首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
2.
3.
The acquired mutation (V617F) of Janus kinase 2 (JAK2) is observed in the majority of patients with myeloproliferative neoplasms (MPNs). In the screening of genes whose expression was induced by JAK2 (V617F), we found the significant induction of c-Myc mRNA expression mediated by STAT5 activation. Interestingly, GSK-3β was inactivated in transformed Ba/F3 cells by JAK2 (V617F), and this enhanced the protein expression of c-Myc. The enforced expression of c-Myc accelerated cell proliferation but failed to inhibit apoptotic cell death caused by growth factor deprivation; however, the inhibition of GSK-3β completely inhibited the apoptosis of cells expressing c-Myc. Strikingly, c-Myc T58A mutant exhibited higher proliferative activity in a growth-factor-independent manner; however, this mutant failed to induce apoptosis. In addition, knockdown of c-Myc significantly inhibited the proliferation of transformed cells by JAK2 (V617F), suggesting that c-Myc plays an important role in oncogenic activity of JAK2 (V617F). Furthermore, JAK2 (V617F) induced the expression of a target gene of c-Myc, ornithine decarboxylase (ODC), known as the rate-limiting enzyme in polyamine biosynthesis. An ODC inhibitor, difluoromethylornithine (DFMO), prevented the proliferation of transformed cells by JAK2 (V617F). Importantly, administration of DFMO effectively delayed tumor formation in nude mice inoculated with transformed cells by JAK2 (V617F), resulting in prolonged survival; therefore, ODC expression through c-Myc is a critical step for JAK2 (V617F)-induced transformation and DFMO could be used as effective therapy for MPNs.  相似文献   

4.
The JAK2 mutation V617F is detectable in a majority of patients with Philadelphia chromosome-negative myeloproliferative neoplasms (MPNs). Enforced expression of JAK2 V617F in mice induces myeloproliferation and bone marrow (BM) fibrosis, suggesting a causal role for the JAK2 mutant in the pathogenesis of MPNs. However, little is known about mechanisms and effector molecules contributing to JAK2 V617F-induced myeloproliferation and fibrosis. We show that JAK2 V617F promotes expression of oncostatin M (OSM) in neoplastic myeloid cells. Correspondingly, OSM mRNA levels were increased in the BM of patients with MPNs (median 287% of ABL, range 22-1450%) compared to control patients (median 59% of ABL, range 12-264%; P < 0.0001). OSM secreted by JAK2 V617F+ cells stimulated growth of fibroblasts and microvascular endothelial cells and induced the production of angiogenic and profibrogenic cytokines (HGF, VEGF, and SDF-1) in BM fibroblasts. All effects of MPN cell-derived OSM were blocked by a neutralizing anti-OSM antibody, whereas the production of OSM in MPN cells was suppressed by a pharmacologic JAK2 inhibitor or RNAi-mediated knockdown of JAK2. In summary, JAK2 V617F-mediated up-regulation of OSM may contribute to fibrosis, neoangiogenesis, and the cytokine storm observed in MPNs, suggesting that OSM might serve as a novel therapeutic target molecule in these neoplasms.  相似文献   

5.
6.
The constitutively activated mutation (V617F) of tyrosine kinase Janus kinase 2 (JAK2) is found in the majority of patients with myeloproliferative neoplasms (MPNs). The development of a novel chemical compound to suppress JAK2 V617F mutant-induced onset of MPNs and clarification of the signaling cascade downstream of JAK2 V617F mutant will provide clues to treat MPNs. Here we found that a water-soluble pyrrolidinium fullerene derivative, C(60)-bis (N, N-dimethylpyrrolidinium iodide), markedly induced apoptosis of JAK2 V617F mutant-induced transformed cells through a novel mechanism, inhibiting c-Jun N-terminal kinase (JNK) activation pathway but not generation of reactive oxygen species (ROS). Pyrrolidinium fullerene derivative significantly reduced the protein expression level of apoptosis signal-regulating kinase 1 (ASK1), one of the mitogen-activated protein kinase kinase kinases (MAPKKK), resulting in the inhibition of upstream molecules of JNK, mitogen-activated protein kinase kinase 4 (MKK4) and mitogen-activated protein kinase kinase 7 (MKK7). Strikingly, the knockdown of ASK1 enhanced the sensitivity to pyrrolidinium fullerene derivative-induced apoptosis, and the treatment with a JNK inhibitor, SP600125, also induced apoptosis of the transformed cells by JAK2 V617F mutant. Furthermore, administration of both SP600125 and pyrrolidinium fullerene derivative markedly inhibited JAK2 V617F mutant-induced tumorigenesis in nude mice. Taking these findings together, JAK2 V617F mutant-induced JNK signaling pathway is an attractive target for MPN therapy, and pyrrolidinium fullerene derivative is now considered a candidate potent drug for MPNs.  相似文献   

