首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A rapid, microturbidimetric method for recording red cell osmotic fragility using a Platelet Aggregometer is described. This method requires only 0.2 ml of whole blood and a fragility curve of 20 points can be determined in less than 1 hr. Measurement of the degree of hemolysis is based on the increasing transparency of the erythrocyte suspension when hemolysis takes place. Erythrocytes of immature animals are osmotically more resistant than those of adults and the change in osmotic resistance is not directly related to the percentage of reticulocytes.  相似文献   

2.
Erythrocytes from rats fed large doses of Vitamin A alone, or large doses of vitamin A and vitamin E or diphenyl-p-phenylene diamine (DPPD) were studied for H2O2-induced hemolysis. The vitamin A-dosed rats were more susceptible than normal rats to H2O2-induced hemolysis. Hemolysis was not accompanied by lipid peroxidation. Nevertheless, the antioxidants vitamin E and DPPD inhibited hemolysis in erythrocytes from vitamin A-dosed rats. These antioxidants had the same inhibitory effect when they were included in the diet or added to erythrocyte suspensions in vitro. Erythrocytes from vitamin A-dosed rats with or without added vitamin E or DPPD were less susceptible than the erythrocytes from normal rats to osmotic challenge, showing that vitamin A was present in levels sufficient to alter the structure of the erythrocyte membrane. These studies show that oxidative hemolysis occurs when the erythrocyte membrane is modified. Furthermore, this oxidative hemolysis is unrelated to lipid peroxidation.  相似文献   

3.
M Nakamura  S Ohnishi  H Kitamura  S Inai 《Biochemistry》1976,15(22):4838-4843
The structural change in erythrocyte membranes induced by antibody and complement was studied using phospholipid spin-labels. Sheep erythrocytes were labeled with phosphatidylcholine spin-label and various intermediate cells (erythrocyte-antibody complex (EA), EA bound with complement components from C1 to C7 (EAC1-7), EAC1-8, and EAC1-9) were prepared. Electron spin resonance spectra of EA, EAC1-7, and EAC1-8 were very similar to that of the erythrocytes, while that of EAC1-9 was markedly different. The overall splitting value for the lysed EAC1-9 (53 G) was much smaller than that for the erythrocytes (57 G), indicating a marked fluidization around the phosphatidylcholine label. The unlysed EAC1-9 membranes contained a limited fraction of the fluidized area. When EA was reacted with complement in the presence of 36% bovine serum albumin, the membranes were fluidized similarly to the lysed EAC1-9, although the hemolysis was largely blocked. The membranes of unlysed EAC1-9 prepared in isotonic (ethylenedinitrilo)tetraacetic acid were also fluidized, but to somewhat smaller extent. The role of C9 in the modification of erythrocyte membranes was also demonstrated using Mg2+ ghosts, which were prepared by hypotonic hemolysis in the presence of Mg2+. The membranes of Mg2+ ghost of EAC1-7 were markedly fluidized when bound with C8 and C9, but not affected by binding of C8 only. The component C8 was found to give a latent effect on the membranes that caused irreversible fluidization upon osmotic shock. The terminal component thus creates a fluidized area in the erythrocyte membranes through which small ions and molecules may diffuse more easily and the resulting osmotic unbalance may finally cause hemolysis.  相似文献   

4.
The purpose of these studies was to determine the effect of polyphenols contained in extracts from apple, strawberry and blackcurrant on the properties of the erythrocyte membrane, treated as a model of the biological membrane. To this end, the effect of the substances used on hemolysis, osmotic resistance and shape of erythrocytes, and on packing order in the hydrophilic region of the erythrocyte membrane was studied. The investigation was performed with spectrophotometric and fluorimetric methods, and using the optical microscope. The hemolytic studies have shown that the extracts do not induce hemolysis at the concentrations used. The results obtained from the spectrophotometric measurements of osmotic resistance of erythrocytes showed that the polyphenols contained in the extracts cause an increase in the resistance, rendering them less prone to hemolysis in hypotonic solutions of sodium chloride. The fluorimetric studies indicate that the used substances cause a decrease of packing order in the hydrophilic area of membrane lipids. The observations of erythrocyte shapes in a biological optical microscope have shown that, as a result of the substances’ action, the erythrocytes become mostly echinocytes, which means that the polyphenols of the extracts localize in the outer lipid monolayer of the erythrocyte membrane. The results obtained indicate that, in the concentration range used, the plant extracts are incorporated into the hydrophilic area of the membrane, modifying its properties.  相似文献   

