). In pineal membranes, beta-adrenergic agonists increase the rate of adenylate cyclase activation by 10 or 100 microM Gpp(NH)p about 40-fold (0.023-0.9 min-1 kact) and decrease the inhibitory potency of GDP beta S nearly 1000-fold. As a result, 100 microM GDP beta S which blocks 90% of the activation by 10 microM Gpp(NH)p has no inhibitory effect in the presence of 10 microM Gpp(NH)p and 10 microM noradrenaline or isoproterenol. In caudate nucleus, dopamine does not appear to increase the rate of activation of adenylate cyclase by 10 microM Gpp(NH)p. Nevertheless, 100 microM GDP beta S blocks 90% of the activation by 10 microM Gpp(NH)p but has no inhibitory effects in the presence of dopamine. Thus, one can demonstrate that even weakly activating receptors have the capacity to facilitate a functional exchange of GDP beta S for Gpp(NH)p and measure the efficacy of the interaction between the receptor and the functionally linked guanyl nucleotide subunit.  相似文献   

12.
Adenylate cyclase was measured in skeletal muscle plasma membranes incubated with subtilisin. Under specific conditions the protease preferentially inactivated flouride and guanylnucleotide sensitivity. Following protease treatment, membranes were solubilized with Lubrol 12A9 and subjected to ion-exchange chromatography. Adenylate cyclase was eluted with 200 mM NaCl; the enzyme recovered was completely unresponsive to either NaF or guanylyl imidodiphosphate. Responsiveness to the two ligands was restored by adding a heart fraction in which basal activity had been destroyed by heating at 40°C or by adding a soluble skeletal muscle fraction in which basal activity had been largely destroyed by N-ethylmaleimide. The solubilized subtilisin-treated skeletal muscle preparation may serve as a source of catalytic activity for the study and purification of regulatory factors for adenylate cyclase.  相似文献   

13.
Cultured and propagated smooth muscle cells contain adenylate cyclase (AC) responsive to catecholamines and their analogues. Isoproterenol and zinterol were the most effective stimulants of AC activity with EC50 = 8.5 X 10(-8)M. They were followed by epinephrine, phenylephrine and norepinephrine (EC50 = 7.5 X 10(-7)M, 6.5 X 10(-6)M and 4 X 10(-6)M, respectively). When the selective antagonists for beta 1 and beta 2 receptors (beta 1-type practolol and atenolol, beta 1/beta 2-type propranolol and beta 2-type butoxamine) were tested against isoproterenol, epinephrine and norepinephrine stimulation of AC activity, the beta 1 in contrast to beta 2 antagonists were found ineffective. The alpha-blockers (phentolamine alpha 1/alpha 2-type antagonists) and yohimbine (alpha 2-type antagonist) alone or in the presence of propranolol did not significantly inhibit the catecholamine-induced enhancement of cAMP formation. On the other hand, prazosine (alpha 1-type antagonist) blocked the stimulatory effect of epinephrine and norepinephrine on AC system. Similarly, the alpha 2-agonist, clonidine, did not affect the catecholamines' stimulated AC activity while alpha 1 agonist, phenylephrine, induced an additive enhancement of norepinephrine production of cAMP. The findings of beta-2- and alpha-1-type adrenergic receptors in the cultured cerebrovascular smooth muscle provide additional support for the implicated involvement of adrenergic innervation in the regulation of cerebral blood flow and/or systemic blood pressure.  相似文献   

14.
The receptors mediating the inhibition of D1 dopamine receptor-stimulated adenylate cyclase by opioids were examined in primary cultures of rat neostriatal neurons. Adenylate cyclase activity was dose-dependently increased by the selective D1 dopamine receptor agonist SKF 38393 (EC50 = 0.05 microM). This stimulation was fully antagonized by the selective D1 dopamine receptor antagonist SCH 23390 (1 microM). SKF 38393 (1 microM)-stimulated adenylate cyclase activity was strongly reduced (by almost 60%) by the highly selective mu-agonist [D-Ala2, MePhe4, Gly-ol5]-enkephalin (DAGO; EC50 = 0.006 microM) and high concentrations of the selective delta-agonist [D-Ser2(O-tert-butyl), Leu5]-enkephalyl-Thr6 (DSTBU-LET; EC50 = 0.13 microM) but not by the selective delta-agonist [D-penicillamine2, D-penicillamine5]enkephalin (DPDPE). D1 dopamine receptor-stimulated adenylate cyclase activity was also slightly reduced (by approximately 20%) by high concentrations of the kappa-agonist U50,488 (EC50 = 0.63 microM). The inhibitory effects of submaximally effective concentrations of DAGO, DSTBULET, and U50,488 were equally well antagonized by the mu-opioid receptor-selective antagonist naloxone (EC50 of approximately 0.1 microM). Neither the irreversible delta-ligand fentanyl isothiocyanate (1 microM) nor the reversible delta-antagonist ICI 174864 (1 microM) reversed the inhibitory effects of DSTBULET. The inhibitory effects of DAGO and U50,488 were equally well reversed by high concentrations (greater than 0.1 microM) of the kappa-opioid receptor-selective antagonist norbinaltorphimine. The effect of DAGO (1 microM) was already detectable after 1 day in culture, whereas DPDPE (1 microM) had no effect even after 28 days in culture. These data indicate that an homogeneous population of mu-opioid receptors coupled as inhibitors to D1 dopamine receptor-stimulated adenylate cyclase is expressed in rat neostriatal neurons in primary culture.  相似文献   

