首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Biotic resistance is the ability of species in a community to limit the invasion of other species. However, biotic resistance is not widely used to control invasive plants. Experimental, functional, and modeling approaches were combined to investigate the processes of invasion by Ageratina altissima (white snakeroot), a model invasive species in South Korea. We hypothesized that (1) functional group identity would be a good predictor of biotic resistance to A. altissima, whereas a species identity effect would be redundant within a functional group, and (2) mixtures of species would be more resistant to invasion than monocultures. We classified 37 species of native plants into three functional groups based on seven functional traits. The classification of functional groups was based primarily on differences in life longevity and woodiness. A competition experiment was conducted based on an additive competition design with A. altissima and monocultures or mixtures of resident plants. As an indicator of biotic resistance, we calculated a relative competition index (RCIavg) based on the average performance of A. altissima in a competition treatment compared with that of the control where only seeds of A. altissima were sown. To further explain the effect of diversity, we tested several diversity–interaction models. In monoculture treatments, RCIavg of resident plants was significantly different among functional groups but not within each functional group. Fast‐growing annuals (FG1) had the highest RCIavg, suggesting priority effects (niche pre‐emption). RCIavg of resident plants was significantly greater in a mixture than in a monoculture. According to the diversity–interaction models, species interaction patterns in mixtures were best described by interactions between functional groups, which implied niche partitioning. Functional group identity and diversity of resident plant communities were good indicators of biotic resistance to invasion by introduced A. altissima, with the underlying mechanisms likely niche pre‐emption and niche partitioning. This method has most potential in assisted restoration contexts, where there is a desire to reintroduce natives or boost their population size due to some previous level of degradation.  相似文献   

2.
Plant invasions can alter the trophic interactions of invaded ecosystems because of phenological differences between native and invasive plants that may affect the population dynamics and diets of indigenous arthropod herbivores. This issue, however, has seldom been studied. We here report on how abundance and diet of a local tussock moth (Laelia coenosa) are affected by the invasive plant Spartina alterniflora in a Chinese salt marsh previously dominated by the moth’s native host plant, Phragmites australis. We monitored the population dynamics of L. coenosa from four types of hosts: (1) Phragmites in its monoculture, (2) Spartina in its monoculture, and either (3) Phragmites, or (4) Spartina in PhragmitesSpartina mixtures. Additionally, we tested the diet of L. coenosa from the mixtures with isotope analysis. We found that the larval densities of L. coenosa were similar on Spartina and Phragmites in their respective monocultures and mixtures in summer but were greater on Spartina than on Phragmites in autumn. Stable isotope analysis showed that Spartina was a food resource for L. coenosa. The change in the insect’s population dynamics associated with Spartina invasion might be caused by phenological differences between Spartina and Phragmites in that Spartina has a longer growing season than Phragmites. Our study indicates that the extended phenology of Spartina invasion has altered the abundance and diet of the indigenous herbivorous insect (L. coenosa) previously feeding on native Phragmites. We predict such alternation may increase the consuming pressure to native plants via apparent competition, and thereby may facilitate the further invasion of the exotic plants in the salt marsh.  相似文献   

3.
4.

Background and aims

Intraspecific aggregation of plant individuals can promote species coexistence by delaying competitive exclusions. However, such impacts may differ among species with contrasting spatial architecture and rely on the spatial distribution of resources.

Methods

We grew a phalanx clonal plant Carex neurocarpa (with aggregated ramets) and a guerilla one Bolboschoenus planiculmis (with diffused ramets) in monocultures or in 1:1 mixtures with an even or a clustered distribution pattern of the two species in homogeneous or heterogeneous soils.

Results

After 16 months, shoot biomass and ramet number were greater in mixtures than in monocultures in C. neurocarpa, but smaller in B. planiculmis. However, the growth of neither C. neurocarpa nor B. planiculmis differed between even and clustered mixtures. Soil nutrient heterogeneity did not significantly affect the growth of either species, but increased relative yield of B. planiculmis and decreased that of C. neurocarpa.