7.
JAK2(V617F), a mutant of tyrosine kinase JAK2, is found in most patients with polycythemia vera (PV) and a substantial proportion of patients with idiopathic myelofibrosis or essential thrombocythemia. The JAK2 mutant displays a much increased kinase activity and generates a PV-like phenotype in mouse bone marrow transplant models. This study shows that the anti-cancer drug erlotinib (Tarceva) is a potent inhibitor of JAK2(V617F) activity. In vitro colony culture assays revealed that erlotinib at micro-molar concentrations effectively suppresses the growth and expansion of PV hematopoietic progenitor cells while having little effect on normal cells. Furthermore, JAK2(V617F)-positive cells from PV patients show greater susceptibility to the inhibitor than their negative counterparts. Similar inhibitory effects were found with the JAK2(V617F)-positive human erythroleukemia HEL cell line. These data suggest that erlotinib may be used for treatment of JAK2(V617F)-positive PV and other myeloproliferative disorders.  相似文献   

8.
Essential thrombocythemia (ET) is an entity of classic Philadelphia chromosome-negative myeloproliferative neoplasms (MPNs), characterized by thrombocytosis with megakaryocytic hyperplasia and thrombocytes are increased with abnormal functions. Discovery of the protein tyrosine kinase JAK2 V617F allele contributed to better understanding of the pathogenetic mechanisms of MPNs. Acquired single point mutation in the JAK2 V617F was determined approximately 50–60 % of patients with ET. In this study we aimed to investigate the relationship between JAK2 V617F gene mutation, hematologic, biochemical markers and the complications in the ET patients. A total of 268 patients diagnosed with ET and 219 of those studied for JAK2 gene mutation were followed at the hematology clinics of three major hospitals between 2008 and 2013 were screened retrospectively. Laboratory, clinical and hematologic parameters were compared for JAK2 V617F positive and JAK2 V617F negative patients with ET. 102 (46 %) patients were positive with the JAK2 V617F mutation. The complications were observed in 61 (28 %) patients and 38 (62 %) of them had JAK2 V617F mutation. The levels of white blood cells, neutrophil, basophil, red blood cells, hemoglobin, hematocrit, mean platelet volume, thrombocytes, eosinophil; urea, creatinine were significantly different in patients with the JAK2 V617F mutation (P < 0.05). Presence of the JAK2 V617F mutation supports the diagnosis of ET. It would be useful to investigate the JAK2 V617F mutation and the hematologic and biochemical markers at diagnosis with respect to consider the risk of developing complications and to take the precautions against these complications.  相似文献   

9.
Zou H  Yan D  Mohi G 《FEBS letters》2011,585(7):1007-1013
The JAK2V617F mutation has been identified in most patients with myeloproliferative neoplasms (MPNs), including polycythemia vera, essential thrombocythemia and primary myelofibrosis. Although JAK2V617F is the predominant allele associated with MPNs, other activating Janus kinase 2 (JAK2) alleles (such as K539L, T875N) also have been identified in distinct MPNs. The basis for the differences in the in vivo effects of different JAK2 alleles remains unclear. We have characterized three different classes of disease-associated JAK2 mutants (JAK2V617F, JAK2K539L and JAK2T875N) and found significant differences in biochemical, signaling and transforming properties among these different classes of JAK2 mutants.  相似文献   