5.
Mechanical properties of erythrocyte membranes play an important role in red cell functions. Stability of human erythrocytes under deforming mechanical tensions which occur in the rapidly moving fluid is studied. The activation energy of the mechanical hemolysis determined by the temperature dependence of the hemolysis rate is 55 + 7 kJ/mol. The fragility of erythrocytes rises sharply as the salt concentrations increase. Glutaric dialdehyde forms a certain number of interprotein bonds which increase the fragility of erythrocytes. The mechanical stability of the erythrocyte membrane falls at high (0.5 M) ethanol concentrations. Blood plasma proteins, particularly human serum albumin, have a pronounced stabilizing effect. The hemolysis occurring during the rapid mixing is not probably associated with an osmotic mechanism since high sucrose concentrations do not prevent this process. The mechanical hemolysis depends both on the deforming tension arising in the membrane and on the state of the erythrocyte membrane.  相似文献   

6.
The mechanism of hemolysis and erythrocyte transformation caused by lipogrammistin-A (LGA), a lipophilic and acylated cyclic polyamine from the skin secretion of soapfishes (Grammistidae), was investigated. The dependency of hemolysis on the erythrocyte concentration indicated that the amount of membrane-bound LGA required for 50% hemolysis is about 13% of the total phospholipids in erythrocytes on a molar basis. A synthetic analogue which lacked a long alkyl chain exhibited much less activity, suggesting that the alkyl chain is important for membrane-binding. In addition, microscopic observations showed that LGA elicited the invagination of erythrocytes at sublytic concentrations, which makes LGA one of the most potent agents with this transforming activity known to date. Its protonated secondary amino group is responsible for the unequal distribution of LGA in the inner leaflet of the lipid bilayer, which leads to invagination, since acetylation at the amino group markedly reduced the invagination activity. Furthermore, the size of LGA-induced lesions on erythrocyte membrane was estimated to be 7-29 A based on osmotic protection experiments, where the external addition of isotonic molecules in this size range gradually increased the effective dose of LGA. Based on these lines of evidence, the mode of LGA action on erythrocytes is deduced to be as follows. First, LGA molecules bind to erythrocyte membrane by lipophilicity. Second, the molecules accumulate in the inner leaflet of the lipid bilayer by interaction of their cationic ammonium groups with acidic residues of membrane lipid in the inner surface. This uneven distribution of LGA distorts the bilayer structure, and results in a change in cell shape and consequent small lesions. Third, small solutes permeate through the lesions, which induces an osmotic change across the membrane, which leads to colloid-osmotic rupture. This mode of action of LGA on erythrocytes accompanied by cell invagination is the first reported example for natural defense substances.  相似文献   

7.
通过对低渗溶血过程、荧光淬灭效应及阴离子跨膜通透性的研究,探讨了苯肼对红细胞膜结构和功能的影响。苯肼浓度0.01mM时,低渗溶血的K_1快过程开始变慢,表明膜脂质流动性的降低。苯肼浓度增至0.1mM后,膜和变性血红蛋白的结合大为增强,这种膜结构的变化提高了阴离子的跨膜通透性。  相似文献   

8.
The effects of whole-body gamma-irradiation of rats (8 Gy) on erythrocyte enzymes and biochemical components involved in lipid peroxidation were studied. Decreased superoxide dismutase and glutathione reductase activities, and lowered concentrations of reduced glutathione, were found to be the main factors responsible for the observed increase in lipid peroxidation in the erythrocytes of irradiated rats. This increased lipid peroxidation did not result in a greater tendency to hemolysis in hypotonic media; on the contrary, the mean osmotic fragility was decreased at days D + 1 and D + 3 after irradiation. The behavior of the erythrocyte populations towards hemolysis in hypotonic media appeared to be most homogeneous at days D + 4 and D + 8 after irradiation, which correspond to maxima of malonic dialdehyde concentrations in erythrocytes. Such a synchrony of variations suggests that crosslinking of primary amino groups of proteins or phospholipids by malonic dialdehyde might produce a rigidification in erythrocyte membranes, possibly leading to a more homogeneous behavior of the erythrocyte populations towards hemolysis in hypotonic media.  相似文献   