Conclusions

The relative importance of intra- vs. interspecific competition depends on the spatial architecture of plants, and soil nutrient heterogeneity slows down competitive exclusion by decreasing differences in competitive ability between plants. However, our results do not support the idea that intraspecific aggregation of individuals alters competitive interactions between species.
  相似文献   

5.
Many species are characterized by high levels of intraspecific or ecotypic diversity, yet we know little about how diversity within species influences ecosystem processes. Using a common garden experiment, we studied how intraspecific diversity within the widespread and often dominant North American native Pseudoroegneria spicata (Pursh) Á. Löve. affected invasion by Centaurea stoebe L. We experimentally manipulated Pseudoroegneria intraspecific diversity by changing the number of Pseudoroegneria ecotypes in common garden plots, using ecotypes collected throughout western North America. Invader biomass was 46% lower in mono-ecotype Pseudoroegneria plots than in control plots without any plants prior to invasion, and plots with 3–12 Pseudoroegneria ecotypes were 44% less invaded by Centaurea than the mono-ecotype plots. Across all plots, the total biomass of invading Centaurea plants was negatively correlated with total Pseudoroegneria biomass, but biotic resistance provided by high ecotypic diversity of Pseudoroegneria was not explained only by the increase in productivity that occurred with ecotypic diversity. Relative to Pseudoroegneria yield, Centaurea yield was lowest when Pseudoroegneria overyielded due to size-independent “complementarity” effects. This was not observed when overyielding was due to size-dependent effects. Our results suggest that the intraspecific diversity of a widespread and dominant species has the potential to impact invasion outcomes beyond its effects on native plant productivity and that mechanisms of biotic resistance to invaders may be to some degree independent of plant size.  相似文献   

6.
The adaptation to alternate host plants of introduced herbivorous insects can be vital to agriculture due to the emergence of crop pests. Historically, it is assumed that there are trade-offs associated with the adaptation to new host plants; a generalist genotype that adapts to an alternate host is expected to have a relatively lower fitness on the ancestral host than a specialist genotype (physiological cost) or a relatively lower host-searching ability for the ancestral host plant (behavioral cost). In this study, we tested the costs of adaptation to a new host plant in the introduced herbivorous insect, Ophraella communa LeSage (Coleoptera: Chrysomelidae). In its native range (United States), O. communa feeds mostly on Ambrosia artemisiifolia L. (Asterales: Asteraceae) and cannot utilize the related species, Ambrosia trifida L. (Asterales: Asteraceae), as a host plant. On the other hand, the introduced O. communa population in Japan utilizes A. trifida extensively, and is adapting to it, both physiologically and behaviorally. We compared larval performance on the ancestral and alternate plants and adult host-searching ability between the native and introduced beetle populations. The introduced O. communa showed higher larval survival and adult feeding preference for the alternate host plant A. trifida than did the native O. communa, indicating that the introduced O. communa has rapidly adapted to the alternate host plant. However, there are no differences in either larval performance on the ancestral host A. artemisiifolia or host-searching accuracy between the native and introduced O. communa.  相似文献   

7.
The competitive superiority of invasive plants plays a key role in the process of plant invasions, enabling invasive plants to overcome the resistance of local plant communities. Fast aboveground growth and high densities lead to the competitive superiority of invasive species in the competition for light. However, little is understood of the role belowground root competition may play in invasion. We conducted an experiment to test the effect of root growth on the performance of an invasive shrub Cassia alata, a naturalized, non-invasive shrub Corchorus capsularis, and a native shrub Desmodium reticulatum. We compared seedling growth of the three species and their competitive ability in situ. The roots of the C. alata seedlings grew much faster than those of C. capsularis and D. reticulatum during the entire growth period although C. alata had shorter shoots than D. reticulatum. Furthermore, C. alata showed an apparent competition advantage compared to the other two species as evidenced by less biomass reduction in intraspecific competition and higher competitive effects in interspecific competition. Our study reveals that fast seedling root growth may be important in explaining the competitive advantages of invasive plants. Future studies should pay more attention to the belowground traits of invasive plants, the trade-off between shoot and root growth, and the role of root competition in affecting the population dynamics of invasive plants and the structures of invaded communities.  相似文献   

8.
Native generalist herbivores might limit plant invasion by consuming invading plants or enhance plant invasion by selectively avoiding them. The role of herbivores in plant invasion has been investigated in relation to plant native/introduced status, however, a knowledge gap exists about whether food selection occurs according to native/introduced status or to species. We tested preference of the native herbivore white-tailed deer (Odocoileus virginianus) for widespread and frequently occurring invasive introduced and native plants in the northeastern United States. Multiple-choice deer preference trials were conducted for the species and relative preference was determined using biomass consumption and feeding behavior. While more native than introduced plant biomass was consumed overall, deer food selection varied strongly by plant species. Results show consistent deer avoidance of several invasive introduced plants (Alliaria petiolata, Berberis thunbergii, and Microstegium vimineum) and a native plant (Dennstaedtia punctilobula). Other invasive introduced plants (Celastrus orbiculatus, Ligustrum vulgare, and Lonicera morrowii) and a native plant (Acer rubrum) were highly preferred. These results provide evidence that herbivore impacts on plant invaders depend on plant species palatability. Consequently, herbivore selectivity likely plays an important role in the invasion process. To the extent that herbivory impacts population demographics, these results suggest that native generalist herbivores promote enemy release of some plant invaders by avoiding them and contribute to biotic resistance of others by consuming them.  相似文献   

