首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
2.
3.
4.
5.
Genes encoding the α subunits of neuronal sodium channels have evolutionarily conserved sites of alternative splicing but no functional differences have been attributed to the splice variants. Here, using NaV1.7 as an exemplar, we show that the sodium channel isoforms are functionally distinct when co-expressed with β subunits. The gene, SCN9A, encodes the α subunit of the NaV1.7 channel, and contains both sites of alternative splicing that are highly conserved. In conditions where the intrinsic properties of the NaV1.7 splice variants were similar when expressed alone, co-expression of β1 subunits had different effects on channel availability that were determined by splicing at either site in the α subunit. While the identity of exon 5 determined the degree to which β1 subunits altered voltage-dependence of activation (P = 0.027), the length of exon 11 regulated how far β1 subunits depolarised voltage-dependence of inactivation (P = 0.00012). The results could have a significant impact on channel availability, for example with the long version of exon 11, the co-expression of β1 subunits could lead to nearly twice as large an increase in channel availability compared to channels containing the short version. Our data suggest that splicing can change the way that NaV channels interact with β subunits. Because splicing is conserved, its unexpected role in regulating the functional impact of β subunits may apply to multiple voltage-gated sodium channels, and the full repertoire of β subunit function may depend on splicing in α subunits.  相似文献   

6.
7.
8.
9.
10.
The Ca2+-activated Cl channel anoctamin-1 (Ano1; Tmem16A) plays a variety of physiological roles, including epithelial fluid secretion. Ano1 is activated by increases in intracellular Ca2+, but there is uncertainty whether Ca2+ binds directly to Ano1 or whether phosphorylation or additional Ca2+-binding subunits like calmodulin (CaM) are required. Here we show that CaM is not necessary for activation of Ano1 by Ca2+ for the following reasons. (a) Exogenous CaM has no effect on Ano1 currents in inside-out excised patches. (b) Overexpression of Ca2+-insensitive mutants of CaM have no effect on Ano1 currents, whereas they eliminate the current mediated by the small-conductance Ca2+-activated K+ (SK2) channel. (c) Ano1 does not coimmunoprecipitate with CaM, whereas SK2 does. Furthermore, Ano1 binds very weakly to CaM in pull-down assays. (d) Ano1 is activated in excised patches by low concentrations of Ba2+, which does not activate CaM. In addition, we conclude that reversible phosphorylation/dephosphorylation is not required for current activation by Ca2+ because the current can be repeatedly activated in excised patches in the absence of ATP or other high-energy compounds. Although Ano1 is blocked by the CaM inhibitor trifluoperazine (TFP), we propose that TFP inhibits the channel in a CaM-independent manner because TFP does not inhibit Ano1 when applied to the cytoplasmic side of excised patches. These experiments lead us to conclude that CaM is not required for activation of Ano1 by Ca2+. Although CaM is not required for channel opening by Ca2+, work of other investigators suggests that CaM may have effects in modulating the biophysical properties of the channel.  相似文献   

11.
12.
Recently, we reported that homozygous deletion of alternative exon 33 of CaV1.2 calcium channel in the mouse resulted in ventricular arrhythmias arising from increased CaV1.2Δ33 ICaL current density in the cardiomyocytes. We wondered whether heterozygous deletion of exon 33 might produce cardiac phenotype in a dose-dependent manner, and whether the expression levels of RNA splicing factors known to regulate alternative splicing of exon 33 might change in human heart failure. Unexpectedly, we found that exon 33+/? cardiomyocytes showed similar CaV1.2 channel properties as wild-type cardiomyocyte, even though CaV1.2Δ33 channels exhibit a gain-in-function. In human hearts, we found that the mRNA level of splicing factor Rbfox1, but not Rbfox2, was downregulated in dilated cardiomyopathy, and CACNA1C mRNA level was dramatically decreased in the both of dilated and ischemic cardiomyopathy. These data imply Rbfox1 may be involved in the development of cardiomyopathies via regulating the alternative splicing of CaV1.2 exon 33. (149 words)  相似文献   

13.
14.
The calcium-activated chloride channel anoctamin1 (ANO1; TMEM16A) is fundamental for the function of epithelial organs. Mice lacking ANO1 expression exhibit transport defects and a pathology similar to cystic fibrosis. They also show a general defect of epithelial electrolyte transport. Here we analyzed expression of all ten members (ANO1–ANO10) in a broad range of murine tissues and detected predominant expression of ANO1, 6, 7, 8, 9, 10 in epithelial tissues, while ANO2, 3, 4, 5 are common in neuronal and muscle tissues. When expressed in Fisher Rat Thyroid (FTR) cells, all ANO proteins localized to the plasma membrane but only ANO1, 2, 6, and 7 produced Ca2+-activated Cl conductance, as analyzed by ATP-induced iodide quenching of YFP fluorescence. In contrast ANO9 and ANO10 suppressed baseline Cl conductance and coexpression of ANO9 with ANO1 inhibited ANO1 activity. Patch clamping of ANO-expressing FRT cells indicated that apart from ANO1 also ANO6 and 10 produced chloride currents, albeit with very different Ca2+ sensitivity and activation time. We conclude that each tissue expresses a set of anoctamins that form cell- and tissue-specific Ca2+-dependent Cl channels.  相似文献   

15.
16.
17.
18.
The plasmid vector pLIV11 is used commonly to achieve liver-specific expression of genes of interest in transgenic mice and rabbits. Expression is driven by the human apolipoprotein (apo)E 5′ proximal promoter, which includes 5 kb of upstream sequence, exon 1, intron 1, and 5 bp of exon 2. A 3.8 kb 3′ hepatic control region, derived from a region ∼18 kb downstream of the apoE gene, enhances liver-specific expression. Here, we report that cDNA sequences inserted into the multiple cloning site (MCS) of pLIV11, which is positioned just downstream of truncated exon 2, can cause exon 2 skipping. Hence, splicing is displaced to downstream cryptic 3′ splice acceptor sites causing deletion of cloned 5′ untranslated mRNA sequences and, in some cases, deletion of the 5′ end of an open reading frame. To prevent use of cryptic splice sites, the pLIV11 vector was modified with an engineered 3′ splice acceptor site inserted immediately downstream of truncated apoE exon 2. Presence of this sequence fully shifted splicing of exon 1 from the native intron 1–exon 2 splice acceptor site to the engineered site. This finding confirmed that sequences inserted into the MCS of the vector pLIV11 can affect exon 2 recognition and provides a strategy to protect cloned sequences from alternative splicing and possible attenuation of transgenic expression.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号