15.
We found that adenylate cyclase activity of human erythrocytes is potentially labile during isolation of their plasmalemma. Addition of 1 mM EGTA to solution used to remove hemoglobin from lysed cells protected activity. Human erythrocyte adenylate cyclase is minimally activated by catecholamines, in the absence or presence of exogenous guanyl nucleotide, but substantially by 5'-guanylyl imidodiphosphate or sodium fluoride and concentration-dependently by Mg2+ or Mn2+. Basal catalytic activity is an age-dependent component of the human erythrocyte; 5'-guanylyl imidodiphosphate- or fluoride-activated activities decline with cellular maturation proportionally to the decrease in basal activity.  相似文献   

16.
The mechanism of agonist-induced desensitization of the D-2 dopamine receptor in the intermediate lobe (IL) of the rat pituitary gland was investigated. Exposure of neurointermediate lobe to 60 microM (-)apomorphine (APO) for 60 min altered the binding of [125I]-N-(p-aminophenethyl)spiperone (NAPS), a D-2 receptor-specific ligand. The capacity of the tissue to bind the ligand (Bmax) was not significantly altered by the exposure to (-)APO but the affinity for [125I]NAPS was decreased 3.6-fold in (-)APO-exposed tissue. The molar potency of YM-09151-2, a D-2 receptor-specific antagonist, showed a minimal difference between in control and (-)-APO-exposed tissue. However, the molar potency of (-)APO towards the D-2 receptor was diminished. The loss of [125I]NAPS binding in (-)APO-exposed tissue was reversed by the addition of guanyl nucleotide. These data suggest that exposure to agonist causes a persistent occupancy of the high affinity state of the receptor. Exposure to (-)APO had no effect on either basal or forskolin-activated adenylate cyclase activity of the intermediate lobe. However, the inhibitory effect of (-)APO upon adenylate cyclase activity of IL homogenates was diminished when the tissue was exposed to (-)APO before homogenization. Furthermore, the ability of GTP but not 5'-guanylyl imidodiphosphate [Gpp(NH)p] to inhibit enzyme activity diminished in the (-)APO-exposed tissue. These data suggest that an agonist-induced desensitization of D-2 receptor in rat IL is thought to occur by uncoupling the receptor from the inhibitory guanyl nucleotide binding protein (Gi) or potentiating the hydrolysis of GTP by Gi.  相似文献   

17.
The lead pyrophosphate precipitation technique was used to visualize adenylate cyclase activity with the electron microscope in unfixed electric organ and synaptosomes of Torpedo marmorata, with special attention to presynaptic membranes. Specificity of the deposition of reaction product was ensured by using 5'-adenylyl imidodiphosphate as substrate and 5'-guanylyl imidodiphosphate and sodium fluoride as activators. Under suitable conditions a reaction product was deposited on the Schwann cell, on presynaptic vesicles, on the inner side of membranes of cisternae and on glycogen granules of the presynaptic region of the endplate. In some cases, a precipitate was also found on postsynaptic membranes of the synaptic cleft and on mitochondria. In isolated synaptosomes localization of the reaction product was identical with that of minced tissue. However, most strikingly, on presynaptic membranes no precipitate was ever found, neither in pieces of electric organ nor in isolated synaptosomes. Furthermore, the extended membrane system of the postsynaptic region of the electroplax remained always free of lead pyrophosphate precipitate.  相似文献   