9.
Abiotic global change factors, such as rising atmospheric CO2, and biotic factors, such as exotic plant invasion, interact to alter the function of terrestrial ecosystems. An invasive lineage of the common reed, Phragmites australis, was introduced to North America over a century ago, but the belowground mechanisms underlying Phragmites invasion and persistence in natural systems remain poorly studied. For instance, Phragmites has a nitrogen (N) demand higher than native plant communities in many of the ecosystems it invades, but the source of the additional N is not clear. We exposed introduced Phragmites and native plant assemblages, containing Spartina patens and Schoenoplectus americanus, to factorial treatments of CO2 (ambient or +300 ppm), N (0 or 25 g m?2 year?1), and hydroperiod (4 levels), and focused our analysis on changes in root productivity as a function of depth and evaluated the effects of introduced Phragmites on soil organic matter mineralization. We report that non-native invasive Phragmites exhibited a deeper rooting profile than native marsh species under all experimental treatments, and also enhanced soil organic matter decomposition. Moreover, exposure to elevated atmospheric CO2 induced a sharp increase in deep root production in the invasive plant. We propose that niche separation accomplished through deeper rooting profiles circumvents nutrient competition where native species have relatively shallow root depth distributions; deep roots provide access to nutrient-rich porewater; and deep roots further increase nutrient availability by enhancing soil organic matter decomposition. We expect that rising CO2 will magnify these effects in deep-rooting invasive plants that compete using a tree-like strategy against native herbaceous plants, promoting establishment and invasion through niche separation.  相似文献   

10.
Herbivores, competitors, and predators can inhibit biological invasions (“biotic resistance” sensu Elton 1959), while disturbance typically promotes biological invasions. Although biotic resistance and disturbance are often considered separately in the invasion literature, these two forces may be linked. One mechanism by which disturbance may facilitate biological invasions is by decreasing the effectiveness of biotic resistance. The effects of both disturbance and biotic resistance may vary across invading genotypes, and genetic variation in the invasive propagule pool may increase the likelihood that some genotypes can overcome biotic resistance or take greater advantage of disturbance. We conducted an experimental field trial in which we manipulated soil disturbance (thatch removal and loosening soil) and the presence of insect herbivores and examined their effects on the invasion success of 44 Medicago polymorpha genotypes. As expected, insecticide reduced leaf damage and increased Medicago fecundity, suggesting that insect herbivores in this system provide some biotic resistance. Soil disturbance increased Medicago fecundity, but did not alter the effectiveness of biotic resistance by insect herbivores. We found significant genetic variation in Medicago in response to disturbance, but not in response to insect herbivores. These results suggest that the ability of Medicago to invade particular habitats depends on the amount of insect herbivory, the history of disturbance in the habitat, and how the specific genotypes in the invader pool respond to these factors.  相似文献   

11.
12.
13.
Most terrestrial plants establish symbiotic associations with microorganisms that enable them to overcome abiotic or biotic filters in ecosystems. Here we investigated how aerial mutualisms involving invasive species may affect the recipient community’s structure. We hypothesized that the endophyte Epichloë occultans enhances the ability of Lolium multiflorum to establish and colonize, but that success would depend on the structure and invasion resistance of the recipient grassland community. Seeds of L. multiflorum with high (E+) and low (E?) endophyte incidence were sown in plots located in grasslands with or without recent grazing history. Relative cover of L. multiflorum and floristic groups was determined during the growing season. Whereas we did not detect any endophyte effect in sites with grazing history, L. multiflorum cover was 63 % in E+ and 27 % in E? plots in sites without grazing history. As cover of L. multiflorum increased in these sites, the cover of warm- and cool-season grasses decreased in spring, with that of warm-season grasses continuing to decrease in summer. These decreases corresponded to 1.9, 3.7 and 1.6 %, for every % increase of L. multiflorum cover. Path analysis and posterior modelling predicted a greater impact of the endophyte on L. multiflorum cover than of seed addition when resident L. multiflorum cover was ≤20 %. This effect decreased asymptotically as L. multiflorum cover increased beyond 20 %. Our results suggest that the endophyte may boost the invasion ability of L. multiflorum particularly in natural grassland without grazing history with potential longer-term consequences for community structure and dynamics.  相似文献   