10.
Cytokine signaling pathways are important in promoting hematopoietic stem cell (HSC) self-renewal, proliferation and differentiation. Mpl receptor and its ligand, TPO, have been shown to play an essential role in the early steps of adult hematopoiesis. We previously demonstrated that the cytoplasmic domain of Mpl promotes hematopoietic commitment of embryonic stem cells in vitro, and postulated that Mpl could be important in the establishment of definitive hematopoiesis. To answer this question, we investigated the temporal expression of Mpl during mouse development by in situ hybridization. We found Mpl expression in the HSCs clusters emerging in the AGM region, and in the fetal liver (FL) as early as E10.5. Using Mpl(-/-) mice, the functional relevance of Mpl expression was tested by comparing the hematopoietic progenitor (HP) content, long-term hematopoietic reconstitution (LTR) abilities and HSC content of control and Mpl(-/-) embryos at different times of development. In the AGM, we observed delayed production of HSCs endowed with normal LTR but presenting a self-renewal defect. During FL development, we detected a decrease in HP and HSC potential associated with a defect in amplification and self-renewal/survival of the lin(-) AA4.1(+) Sca1(+) population of HSCs. These results underline the dual role of Mpl in the generation and expansion of HSCs during establishment of definitive hematopoiesis.  相似文献   

11.
12.
Detection of the JAK2V617F mutation is essential for diagnosing patients with classical myeloproliferative neoplasms (MPNs). However, detection of the low-frequency JAK2V617F mutation is a challenging task due to the necessity of discriminating between true-positive and false-positive results. Here, we have developed a highly sensitive and accurate assay for the detection of JAK2V617F and named it melting curve analysis after T allele enrichment (MelcaTle). MelcaTle comprises three steps: 1) two cycles of JAK2V617F allele enrichment by PCR amplification followed by BsaXI digestion, 2) selective amplification of the JAK2V617F allele in the presence of a bridged nucleic acid (BNA) probe, and 3) a melting curve assay using a BODIPY-FL-labeled oligonucleotide. Using this assay, we successfully detected nearly a single copy of the JAK2V617F allele, without false-positive signals, using 10 ng of genomic DNA standard. Furthermore, MelcaTle showed no positive signals in 90 assays screening healthy individuals for JAK2V617F. When applying MelcaTle to 27 patients who were initially classified as JAK2V617F-positive on the basis of allele-specific PCR analysis and were thus suspected as having MPNs, we found that two of the patients were actually JAK2V617F-negative. A more careful clinical data analysis revealed that these two patients had developed transient erythrocytosis of unknown etiology but not polycythemia vera, a subtype of MPNs. These findings indicate that the newly developed MelcaTle assay should markedly improve the diagnosis of JAK2V617F-positive MPNs.  相似文献   

13.
Aberrant JAK2 signalling plays a central role in myeloproliferative neoplasms (MPN). JAK2 inhibitors have proven to be clinically efficacious, however, they are not mutation‐specific and competent enough to suppress neoplastic clonal haematopoiesis. We hypothesized that, by simultaneously targeting multiple activated signalling pathways, MPN could be more effectively treated. To this end we investigated the efficacy of BEZ235, a dual PI3K/mTOR inhibitor, alone and in combination with the JAK1/JAK2 inhibitor ruxolitinib, in different preclinical models of MPN. Single‐agent BEZ235 inhibited the proliferation and induced cell cycle arrest and apoptosis of mouse and human JAK2V617F mutated cell lines at concentrations significantly lower than those required to inhibit the wild‐type counterpart, and preferentially prevented colony formation from JAK2V617F knock‐in mice and patients' progenitor cells compared with normal ones. Co‐treatment of BEZ235 and ruxolitinib produced significant synergism in all these in‐vitro models. Co‐treatment was also more effective than single drugs in reducing the extent of disease and prolonging survival of immunodeficient mice injected with JAK2V617F‐mutated Ba/F3‐EPOR cells and in reducing spleen size, decreasing reticulocyte count and improving spleen histopathology in conditional JAK2V617F knock‐in mice. In conclusion, combined inhibition of PI3K/mTOR and JAK2 signalling may represent a novel therapeutic strategy in MPN.  相似文献   