9.
《Biorheology》1997,34(1):73-83
Freezing whole blood in bulk usually results in severe cellular destruction through the action of ice crystals and osmotic effects in the freezing liquid. The potential of flash freezing blood aerosols onto a liquid nitrogen surface as a means of inhibiting cellular damage was studied in this work. Three commercial spraying devices were employed to spray-freeze either whole blood or concentrated erythrocyte suspensions, using hydroxyethyl starch (HES) as a cryoprotectant. The integrity and viability of the processed cells were assessed by measuring gross rheological properties and the extent of hemolysis. Cells were found to be susceptible to the very high shear stresses imposed by some of the spraying devices. Bulk freezing of blood, even in the presence of the cryoprotectant, resulted in complete cellular destruction. Whereas flash freezing was capable of substantially reducing the level of hemolysis to 12.6% and preserving the cellular deformability.  相似文献   

10.
Hexachlorophene-induced hemolysis, as studied by phase contrast microscopy, appeared to be a result of osmotic swelling. Both swelling and subsequent hemolysis were markedly delayed by addition of the non-penetrating solute sucrose to the incubation mixture. Binding studies indicated that hexachlorophene is associated primarily with the erythrocyte membrane, the remainder being found in the cytoplasm. Hexachlorophane induced a dose-dependent, first-order efflux of Na+ and K+ from red cells. The rates of hemolysis and K+ efflux induced by hexachlorophene were much greater than would be expected if this compound were acting simply as a metabolic inhibitor and/or an inhibitor of (Na+-K+-Mg2+)-ATPase. It is suggested that hexachlorophene induces the efflux of Na+ and K+ from red cells by directly altering the permeability of the cellular membrane. Further, hexachlorophene-induced hemolysis is probably a secondary event resulting from osmotic swelling subsequent to increased membrane permeability.  相似文献   

11.
The rate of osmotic hemolysis and the erythrocyte membrane lipid composition has been studied for blood samples obtained from male donors between 18 and 95 years of age. The rate of hemolysis is found to decrease as a function of age while the membrane cholesterol content increases with age. No significant change in the phospholipid content is detected. A causative relationship between the increase in cholesterol and the decrease in rate is inidicated by in vitro experiments which demonstrate an inverse relationship between the cholesterol content and the rate of hemolysis.  相似文献   

12.
The protective effect of propylthiouracil (PTU) pretreatment against acetaminophen-induced erythrocyte osmotic fragility was determined in the male Fisher rat. Hepatotoxicity was assessed for comparative purposes. PTU (0.15%) was fed in chow for a period of 12 days. Acetaminophen (1 g/kg body wt) was then administered orally by a stomach tube after an overnight fast. The rats were killed either 4 or 24 hr later. Erythrocyte osmotic fragility was determined by the extent of hemolysis in various concentrations of NaCl solutions. Hepatotoxicity was assessed by a rise in serum transaminases and by histological examination of hepatic tissue. PTU treatment when compared with control not only protected rats against acetaminophen-induced hepatotoxicity as reported before, but also protected against erythrocyte osmotic fragility. The time course of acetaminophen toxicity seems to be similar for liver and erythrocyte since both showed damage after 24 hr but not after 4 hr of acetaminophen administration. The data show that PTU pretreatment affords protection against acetaminophen-induced increased erythrocyte osmotic fragility even when their glutathione concentrations were not significantly different, suggesting that PTU per se has a protective effect.  相似文献   