18.
We report here that forskolin acts in a synergistic manner with dopaminergic agonists, guanine nucleotides, or sodium fluoride to potentiate the stimulation of rat striatal adenylate cyclase mediated by these reagents. In the presence of 100 microM GTP, 100 microM guanyl-5'-yl imidodiphosphate [Gpp(NH)p], or 10 mM NaF, there is a greater than additive increase in forskolin-stimulated enzyme activity as well as a concomitant decrease (two- to fourfold) in the EC50 value for forskolin stimulation of striatal enzyme activity. In the presence of various concentrations of forskolin (10 nM-100 microM), the stimulation of adenylate cyclase elicited by GTP, Gpp(NH)p, and NaF is potentiated 194-1,825%, 122-1,141%, and 208-938%, respectively, compared with the stimulation by these agents above basal activity in the absence of forskolin. With respect to 3,4-dihydroxyphenylethylamine (dopamine) receptor-mediated stimulation of striatal enzyme activity, the stimulation of enzyme activity by dopaminergic agonists, in the absence or presence of forskolin, was GTP-dependent and could be antagonized by the selective D-1 antagonist SCH23390 (100 nM), indicating that these effects are mediated by D-1 dopamine receptors. In the presence of 100 microM GTP, forskolin at various concentrations markedly potentiates the stimulation elicited by submaximal as well as a maximally effective concentrations of dopamine (100 microM) and SKF38393 (1 microM). At higher concentrations of forskolin (10-100 microM) the stimulation elicited by the partial agonist SKF38393 is comparable to that of the full agonist dopamine.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
The phorbol ester 12-O-tetradecanoyl-phorbol 13-acetate (TPA) and thyroliberin exerted additive stimulatory effects on prolactin release and synthesis in rat adenoma GH4C1 pituicytes in culture. Both TPA and thyroliberin activated the adenylate cyclase in broken cell membranes. When combined, the secretagogues displayed additive effects. TPA did not alter the time course (time lag) of adenylate cyclase activation by hormones, guanosine 5'-[beta,gamma-imino]triphosphate or forskolin, nor did it affect the enzyme's apparent affinity (basal, 7.2 mM; thyroliberin-enhanced, 2.2 mM) for free Mg2+. The TPA-mediated adenylate cyclase activation was entirely dependent on exogenously added guanosine triphosphate. ED50 (dose yielding half-maximal activation) was 60 microM. Access to free Ca2+ was necessary to express TPA activation of the enzyme, however, the presence of calmodulin was not mandatory. TPA-stimulated adenylate cyclase activity was abolished by the biologically inactive phorbol ester, 4 alpha-phorbol didecanoate, by the protein kinase C inhibitor polymyxin B and by pertussis toxin, while thyroliberin-sensitive adenylate cyclase remained unaffected. Experimental conditions known to translocate protein kinase C to the plasma membrane and without inducing adenylate cyclase desensitization, increased both basal and thyroliberin-stimulated enzyme activities, while absolute TPA-enhanced adenylate cyclase was maintained. Association of extracted GTP-binding inhibitory protein, Gi, from S49 cyc- murine lymphoma cells with GH4C1 cell membranes yielded a reduction of basal and hormone-stimulated adenylate cyclase activities, while net inhibition of the cyclase of somatostatin was dramatically enhanced. However, TPA restored completely basal and hormone-elicited adenylate cyclase activities in the Gi-enriched membranes. Finally, TPA completely abolished the somatostatin-induced inhibition of adenylate cyclase in both hybrid and non-hybrid membranes. These data suggest that, in GH4C1 cells, protein kinase C stimulation by phorbol esters completely inactivates the n alpha i subunit of the inhibitory GTP-binding protein, leaving the n beta subunit functionally intact. It can also be inferred that thyroliberin conveys its main effect on the adenylate cyclase through activation of the stimulatory GTP-binding protein, Gs.  相似文献   

20.
In cellular systems provided with activatory (Ra-site) receptors for adenosine, such as rat cerebral microvessels and rat liver plasma membranes, the adenosine-receptor antagonist 8-phenyltheophylline (10 microM) significantly decreased adenylate cyclase activity if ATP was the substrate and only if GTP was present. With dATP as substrate, adenylate cyclase activities in both preparations remained unaffected by 8-phenyltheophylline. In rat cerebral-cortical membranes, with inhibitory (Ri-site) receptors for adenosine, 8-phenyltheophylline significantly enhanced adenylate cyclase activity only in the presence of GTP and if ATP was the substrate. In rat cardiac ventricular membranes, which are devoid of any adenylate cyclase-coupled adenosine receptor, the methylxanthine had no GTP-dependent effect, irrespective of the substrate used. All assay systems contained sufficiently high amounts of adenosine deaminase (2.5 units/ml), since no endogenous adenosine, formed from ATP, was found chromatographically. In order to demonstrate a direct influence of phosphorylated adenosine derivatives on adenylate cyclase activity, we investigated AMP in a dATP assay system. AMP was verified chromatographically to remain reasonably stable under the adenylate cyclase assay conditions. In the microvessels, AMP increased enzyme activity in the range 0.03-1.0 mM, an effect competitively antagonized by 8-phenyltheophylline. In the cortical membranes, 0.1 mM-AMP inhibited adenylate cyclase, which was partially reversed by the methylxanthine. The presence of GTP was again necessary for all observations. In the ventricular membranes, AMP had no effect. Since the efficacy of adenosine-receptor agonists and, probably, that of other hormones on adenylate cyclase activity can be more efficiently measured with dATP as the enzyme substrate, this nucleotide seems preferable for adenylate cyclase measurements in systems susceptible to modulation by adenosine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号