14.
The JAK2V617F mutation is found in the majority of patients with myeloproliferative neoplasms (MPNs). Transgenic expression of the mutant gene causes MPN-like phenotypes in mice. We have produced JAK2V617F mice with p53 null background. Some of these mice developed acute erythroleukemia. From one of these mice, we derived a cell line designated J53Z1. J53Z1 cells were stained positive for surface markers CD71 and CD117 but negative for Sca-1, TER-119, CD11b, Gr-1, F4/80, CD11c, CD317, CD4, CD8a, CD3e, B220, CD19, CD41, CD42d, NK-1.1, and FceR1. Real time PCR analyses demonstrated expressions of erythropoietin receptor EpoR, GATA1, and GATA2 in these cells. J53Z1 cells grew rapidly in suspension culture containing fetal bovine serum with a doubling time of ∼18 hours. When transplanted into C57Bl/6 mice, J53Z1 cells induced acute erythroleukemia with massive infiltration of tumor cells in the spleen and liver. J53Z1 cells were responsive to stimulation with erythropoietin and stem cell factor and were selectively inhibited by JAK2 inhibitors which induced apoptosis of the cells. Together, J53Z1 cells belong to the erythroid lineage, and they may be useful for studying the role of JAK2V617F in proliferation and differentiation of erythroid cells and for identifying potential therapeutic drugs targeting JAK2.  相似文献   

15.
Despite being a hallmark of hematopoietic stem cells (HSCs), HSC self-renewal has never been quantitatively assessed. Establishment of a clonal and quantitative assay for HSC function permitted demonstration that adult mouse HSCs are significantly heterogeneous in degree of multilineage repopulation and that higher repopulating potential reflects higher self-renewal activity. An HSC with high repopulating potential could regenerate approximately 1000 HSCs, whereas the repopulating activity of regenerated HSCs on average was significantly reduced, indicating extensive but limited self-renewal capacity in HSCs. Comparisons of wild-type mice with mutant mice deficient in the signal adaptor molecule Lnk showed that not only HSC numbers but also the self-renewal capacity of some HSCs are markedly increased when Lnk function is lost. Lnk appears to control HSC numbers by negatively regulating HSC self-renewal signaling.  相似文献   

16.
Attempts to improve hematopoietic reconstitution and engraftment potential of ex vivo-expanded hematopoietic stem and progenitor cells (HSPCs) have been largely unsuccessful due to the inability to generate sufficient stem cell numbers and to excessive differentiation of the starting cell population. Although hematopoietic stem cells (HSCs) will rapidly expand after in vivo transplantation, experience from in vitro studies indicates that control of HSPC self-renewal and differentiation in culture remains difficult. Protocols that are based on hematopoietic cytokines have failed to support reliable amplification of immature stem cells in culture, suggesting that additional factors are required. In recent years, several novel factors, including developmental factors and chemical compounds, have been reported to affect HSC self-renewal and improve ex vivo stem cell expansion protocols. Here, we highlight early expansion attempts and review recent development in the extrinsic control of HSPC fate in vitro.  相似文献   

17.
Bone-marrow haematopoietic-stem-cell niches   总被引:1,自引:0,他引:1  
Adult stem cells hold many promises for future clinical applications and regenerative medicine. The haematopoietic stem cell (HSC) is the best-characterized somatic stem cell so far, but in vitro expansion has been unsuccessful, limiting the future therapeutic potential of these cells. Here we review recent progress in characterizing the composition of the HSC bone-marrow microenvironment, known as the HSC niche. During homeostasis, HSCs, and therefore putative bone-marrow HSC niches, are located near bone surfaces or are associated with the sinusoidal endothelium. The molecular crosstalk between HSCs and the cellular constituents of these niches is thought to control the balance between HSC self-renewal and differentiation, indicating that future successful expansion of HSCs for therapeutic use will require three-dimensional reconstruction of a stem-cell-niche unit.  相似文献   