13.
14.
Since birth-induced oxidative stress (OS) results in the removal of erythrocytes from the blood stream, we studied the binding of autologous IgG to erythrocyte band 3 dimers (the 170-kDa band, which marks the erythrocytes for removal) in preterm and term newborns and in adults. The 170-kDa band was present in as much as 74% of preterm, in 21% of term newborns, and in 10% of adults. During erythrocyte ageing "in vitro" (0, 24, and 48 h aerobic incubation), the appearance of the band occurred much faster with erythrocytes from newborns (particularly preterm) than with those from adults. When the blots for the 170-kDa band were quantified by scanning densitometry, it was seen that the 0 time values were significantly higher in preterm compared to term and adult values. After aerobic incubation a progressive increase in the optical density was observed in each group and the densities were higher in preterm than in the other groups. The course of iron release during the various incubations was analogous to that of the 170-kDa band blots, and significant correlations were found at 0 and 48 h. Methemoglobin formation roughly paralleled iron release. Esterified F(2)-isoprostanes (markers of OS) and O(2)(-) production in the nonincubated (0 time) erythrocytes were much higher in newborn (preterm and term) than in adult erythrocytes. Plasma free F(2)-isoprostanes were significantly higher in preterms than in terms and in terms than in adults. Plasma non-protein-bound iron (NPBI) was higher in preterm than in term newborns and not detectable in adults. In conclusion dimers of band 3 with autologous IgG are found under conditions in which OS can be detected in erythrocytes or in plasma: namely in newborns or in aged erythrocytes.  相似文献   

15.
Tamoxifen (TAM), the antiestrogenic drug most widely prescribed in the chemotherapy of breast cancer, induces changes in normal discoid shape of erythrocytes and hemolytic anemia. This work evaluates the effects of TAM on isolated human erythrocytes, attempting to identify the underlying mechanisms on TAM-induced hemolytic anemia and the involvement of biomembranes in its cytostatic action mechanisms. TAM induces hemolysis of erythrocytes as a function of concentration. The extension of hemolysis is variable with erythrocyte samples, but 12.5 microM TAM induces total hemolysis of all tested suspensions. Despite inducing extensive erythrocyte lysis, TAM does not shift the osmotic fragility curves of erythrocytes. The hemolytic effect of TAM is prevented by low concentrations of alpha-tocopherol (alpha-T) and alpha-tocopherol acetate (alpha-TAc) (inactivated functional hydroxyl) indicating that TAM-induced hemolysis is not related to oxidative membrane damage. This was further evidenced by absence of oxygen consumption and hemoglobin oxidation both determined in parallel with TAM-induced hemolysis. Furthermore, it was observed that TAM inhibits the peroxidation of human erythrocytes induced by AAPH, thus ruling out TAM-induced cell oxidative stress. Hemolysis caused by TAM was not preceded by the leakage of K(+) from the cells, also excluding a colloid-osmotic type mechanism of hemolysis, according to the effects on osmotic fragility curves. However, TAM induces release of peripheral proteins of membrane-cytoskeleton and cytosol proteins essentially bound to band 3. Either alpha-T or alpha-TAc increases membrane packing and prevents TAM partition into model membranes. These effects suggest that the protection from hemolysis by tocopherols is related to a decreased TAM incorporation in condensed membranes and the structural damage of the erythrocyte membrane is consequently avoided. Therefore, TAM-induced hemolysis results from a structural perturbation of red cell membrane, leading to changes in the framework of the erythrocyte membrane and its cytoskeleton caused by its high partition in the membrane. These defects explain the abnormal erythrocyte shape and decreased mechanical stability promoted by TAM, resulting in hemolytic anemia. Additionally, since membrane leakage is a final stage of cytotoxicity, the disruption of the structural characteristics of biomembranes by TAM may contribute to the multiple mechanisms of its anticancer action.  相似文献   

16.
A mathematical model of erythrocyte lysis in isotonic solution of ammonium chloride is presented in frames of a statistical approach. The model is used to evaluate several parameters of mature erythrocytes (volume, surface area, hemoglobin concentration, number of anionic exchangers on membrane, elasticity and critical tension of membrane) through their sphering and lysis measured by a scanning flow cytometer (SFC). SFC allows measuring the light-scattering pattern (indicatrix) of an individual cell over the angular range from 10° to 60°. Comparison of the experimentally measured and theoretically calculated light scattering patterns allows discrimination of spherical from non-spherical erythrocytes and evaluation of volume and hemoglobin concentration for individual spherical cells. Three different processes were applied for erythrocytes sphering: (1) colloid osmotic lysis in isotonic solution of ammonium chloride, (2) isovolumetric sphering in the presence of sodium dodecyl sulphate and albumin in neutrally buffered isotonic saline, and (3) osmotic fragility test in hypotonic media. For the hemolysis in ammonium chloride, the evolution of distributions of sphered erythrocytes on volume and hemoglobin content was monitored in real-time experiments. The analysis of experimental data was performed in the context of a statistical approach, taking into account that parameters of erythrocytes vary from cell to cell.  相似文献   