14.
Dispersal, abiotic and biotic constraints are all involved in explaining the success of invasive plants but how these factors influence the different life stages of an invader remains poorly known. Focusing on highly invaded riparian habitats we asked: (1) how do propagule pressure, resource availability and resident vegetation influence the success of the invasive Asian vine Humulus japonicus at different stages of its life cycle (i.e. seedling, vegetative and flowering) (2) what is the influence of increasing resource availability on the performance and trait plasticity of H. japonicus compared to a functionally similar co-occurring native species? To answer the first question we performed a repeated field survey along the Gardon River (S France) with detailed measurements of distance to the riverbed, soil characteristics, light availability, and resident vegetation cover. To answer the second question we used a greenhouse experiment to compare the biomass and three functional traits of H. japonicus and Galium aparine along a gradient of increasing water and nitrogen availability. Initial germination success was only determined by abiotic constraints, while the role of biotic resistance increased for later stages with establishment success favoured by the interaction of low resident vegetation cover and high soil fertility, and final integrated success favoured by high light availability. H. japonicus performed better and showed higher plasticity in plant height than G. aparine under increased resource availability while their biomass did not differ in the lower part of the resource gradient. Our study demonstrates that by combining field and experimental studies and analysing responses at different life stages we can gain a more complete understanding of how ecological filters shape successful invasions in the course of the life cycle.  相似文献   

15.
Abiotic drivers of environmental stress have been found to induce CAM expression (nocturnal carboxylation) in facultative CAM species such as Mesembryanthemum crystallinum. The role played by biotic factors such as competition with non-CAM species in affecting CAM expression, however, remains largely understudied. This research investigated the effects of salt and water conditions on the competition between M. crystallinum and the C3 grass Bromus mollis with which it is found to coexist in California’s coastal grasslands. We also investigated the extent to which CAM expression in M. crystallinum was affected by the intensity of the competition with B. mollis. We found that M. crystallinum had a competitive advantage over B. mollis in drought and saline conditions, while B. mollis exerted strong competitive effects on M. crystallinum in access to light and soil nutrients in high water conditions. This strong competitive effect even outweighed the favorable effects of salt or water additions in increasing the biomass and productivity of M. crystallinum in mixture. Regardless of salt conditions, M. crystallinum did not switch to CAM photosynthesis in response to this strong competitive effect from B. mollis. Disturbance (i.e., grass cutting) reduced the competitive pressure by B. mollis and allowed for CAM expression in M. crystallinum when it was grown mixed with B. mollis. We suggest that moderate competition with other functional groups can enhance CAM expression in M. crystallinum, thereby affecting its plasticity and ability to cope with biological stress.  相似文献   

16.
17.
18.
Anthocyanins are secondary metabolites that play important roles in plant adaption to adverse environments. The anthocyanin biosynthetic pathway is conserved in high plants. Previous studies revealed the significant role of anthocyanins in natural-colorized cotton. However, little is known about the involvement of anthocyanins in the interaction of cotton and pathogen. In this study, a pathogen-induced gene was isolated from Gossypium barbadense that encodes an anthocyanidin synthase protein (GbANS) with dioxygenase structures. GbANS was preferentially expressed in colored tissue. Silencing of GbANS significantly reduced the production of anthocyanins, as well as the cotton’s resistance to Verticillium dahliae. Biochemical studies revealed that GbANS-silenced cotton accumulated more hydrogen peroxide compared to control plants during the V. dahliae invasion process. This accumulation of hydrogen peroxide corresponded with increased cell death around the invasion sites, which in turn accelerated the V. dahliae infection. Taken together, we found that GbANS contributes to the biosynthesis of anthocyanins in cotton and anthocyanins positively regulate cotton’s resistance to V. dahliae.  相似文献   

19.
20.
Amplification of the EPSPS gene has been previously identified as the glyphosate resistance mechanism in many populations of Amaranthus palmeri, a major weed pest in US agriculture. Here, we evaluate the effects of EPSPS gene amplification on both the level of glyphosate resistance and fitness cost of resistance. A. palmeri individuals resistant to glyphosate by expressing a wide range of EPSPS gene copy numbers were evaluated under competitive conditions in the presence or absence of glyphosate. Survival rates to glyphosate and fitness traits of plants under intra-specific competition were assessed. Plants with higher amplification of the EPSPS gene (53-fold) showed high levels of glyphosate resistance, whereas less amplification of the EPSPS gene (21-fold) endowed a lower level of glyphosate resistance. Without glyphosate but under competitive conditions, plants exhibiting up to 76-fold EPSPS gene amplification exhibited similar height, and biomass allocation to vegetative and reproductive organs, compared to glyphosate susceptible A. palmeri plants with no amplification of the EPSPS gene. Both the additive effects of EPSPS gene amplification on the level of glyphosate resistance and the lack of associated fitness costs are key factors contributing to EPSPS gene amplification as a widespread and important glyphosate resistance mechanism likely to become much more evident in weed plant species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号