18.
Hoxa5 is preferentially expressed in haematopoietic stem cells (HSCs) and multipotent progenitor cells (MPPs), and is more highly expressed in expanding HSCs. To date, little is known regarding the role of Hoxa5 in HSCs and downstream progenitor cells in vivo. In this study, we show that increased expression of Hoxa5 in haematopoietic stem cells leads to aberrant erythropoiesis in vivo. Hoxa5 differentially modifies the cell cycle of HSCs and lineage committed progenitor cells, depending on the cellular context. Hoxa5 drives HSCs, but not MPPs, through the cell cycle and arrests erythroid progenitor cells in G0 phase. Although the HSC pool shrinks after overexpression of Hoxa5, HSCs sustain the abilities of self-renewal and multipotency. In vivo, Hoxa5 has two effects on erythropoiesis: it causes a predominance of mature erythroid lineage cells and the partial apoptosis of erythroid progenitors. RNA-seq indicates that multiple biological processes, including erythrocyte homeostasis, cell metabolism, and apoptosis, are modified by Hoxa5. The results of this study indicate that Hoxa5 is a key regulator of the HSC cell cycle, and the inappropriate expression of Hoxa5 in lineage-committed progenitor cells leads to aberrant erythropoiesis.  相似文献   

19.
Hoxa5 is preferentially expressed in haematopoietic stem cells (HSCs) and multipotent progenitor cells (MPPs), and is more highly expressed in expanding HSCs. To date, little is known regarding the role of Hoxa5 in HSCs and downstream progenitor cells in vivo. In this study, we show that increased expression of Hoxa5 in haematopoietic stem cells leads to aberrant erythropoiesis in vivo. Hoxa5 differentially modifies the cell cycle of HSCs and lineage committed progenitor cells, depending on the cellular context. Hoxa5 drives HSCs, but not MPPs, through the cell cycle and arrests erythroid progenitor cells in G0 phase. Although the HSC pool shrinks after overexpression of Hoxa5, HSCs sustain the abilities of self-renewal and multipotency. In vivo, Hoxa5 has two effects on erythropoiesis: it causes a predominance of mature erythroid lineage cells and the partial apoptosis of erythroid progenitors. RNA-seq indicates that multiple biological processes, including erythrocyte homeostasis, cell metabolism, and apoptosis, are modified by Hoxa5. The results of this study indicate that Hoxa5 is a key regulator of the HSC cell cycle, and the inappropriate expression of Hoxa5 in lineage-committed progenitor cells leads to aberrant erythropoiesis.  相似文献   

20.
Current JAK2 inhibitors used for myeloproliferative neoplasms (MPN) treatment are not specific enough to selectively suppress aberrant JAK2 signalling and preserve physiological JAK2 signalling. We tested whether combining a JAK2 inhibitor with a series of serine threonine kinase inhibitors, targeting nine signalling pathways and already used in clinical trials, synergized in inhibiting growth of haematopoietic cells expressing mutant and wild‐type forms of JAK2 (V617F) or thrombopoietin receptor (W515L). Out of 15 kinase inhibitors, the ZSTK474 phosphatydylinositol‐3′‐kinase (PI3K) inhibitor molecule showed strong synergic inhibition by Chou and Talalay analysis with JAK2 and JAK2/JAK1 inhibitors. Other pan‐class I, but not gamma or delta specific PI3K inhibitors, also synergized with JAK2 inhibitors. Synergy was not observed in Bcr‐Abl transformed cells. The best JAK2/JAK1 and PI3K inhibitor combination pair (ruxolitinib and GDC0941) reduces spleen weight in nude mice inoculated with Ba/F3 cells expressing TpoR and JAK2 V617F. It also exerted strong inhibitory effects on erythropoietin‐independent erythroid colonies from MPN patients and JAK2 V617F knock‐in mice, where at certain doses, a preferential inhibition of JAK2 V617F mutated progenitors was detected. Our data support the use of a combination of JAK2 and pan‐class I PI3K inhibitors in the treatment of MPNs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号