17.
When erythrocytes from different mammalian species are compared, the hemolysis rate in 0.3 m glycerol is seen to be directly related to the percentage of lecithin in the erythrocyte phospholipid. Since this percentage is higher in erythrocytes from human adults than in those from infants, the hemolysis times in 0.3 m glycerol were compared. As expected, hemolysis was more rapid in the adult cell, which is therefore more permeable to glycerol under these conditions. The permeability to glycerol of a film of erythrocyte lipids in vitro was next examined in a model system containing the two phases water and butanol. Lipid introduced into the bulk butanol appears as a film at the interface. When equal amounts of total lipid extracted from adult and fetal erythrocytes were introduced into the butanol phase of two such chambers, the initial flux of glycerol-(14)C across the lipid boundary was greater in the cell containing lipid from adult erythrocytes than in the cell containing fetal erythrocyte lipid. This difference corresponds qualitatively to the difference in hemolysis time measured in the intact erythrocytes.  相似文献   

18.
The kinetics of the hemolysis induced by filipin is of the damage type, indicating the formation of large nonselective perforations of erythrocyte membranes. The process is relatively independent of the ionic composition of the incubation medium, and the differences between the hemolysis induced by filipin in pig and human erythrocytes are not significant. In a sucrose medium, filipin-induced hemolysis is inhibited in humans, whereas it is stimulated in pig erythrocytes. It is suggested that low ionic strength is the reason for the different modifications of complexation of filipin in pig and human erythrocyte membranes in a sucrose medium. The kinetics of the hemolysis induced in pig erythrocytes by amphotericin B and nystatin is of the permeability type, indicating the formation of selective channels in erythrocyte membranes and colloid osmotic hemolysis. The rate of the hemolysis, which is high in a KCl medium, is decreased in all the other media tested (CaCl2, MgCl2, potassium phosphate buffer, K2SO4, sucrose), although there are no changes in the kinetics of hemolysis. The results are interpreted as the formation of highly selective channels at a low concentration of the antibiotics. At increasing concentrations, channels of decreasing selectivity occur. The resistances of pig erythrocytes to amphotericin B and nystatin are lower than those of human erythrocytes.  相似文献   

19.
《Insect Biochemistry》1991,21(2):113-120
Posterior-midgut homogenate from female stable flies prepared at 12 h after feeding hemolyzed erythrocytes from 6 different mammalian species more readily than homogenate prepared at 22 h. A significant correlation was obtained between the per cent sphingomyelin content of the erythrocyte membrane and the time required for lysis by the 12 h homogenate. Erythrocytes with low sphingomyelin content were more sensitive to lysis than cells with high sphingomyelin. No such correlation exists for hemolysis by 22 h homogenate. Mean corpuscular volume and osmotic fragilities of erythrocytes were not related to hemolysis either by 12 or 22 h homogenate. Determination of phospholipase C and sphingomyelinase activities showed that the hydrolysis rate of phospholipase C in homogenates prepared at 12–14 h was almost twice as much as sphingomyelinase activity. Whereas hydrolysis rates in 22–24 h homogenate were not different and markedly reduced compared to the 12–14 h homogenate. The times required for erythrocyte hemolysis related to the phospholipase C and sphingomyelinase activity profiles suggests that these enzyme activities participate in the in vitro hemolysis of red blood cells. Bovine and human erythrocytes change their biconcave contour into a spiculated spherical shape when they are exposed to midgut homogenate. This shape change is interpreted as a detergent induced modification of the red cell membrane which renders the erythrocytes more vulnerable to hemolysis.  相似文献   

20.
The method of hemolysis control in human circulating blood is described. The method was used for studying erythrocyte destruction resulting from osmotic swelling and shear stress in the blood flow and may be applied in the artificial blood circulation system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号